1
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
2
|
Sharma S, Gupta P, Kawish SM, Ahmad S, Iqbal Z, Vohora D, Kohli K. Novel Chitosan-Coated Liposomes Coloaded with Exemestane and Genistein for an Effective Breast Cancer Therapy. ACS OMEGA 2024; 9:9735-9752. [PMID: 38434864 PMCID: PMC10905587 DOI: 10.1021/acsomega.3c09948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
For achieving high effectiveness in the management of breast cancer, coadministration of drugs has attracted a lot of interest as a mode of therapy when compared to a single chemotherapeutic agent that often results in reduced therapeutic end results. Owing to their proven effectiveness, good patient compliance, and lower costs, oral anticancer drugs have received much attention. In the present work, we formulated the chitosan-coated nanoliposomes loaded with two lipophilic agents, namely, exemestane (EXE) and genistein (GEN). The formulation was prepared using the ethanol injection method, which is considered a simple method for getting the nanoliposomes. The formulation was optimized using Box-Behnken design (BBD) and was extensively characterized for particle size, ζ-potential, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analysis. The sizes of conventional and coated liposomes were found to be 104.6 ± 3.8 and 120.3 ± 6.4 nm with a low polydispersity index of 0.399 and 0.381, respectively. The ζ-potential of the liposomes was observed to be -16.56 mV, which changed to a positive value of +22.4 mV, clearly indicating the complete coating of the nanoliposomes by the chitosan. The average encapsulation efficiency was found to be between 70 and 80% for all prepared formulations. The compatibility of the drug with excipients and complete dispersion of the drug inside the system were verified by FTIR, XRD, and DSC studies. Furthermore, the in vitro release studies concluded the sustained release pattern following the Korsmeyer-Peppas model as the best-fitting model with Fickian diffusion. Ex vivo studies showed better permeation of the chitosan-coated liposomes, which was further confirmed by confocal studies. The prepared chitosan-coated liposomes showed superior antioxidant activity (94.56%) and enhanced % cytotoxicity (IC50 7.253 ± 0.34 μM) compared to the uncoated liposomes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed better cytotoxicity of the chitosan-coated nanoliposomes compared to the plain drug, showing the better penetration and enhanced bioavailability of drugs inside the cells. The formulation was found to be safe for administration, which was confirmed using the toxicity studies performed on an animal model. The above data suggested that poorly soluble lipophilic drugs could be successfully delivered via chitosan-coated liposomes for their effective delivery in breast cancer.
Collapse
Affiliation(s)
- Shwetakshi Sharma
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Priya Gupta
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
- Lloyd
School of Pharmacy, Greater Noida 201306, India
| | - S. M. Kawish
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Shahnawaz Ahmad
- Department
of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department
of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Kanchan Kohli
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
- Lloyd
Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida 201308, Uttar Pradesh, India
| |
Collapse
|
3
|
Ariyani W, Amano I, Koibuchi N. Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α. Int J Mol Sci 2023; 24:ijms24109011. [PMID: 37240356 DOI: 10.3390/ijms24109011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
4
|
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021; 22:ijms22105375. [PMID: 34065331 PMCID: PMC8160908 DOI: 10.3390/ijms22105375] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Salvatore Passarella
- School of Medicine, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| | - Harshitha Shanmugam
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Marica Noviello
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Leonilde Bonfrate
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| |
Collapse
|
5
|
Liang Z, Currais A, Soriano-Castell D, Schubert D, Maher P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol Ther 2021; 221:107749. [PMID: 33227325 PMCID: PMC8084865 DOI: 10.1016/j.pharmthera.2020.107749] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are the primary source of energy production in the brain thereby supporting most of its activity. However, mitochondria become inefficient and dysfunctional with age and to a greater extent in neurological disorders. Thus, mitochondria represent an emerging drug target for many age-associated neurological disorders. This review summarizes recent advances (covering from 2010 to May 2020) in the use of natural products from plant, animal, and microbial sources as potential neuroprotective agents to restore mitochondrial function. Natural products from diverse classes of chemical structures are discussed and organized according to their mechanism of action on mitochondria in terms of modulation of biogenesis, dynamics, bioenergetics, calcium homeostasis, and membrane potential, as well as inhibition of the oxytosis/ferroptosis pathway. This analysis emphasizes the significant value of natural products for mitochondrial pharmacology as well as the opportunities and challenges for the discovery and development of future neurotherapeutics.
Collapse
Affiliation(s)
- Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States.
| |
Collapse
|
6
|
A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. Int J Mol Sci 2021; 22:ijms22084164. [PMID: 33920595 PMCID: PMC8073645 DOI: 10.3390/ijms22084164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.
Collapse
|
7
|
Plant isoflavones can affect accumulation and impact of silver and titania nanoparticles on ovarian cells. Endocr Regul 2021; 55:52-60. [PMID: 33600664 DOI: 10.2478/enr-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives. The application of nanoparticles is experiencing a rapid growth, but it faces a problem of their toxicity, especially adverse effects on female reproduction. Food and medicinal plants and their isoflavones can be protectors against environmental stressors, but their ability to abate the adverse effects of nanoparticles has not been studied yet. In the present study, we examined the effect of silver (AgNPs) and titanium dioxide (titania, TiO2NPs) nanoparticles alone or in combination with plant phytoestrogens/antioxidants (resveratrol, diosgenin, and quercetin) on accumulation of nanoparticles, and progesterone release by cultured porcine ovarian granulosa cells.Methods. Porcine granulosa cells were incubated in the presence of AgNPs or TiO2NPs (0.1, 1, 10 or 100 µg/ml) alone or in combination with resveratrol, diosgenin or quercetin (10 µg/ml) for 48 h. The accumulation of tested nanoparticles by granulosa cells was assessed under light microscope. Progesterone concentration in culture media was measured by ELISA kit.Results. Cells accumulated both AgNPs and TiO2NPs in a dose-dependent manner. AgNPs, but not TiO2NPs, at highest dose (100 µg/ml) resulted in a destruction of cell monolayer. Both Ag-NPs and TiO2NPs reduced progesterone release. Resveratrol, diosgenin, and quercetin promoted accumulation of both AgNPs and TiO2NPs in ovarian cells and inhibited the progesterone output. Furthermore, resveratrol and diosgenin, but not quercetin, prevented the suppressive action of both AgNPs, and TiO2NPs on progesterone release.Conclusions. These observations (1) demonstrate accumulation of AgNPs and TiO2NPs in ovarian cells, (2) confirm the toxic impact of AgNPs, and TiO2NPs on these cells, (3) confirm the inhibitory effects of plant polyphenols/phytoestrogens on ovarian steroidogenesis, (4) show the ability of these isoflavones to increase the accumulation of AgNPs and TiO2NPs, and (5) show their ability to reduce the suppressive effect of AgNPs and TiO2NPs on ovarian progesterone release. The suppressive effect of AgNPs and TiO2NPs on ovarian functions should be taken into account by their exposition. However, these adverse effects could be mitigated by some plant isoflavones.
Collapse
|
8
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
9
|
Hormetic and Mitochondria-Related Mechanisms of Antioxidant Action of Phytochemicals. Antioxidants (Basel) 2019; 8:antiox8090373. [PMID: 31487950 PMCID: PMC6769633 DOI: 10.3390/antiox8090373] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Antioxidant action to afford a health benefit or increased well-being may not be directly exerted by quick reduction-oxidation (REDOX) reactions between the antioxidant and the pro-oxidant molecules in a living being. Furthermore, not all flavonoids or polyphenols derived from plants are beneficial. This paper aims at discussing the variety of mechanisms underlying the so-called "antioxidant" action. Apart from antioxidant direct mechanisms, indirect ones consisting of fueling and boosting innate detox routes should be considered. One of them, hormesis, involves upregulating enzymes that are needed in innate detox pathways and/or regulating the transcription of the so-called vitagenes. Moreover, there is evidence that some plant-derived compounds may have a direct role in events taking place in mitochondria, which is an organelle prone to oxidative stress if electron transport is faulty. Insights into the potential of molecules able to enter into the electron transport chain would require the determination of their reduction potential. Additionally, it is advisable to know both the oxidized and the reduced structures for each antioxidant candidate. These mechanisms and their related technical developments should help nutraceutical industry to select candidates that are efficacious in physiological conditions to prevent diseases or increase human health.
Collapse
|
10
|
AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity. Apoptosis 2018. [PMID: 28643197 DOI: 10.1007/s10495-017-1389-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis. In the view of this, the involvement of AMPK activation and its correlation with VDAC1 status and activity has been investigated in the course of cerebellar granule cells apoptosis. The results reported in this study show that an increased level of the phosphorylated, active, isoform of AMPK occurs in the early phase, peaks at 3 h and guarantees an increase in the phosphorylation status of VDCA1, resulting in a reduced activity of this latter. However this situation is transient in nature, since, in the late phase, AMPK activation decreases as well as the level of phosphorylated VDAC1. In a less phosphorylated status, VDAC1 fully recovers its gating activity and drives cells along the death route.
Collapse
|
11
|
Schreihofer DA, Oppong-Gyebi A. Genistein: mechanisms of action for a pleiotropic neuroprotective agent in stroke. Nutr Neurosci 2017; 22:375-391. [PMID: 29063799 DOI: 10.1080/1028415x.2017.1391933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a plant estrogen promoted as an alternative to post-menopausal hormone therapy because of a good safety profile and its promotion as a natural product. Several preclinical studies of cerebral ischemia and other models of brain injury support a beneficial role for genistein in protecting the brain from injury whether administered chronically or acutely. Like estrogen, genistein is a pleiotropic molecule that engages several different mechanisms to enhance brain health, including reduction of oxidative stress, promotion of growth factor signaling, and immune suppression. These actions occur in endothelial, glial, and neuronal cells to provide a coordinated beneficial action to ischemic challenge. Though many of these protective actions are associated with estrogen-like actions of genistein, additional activities on other receptors and intracellular targets suggest that genistein is more than a mere estrogen-mimic. Importantly, genistein lacks some of the detrimental effects associated with post-menopausal estrogen treatment and may provide an alternative to hormone therapy in those patients at risk for ischemic events.
Collapse
Affiliation(s)
- Derek A Schreihofer
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| | - Anthony Oppong-Gyebi
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| |
Collapse
|
12
|
Jiajia L, Shinghung M, Jiacheng Z, Jialing W, Dilin X, Shengquan H, Zaijun Z, Qinwen W, Yifan H, Wei C. Assessment of Neuronal Viability Using Fluorescein Diacetate-Propidium Iodide Double Staining in Cerebellar Granule Neuron Culture. J Vis Exp 2017. [PMID: 28518109 DOI: 10.3791/55442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Primary cultured Cerebellar Granule Neurons (CGNs) have been widely used as an in vitro model in neuroscience and neuropharmacology research. However, the co-existence of glial cells and neurons in CGN culture might lead to biases in the accurate assessment of neuronal viability. Fluorescein diacetate (FDA) and Propidium Iodide (PI) double staining has been used to measure cell viability by simultaneously evaluating the viable and dead cells. We used FDA-PI double staining to improve the sensitivities of the colorimetric assays and to evaluate neuronal viability in CGNs. Furthermore, we added blue fluorescent DNA stains (e.g., Hoechst) to improve the accuracy. This protocol describes how to improve the accuracy of assessment of neuronal viability by using these methods in CGN culture. Using this protocol, the number of glial cells can be excluded by using fluorescence microscopy. A similar strategy can be applied to distinguish the unwanted glial cells from neurons in various mixed cell cultures, such as primary cortical culture and hippocampal culture.
Collapse
Affiliation(s)
- Lin Jiajia
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University
| | - Mak Shinghung
- Department of Applied Biology and Chemistry Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University
| | - Zheng Jiacheng
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University
| | - Wang Jialing
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University
| | - Xu Dilin
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University
| | - Hu Shengquan
- Department of Applied Biology and Chemistry Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University
| | - Zhang Zaijun
- Institute of New Drug Research, Guangdong Provincial Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University
| | - Wang Qinwen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University
| | - Han Yifan
- Department of Applied Biology and Chemistry Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong
| | - Cui Wei
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University; Department of Applied Biology and Chemistry Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University;
| |
Collapse
|
13
|
de Oliveira MR. Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 2016; 29:35-44. [PMID: 27223841 DOI: 10.1016/j.mito.2016.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Genistein (4',5,7-trihydroxyisoflavone; C15H10O5), an isoflavone, has been investigated as an anti-cancer agent due to its ability to trigger cell death (both intrinsic and extrinsic apoptotic pathways) in different cancer cells in vitro and in vivo. Furthermore, genistein has been viewed as a mitochondriotropic molecule due to the direct effects this isoflavone induces in mitochondria, such as modulation of enzymatic activity of components of the oxidative phosphorylation system. Apoptosis triggering may also be mediated by genistein through activation of the mitochondria-dependent pathway by a mechanism associated with mitochondrial dysfunction (i.e., disruption of the mitochondrial membrane potential - MMP, release of cytochrome c, activation of the apoptosome, among others). Efforts have been made in order to elucidate how genistein coordinate these biochemical phenomena. Nonetheless, some areas of the mitochondria-associated research (mitochondrial biogenesis, redox biology of mitochondria, and mitochondria-associated bioenergetic parameters) need to be explored regarding the role of genistein as a mitochondria-targeted agent. This is a pharmacologically relevant issue due to the possibility of using genistein as a mitochondria-targeted drug in cases of cancer, neurodegeneration, cardiovascular, and endocrine disease, for example. The present review aims to describe, compare, and discuss relevant data about the effects of genistein upon mitochondria.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Programa de Pós-Graduação em Química (PPGQ), Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brasil.
| |
Collapse
|
14
|
Lopes de Azambuja CR, dos Santos LG, Rodrigues MR, Rodrigues RFM, da Silveira EF, Azambuja JH, Flores AF, Horn AP, Dora CL, Muccillo-Baisch AL, Braganhol E, da Silva Pinto L, Parize AL, de Lima VR. Physico-chemical characterization of asolectin–genistein liposomal system: An approach to analyze its in vitro antioxidant potential and effect in glioma cells viability. Chem Phys Lipids 2015; 193:24-35. [DOI: 10.1016/j.chemphyslip.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
|
15
|
Glycolytic enzyme upregulation and numbness of mitochondrial activity characterize the early phase of apoptosis in cerebellar granule cells. Apoptosis 2015; 20:10-28. [PMID: 25351440 DOI: 10.1007/s10495-014-1049-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) and cancer proceed via one or more common molecular mechanisms: a metabolic shift from oxidative phosphorylation to glycolysis-corresponding to the activation of the Warburg effect-occurs in both diseases. The findings reported in this paper demonstrate that, in the early phase of apoptosis, glucose metabolism is enhanced, i.e. key proteins which internalize and metabolize glucose-glucose transporter, hexokinase and phosphofructokinase-are up-regulated, in concomitance with a parallel decrease in oxygen consumption by mitochondria and increase of L-lactate accumulation. Reversal of the glycolytic phenotype occurs in the presence of dichloroacetate, inhibitor of the pyruvate dehydrogenase kinase enzyme, which speeds up apoptosis of cerebellar granule cells, reawakening mitochondria and then modulating glycolytic enzymes. Loss of the adaptive advantage afforded by aerobic glycolysis, which occurs in the late phase of apoptosis, exacerbates the pathological processes underlying neurodegeneration, leading inevitably the cell to death. In conclusion, the data propose that both aerobic, i.e. Warburg effect, essentially due to the protective numbness of mitochondria, and anaerobic glycolysis, rather due to the mitochondrial impairment, characterize the entire time frame of apoptosis, from the early to the late phase, which mimics the development of AD.
Collapse
|
16
|
Thioredoxin/thioredoxin reductase system involvement in cerebellar granule cell apoptosis. Apoptosis 2015; 19:1497-508. [PMID: 25055978 DOI: 10.1007/s10495-014-1023-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The involvement of thioredoxin/thioredoxin reductase system has been investigated in cerebellar granule cells (CGCs), a cellular system in which neurons are induced in apoptosis by the physiological stimulus of lowering extracellular potassium. Clarifying the sequence of events that occur during apoptosis is a critical issue as it can lead to the identification of those key events that, if blocked, can slow down or reverse the death process. The results reported in this work show that TrxR is involved in the early phase of CGC apoptosis with an increase in activity that coincides with the increased expression of the TrxR1 isoform and guarantees the maintenance of adequate level of Trx in its reduced, active form. However, in late apoptosis, when about 50 % of cells are dead, partial proteolysis of TrxR1 by calpain occurs and the reduction of TrxR1 mRNA, together with the overall decrease in TrxR activity, contribute to increase the levels of the oxidized form of Trx. When the reduced form of Trx is externally added to apoptotic cultures, a significant reduction in cell death is achieved confirming that a well-functioning thioredoxin/thioredoxin reductase system is required for survival of CGCs.
Collapse
|
17
|
Mousa AM, Al-Fadhli AS, Rao MS, Kilarkaje N. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats. Drug Chem Toxicol 2014; 38:73-83. [PMID: 24724870 DOI: 10.3109/01480545.2014.907578] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.
Collapse
Affiliation(s)
- Alyaa M Mousa
- Department of Anatomy, Faculty of Medicine, Kuwait University , Kuwait
| | | | | | | |
Collapse
|
18
|
Bobba A, Amadoro G, Azzariti A, Pizzuto R, Atlante A. Extracellular ADP prevents neuronal apoptosis via activation of cell antioxidant enzymes and protection of mitochondrial ANT-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1338-49. [PMID: 24709060 DOI: 10.1016/j.bbabio.2014.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
Apoptosis in neuronal tissue is an efficient mechanism which contributes to both normal cell development and pathological cell death. The present study explores the effects of extracellular ADP on low [K(+)]-induced apoptosis in rat cerebellar granule cells. ADP, released into the extracellular space in brain by multiple mechanisms, can interact with its receptor or be converted, through the actions of ectoenzymes, to adenosine. The findings reported in this paper demonstrate that ADP inhibits the proapoptotic stimulus supposedly via: i) inhibition of ROS production during early stages of apoptosis, an effect mediated by its interaction with cell receptor/s. This conclusion is validated by the increase in SOD and catalase activities as well as by the GSSG/GSH ratio value decrease, in conjunction with the drop of ROS level and the prevention of the ADP protective effect by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a novel functionally selective antagonist of purine receptor; ii) safeguard of the functionality of the mitochondrial adenine nucleotide-1 translocator (ANT-1), which is early impaired during apoptosis. This effect is mediated by its plausible internalization into cell occurring as such or after its hydrolysis, by means of plasma membrane nucleotide metabolizing enzymes, and resynthesis into the cell. Moreover, the findings that ADP also protects ANT-1 from the toxic action of the two Alzheimer's disease peptides, i.e. Aβ1-42 and NH2htau, which are known to be produced in apoptotic cerebellar neurons, further corroborate the molecular mechanism of neuroprotection by ADP, herein proposed.
Collapse
Affiliation(s)
- A Bobba
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
| | - G Amadoro
- Institute of Translational Pharmacology, CNR, Roma, Italy
| | - A Azzariti
- Clinical and Preclinical Pharmacology Lab, National Cancer Research Centre, Istituto Tumori G. Paolo II, Bari, Italy
| | - R Pizzuto
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - A Atlante
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy.
| |
Collapse
|
19
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
20
|
|
21
|
Hu SQ, Cui W, Xu DP, Mak SH, Tang J, Choi CL, Pang YP, Han YF. Substantial neuroprotection against K+ deprivation-induced apoptosis in primary cerebellar granule neurons by novel dimer bis(propyl)-cognitin via the activation of VEGFR-2 signaling pathway. CNS Neurosci Ther 2013; 19:764-72. [PMID: 23826635 DOI: 10.1111/cns.12141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neuronal loss via apoptosis in CNS is the fundamental mechanism underlying various neurodegenerative diseases. Compounds with antiapoptotic property might have therapeutic effects for these diseases. In this study, bis(propyl)-cognitin (B3C), a novel dimer that possesses anti-AChE and anti-N-methyl-d-aspartate receptor activities, was investigated for its neuroprotective effect on K(+) deprivation-induced apoptosis in cerebellar granule neurons (CGNs). METHODS Cerebellar granule neurons were switched to K(+) deprived medium with or without B3C. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay, fluorescein diacetate (FDA)/propidium iodide (PI) staining, Hoechst staining, and DNA laddering assays were applied to detect cytotoxicity and apoptosis. Additionally, the expression of p-VEGFR-2, p-Akt, p-glycogen synthase kinase 3β (GSK3β), and p-extracellular signal-regulated kinase (ERK) was examined in CGNs. RESULTS Switching CGNs to K(+) deprived medium resulted in remarkable apoptosis, which could be substantially blocked by B3C treatment (IC50 , 0.37 μM). Moreover, a rapid decrease in p-Tyr1054-VEGFR-2 was observed after the switch. B3C significantly reversed the inhibition of p-Tyr1054-VEGFR-2 as well as Akt and ERK pathways. VEGFR-2 inhibitor PTK787/ZK222584, as well as PI3-K inhibitor LY294002 and MEK inhibitor PD98059, each abolished the neuroprotective effect of B3C. CONCLUSIONS Our results demonstrate that B3C blocks K(+) deprivation-induced apoptosis in CGNs through regulating VEGFR-2/Akt/GSK3β and VEGFR-2/ERK signaling pathways, providing a molecular insight into the therapeutic potential of B3C for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheng-Quan Hu
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kajta M, Rzemieniec J, Litwa E, Lason W, Lenartowicz M, Krzeptowski W, Wojtowicz AK. The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 2013; 238:345-60. [PMID: 23419549 DOI: 10.1016/j.neuroscience.2013.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023]
Abstract
Phytoestrogens have received considerable attention because they provide an array of beneficial effects, such as neuroprotection. To better understand the molecular and functional link between phytoestrogens and classical as well as membrane estrogen receptors (ERs), we investigated the effect of daidzein on the glutamate-mediated apoptotic pathway. Our study demonstrated that daidzein (0.1-10μM) inhibited the pro-apoptotic and neurotoxic effects caused by glutamate treatment. Hippocampal, neocortical and cerebellar tissues responded to the inhibitory action of daidzein on glutamate-activated caspase-3 and lactate dehydrogenase (LDH) release in a similar manner. Biochemical data were supported at the cellular level by Hoechst 33342 and calcein AM staining. The sensitivity of neuronal cells to daidzein-mediated protection was most prominent in hippocampal cultures at an early stage of development 7th day in vitro. A selective estrogen receptor β (ERβ) antagonist, 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5,-a]pyrimidin-3-yl]phenol (PHTPP), and a selective G-protein-coupled receptor 30 (GPR30) antagonist, 3aS(∗),4R(∗),9bR(∗))-4-(6-Bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G15), reversed the daidzein-mediated inhibition of glutamate-induced loss of membrane mitochondrial potential, caspase-3 activity, and LDH release. A selective ERα antagonist, methyl-piperidino-pyrazole (MPP), did not influence any anti-apoptotic effect of daidzein. However, a high-affinity estrogen receptor antagonist, 7α,17β-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI) 182,780, and a selective GPR30 agonist, (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), intensified the protective action of daidzein against glutamate-induced loss of membrane mitochondrial potential and LDH release. In siRNA ERβ- and siRNA GPR30-transfected cells, daidzein did not inhibit the glutamate-induced effects. Twenty-four hour exposure to glutamate did not affect the cellular distribution of ERβ and GPR30, but caused greater than 100% increase in the levels of the receptors. Co-treatment with daidzein decreased the level of ERβ without significant changing of the GPR30 protein level. Here, we elucidated neuroprotective effects of daidzein at low micromolar concentrations and demonstrated that the phytoestrogens may exert their effects through novel extranuclear GPR30 and the classical transcriptionally acting ERβ. These studies uncover key roles of the ERβ and GPR30 intracellular signaling pathways in mediating the anti-apoptotic action of daidzein and may provide insight into new strategies to treat or prevent neural degeneration.
Collapse
Affiliation(s)
- M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ding J, Yu HL, Ma WW, Xi YD, Zhao X, Yuan LH, Feng JF, Xiao R. Soy isoflavone attenuates brain mitochondrial oxidative stress induced by β-amyloid peptides 1-42 injection in lateral cerebral ventricle. J Neurosci Res 2012; 91:562-7. [PMID: 23239252 DOI: 10.1002/jnr.23163] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/19/2012] [Accepted: 09/29/2012] [Indexed: 12/30/2022]
Abstract
The aim of this study is to investigate whether soy isoflavone (SIF) reduces oxidative stress and improves the antioxidant ability in mitochondria of rat brain damaged by injection of beta-amyloid peptides 1-42 (Aβ1-42). Forty Wistar rats were randomly divided into control, Aβ1-42, SIF + Aβ1-42, and SIF groups according to body weight. The rats in the SIF + Aβ1-42 group and SIF group were intragastrically administered SIF suspension in 0.5% CMC-Na for 28 days, whereas the rats in control group and Aβ1-42 group were administered the same volume of 0.5% CMC-Na. On day 14, the rats in the Aβ1-42 group and SIF + Aβ1-42 group were injected with Aβ1-42 into the lateral cerebral ventricle with physiological saline. The rat brains were then sampled, and brain mitochondria were isolated. After this, the mitochondrial membrane potential (MMP) and mitochondrial redox state were measured. The contents of brain nuclear factor E2-related factor (Nrf2) and heme oxygenase-1 (HO-1) protein in brain tissue were quantitated by Western blot. The results showed that SIF maintained the MMP, elevated the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, and increased glutathione peroxidase (GPx) and manganese superoxide dismutase (MnSOD) protein expression in brain mitochondria. Additionally, SIF reversed the Aβ1-42-induced downregulation of the protein expression of Nrf2 and HO-1 in brain tissue. These results indicated that SIF could alleviate the oxidative damage and maintain the redox imbalance in brain mitochondria damaged by Aβ1-42. This might result from regulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Juan Ding
- Department of Nutrition and Food Hygiene, School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
A new in vitro injury model of mouse neurons induced by mechanical scratching. Neurosci Lett 2012; 510:14-9. [PMID: 22245654 DOI: 10.1016/j.neulet.2011.12.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 01/03/2023]
Abstract
The mixed culture of neurons and glial cells has been widely used as a mechanical insult model for the study of neuron injury in vitro. However, a better model is desirable to eliminate the interference of glial cells during the study. Here we report a new model with exclusive cerebellar granule neurons (CGNs), which can be used for the study of in vitro neuron injury without involvement of glial cells. We found that after scratching insult, there was a decrease in both the survival rate and vitality of injured CGNs. Meanwhile, pathological changes were observed by electron microscopy. With this new model, we also tested the effects of neurotrophin-3 (NT-3) on neuroprotection. The result showed that the vitality of injured CGNs was enhanced by the administration of NT-3. These findings demonstrate that this new model is useful for investigation of the precise effect of mechanical damage on neurons excluding other factors, and to detect the neuroprotective effect of certain factors on mechanically injured neurons.
Collapse
|
25
|
Genistein inhibits mitochondrial-targeted oxidative damage induced by beta-amyloid peptide 25–35 in PC12 cells. J Bioenerg Biomembr 2011; 43:399-407. [DOI: 10.1007/s10863-011-9362-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/19/2011] [Indexed: 12/25/2022]
|
26
|
Kim EJ, Kang D, Han J. Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiol (Oxf) 2011; 202:185-92. [PMID: 21306568 DOI: 10.1111/j.1748-1716.2011.02263.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Earlier studies have shown that TREK-1 and TREK-2 (TREKs), members of the two-pore domain K(+) (K(2P)) channel family that are highly expressed under pathological conditions, are activated by neuroprotective agents. Baicalein and wogonin, oriental flavonoids originating from the root of the medicinal herb Scutellaria baicalensis, are known to have beneficial effects for neuroprotection. However, little is known about the effects of baicalein and wogonin on ion channels including TREKs. We investigated whether baicalein and wogonin modulate the TREK-2 channel, which has been less studied than TREK-1. METHODS Single-channel recordings were performed in COS-7 cells transfected with rat TREK-2 and analyzed baicalein- or wogonin-induced channel activity. RESULTS We found that baicalein and wogonin activated the TREK-2 current by increasing the opening frequency (channel activity: from 0.05 ± 0.01 to 0.17 ± 0.06 in baicalein treatment and from 0.03 ± 0.01 to 0.29 ± 0.09 in wogonin treatment, P < 0.05), while leaving the single-channel conductance and mean open time unchanged. Baicalein continuously activated TREK-2, whereas wogonin transiently activated TREK-2. Application of baicalein and wogonin activated TREK-2 in both cell attached and excised patches, suggesting that baicalein and wogonin may modulate TREK-2 either directly or indirectly with different mechanisms. CONCLUSION These results suggest that baicalein- and wogonin-induced TREK-2 activation help set the resting membrane potential of cells exposed to pathological conditions and thus may give beneficial effects in neuroprotection.
Collapse
Affiliation(s)
- E-J Kim
- Medical Research Center for Neural Dysfunction, Department of Physiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | |
Collapse
|
27
|
Li XL, Zhou HB, Cheng WD, Meng XH, Zhang QJ, Wang LX. WITHDRAWN: Effect of phytoestrogen isoflavone on MPP(+)-induced apoptosis in PC12 cells. Biomed Pharmacother 2010:S0753-3322(10)00185-X. [PMID: 21115318 DOI: 10.1016/j.biopha.2010.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.bionut.2010.09.004. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Xue-Li Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong, 252000, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Bobba A, Petragallo VA, Marra E, Atlante A. Alzheimer's proteins, oxidative stress, and mitochondrial dysfunction interplay in a neuronal model of Alzheimer's disease. Int J Alzheimers Dis 2010; 2010. [PMID: 20862336 PMCID: PMC2939402 DOI: 10.4061/2010/621870] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/24/2010] [Accepted: 07/09/2010] [Indexed: 11/20/2022] Open
Abstract
In this paper, we discuss the interplay between beta-amyloid (Aβ) peptide, Tau fragments, oxidative stress, and mitochondria in the neuronal model of cerebellar granule neurons (CGNs) in which the molecular events reminiscent of AD are activated. The identification of the death route and the cause/effect relationships between the events leading to death could be helpful to manage the progression of apoptosis in neurodegeneration and to define antiapoptotic treatments acting on precocious steps of the death process. Mitochondrial dysfunction is among the earliest events linked to AD and might play a causative role in disease onset and progression. Recent studies on CGNs have shown that adenine nucleotide translocator (ANT) impairment, due to interaction with toxic N-ter Tau fragment, contributes in a significant manner to bioenergetic failure and mitochondrial dysfunction. These findings open a window for new therapeutic strategies aimed at preserving and/or improving mitochondrial function.
Collapse
Affiliation(s)
- Antonella Bobba
- Istituto di Biomembrane e Bioenergetica, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | |
Collapse
|