1
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
2
|
Jang HJ, Park E, Jung HJ, Kwon TH. Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney. Am J Physiol Renal Physiol 2024; 326:F69-F85. [PMID: 37855039 PMCID: PMC11194055 DOI: 10.1152/ajprenal.00144.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), as a posttranslational modification mediated by poly(ADP-ribose) polymerases (PARPs) catalyzing the transfer of ADP-ribose from NAD+ molecules to acceptor proteins, involves a number of cellular processes. As mice lacking the PARP-1 gene (Parp1) produce more urine, we investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). In biotin-conjugated nicotinamide adenine dinucleotide (biotin-NAD+) pulldown and immunoprecipitation assays of poly(ADP)-ribose in mpkCCDc14 cells, immunoblots demonstrated that 1-deamino-8-D-arginine vasopressin (dDAVP) induced the PARylation of total proteins, associated with an increase in the cleavage of PARP-1 and cleaved caspase-3 expression. By inhibiting PARP-1 with siRNA, the abundance of dDAVP-induced AQP2 mRNA and protein was significantly diminished. In contrast, despite a substantial decrease in PARylation, the PARP-1 inhibitor (PJ34) had no effect on the dDAVP-induced regulation of AQP2 expression. The findings suggest that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. Bioinformatic analysis revealed that 408 proteins interact with PARP-1 in the collecting duct (CD) cells of the kidney. Among them, the signaling pathway of the vasopressin V2 receptor was identified for 49 proteins. In particular, β-catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein. A significant decrease of β-catenin phosphorylation (Ser552) in response to dDAVP was associated with siRNA-mediated PARP-1 knockdown. Taken together, PARP-1 is likely to play a role in vasopressin-induced AQP2 expression by interacting with β-catenin in renal CD cells.NEW & NOTEWORTHY The poly(ADP-ribose) polymerase (PARP) family catalyzes poly(ADP-ribosylation) (PARylation), which is one of the posttranslational modifications of largely undetermined physiological significance. This study investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). The results demonstrated that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. β-Catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein.
Collapse
Affiliation(s)
- Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Euijung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- Epithelial Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
3
|
Li R, He H, Li X, Zheng X, Li Z, Zhang H, Ye J, Zhang W, Yu C, Feng G, Fan W. EDB-FN targeted probes for the surgical navigation, radionuclide imaging, and therapy of thyroid cancer. Eur J Nucl Med Mol Imaging 2023; 50:2100-2113. [PMID: 36807768 DOI: 10.1007/s00259-023-06147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/08/2023] [Indexed: 02/20/2023]
Abstract
PURPOSE Extradomain B of fibronectin (EDB-FN) is a promising diagnostic and therapeutic biomarker for thyroid cancer (TC). Here, we identified a high-affinity EDB-FN targeted peptide named EDBp (AVRTSAD) and developed three EDBp-based probes, Cy5-PEG4-EDBp(Cy5-EDBp), [18F]-NOTA-PEG4-EDBp([18F]-EDBp), and [177Lu]-DOTA-PEG4-EDBp ([177Lu]-EDBp), for the surgical navigation, radionuclide imaging, and therapy of TC. METHODS Based on the previously identified EDB-FN targeted peptide ZD2, the optimized EDB-FN targeted peptide EDBp was identified by using the alanine scan strategy. Three EDBp-based probes, Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp, were developed for fluorescence imaging, positron emission tomography (PET) imaging, and radiotherapy in TC tumor-bearing mice, respectively. Additionally, [18F]-EDBp was evaluated in two TC patients. RESULTS The binding affinity of EDBp to the EDB fragment protein (Kd = 14.4 ± 1.4 nM, n = 3) was approximately 336-fold greater than that of the ZD2 (Kd = 4839.7 ± 361.7 nM, n = 3). Fluorescence imaging with Cy5-EDBp facilitated the complete removal of TC tumors. [18F]-EDBp PET imaging clearly delineated TC tumors, with high tumor uptake (16.43 ± 1.008%ID/g, n = 6, at 1-h postinjection). Radiotherapy with [177Lu]-EDBp inhibited tumor growth and prolonged survival in TC tumor-bearing mice (survival time of different treatment groups: saline vs. EDBp vs. ABRAXANE vs. [177Lu]-EDBp = 8.00 d vs. 8.00 d vs. 11.67 d vs. 22.33 d, ***p < 0.001). Importantly, the first-in-human evaluation of [18F]-EDBp demonstrated that it had specific targeting properties (SUVmax value of 3.6) and safety. CONCLUSION Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp are promising candidates for the surgical navigation, radionuclide imaging, and radionuclide therapy of TC, respectively.
Collapse
Affiliation(s)
- Ruping Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Xinling Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Xiaobin Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Hu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Jiacong Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Weiguang Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China.
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Li S, Wang J, Xiao Y, Zhang L, Fang J, Yang N, Zhang Z, Nasser MI, Qin H. D-ribose: Potential clinical applications in congestive heart failure and diabetes, and its complications (Review). Exp Ther Med 2021; 21:496. [PMID: 33791005 PMCID: PMC8005739 DOI: 10.3892/etm.2021.9927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The quality of life of patients with certain diseases may be improved through the development of technologies and advancements in pharmacology, with the aim of prolonging their life. However, congestive heart failure (CHF), as well their complications, continue to be the leading cause of disease-associated death. The mechanisms underlying the development and progression of diabetes and CHF have been uncovered in a stepwise manner and the understanding of these mechanisms has improved the management of these diseases, resulting in reduced mortality and morbidity rates; however, CHF remains the leading cause of death worldwide, particularly in developed countries. In the past decades, research has indicated that several supplements and naturally occurring compounds may be used to treat muscle weakness, for cardiac failure management, rehabilitation following myocardial ischemia-reperfusion and various complications of diabetes. D-ribose is an essential component of the respiratory, skeletal and nervous systems and is a popular compound, as its supplementation may have beneficial effects. In the present review, the physiological roles, toxic reactions and the potential use of D-ribose in the management of clinical diseases are summarized.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Juanjing Wang
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Yutian Xiao
- Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Li Zhang
- Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jinren Fang
- Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Nanyang Yang
- Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China.,The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Zhixia Zhang
- Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Moussa Ide Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Hui Qin
- Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China.,The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical College, University of South China, Hengyang, Hunan 421000, P.R. China
| |
Collapse
|
5
|
‘PARP’ing fibrosis: repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discov Today 2020; 25:1253-1261. [DOI: 10.1016/j.drudis.2020.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
|
6
|
Kaushal GP, Chandrashekar K, Juncos LA, Shah SV. Autophagy Function and Regulation in Kidney Disease. Biomolecules 2020; 10:E100. [PMID: 31936109 PMCID: PMC7022273 DOI: 10.3390/biom10010100] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a dynamic process by which intracellular damaged macromolecules and organelles are degraded and recycled for the synthesis of new cellular components. Basal autophagy in the kidney acts as a quality control system and is vital for cellular metabolic and organelle homeostasis. Under pathological conditions, autophagy facilitates cellular adaptation; however, activation of autophagy in response to renal injury may be insufficient to provide protection, especially under dysregulated conditions. Kidney-specific deletion of Atg genes in mice has consistently demonstrated worsened acute kidney injury (AKI) outcomes supporting the notion of a pro-survival role of autophagy. Recent studies have also begun to unfold the role of autophagy in progressive renal disease and subsequent fibrosis. Autophagy also influences tubular cell death in renal injury. In this review, we reported the current understanding of autophagy regulation and its role in the pathogenesis of renal injury. In particular, the classic mammalian target of rapamycin (mTOR)-dependent signaling pathway and other mTOR-independent alternative signaling pathways of autophagy regulation were described. Finally, we summarized the impact of autophagy activation on different forms of cell death, including apoptosis and regulated necrosis, associated with the pathophysiology of renal injury. Understanding the regulatory mechanisms of autophagy would identify important targets for therapeutic approaches.
Collapse
Affiliation(s)
- Gur P. Kaushal
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Kiran Chandrashekar
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Luis A. Juncos
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Sudhir V. Shah
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
7
|
Zhang Y, Pötter S, Chen CW, Liang R, Gelse K, Ludolph I, Horch RE, Distler O, Schett G, Distler JHW, Dees C. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis 2018; 77:744-751. [DOI: 10.1136/annrheumdis-2017-212265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/04/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
ObjectivesThe enzyme poly(ADP-ribose) polymerase-1 (PARP-1) transfers negatively charged ADP-ribose units to target proteins. This modification can have pronounced regulatory effects on target proteins. Recent studies showed that PARP-1 can poly(ADP-ribosyl)ate (PARylate) Smad proteins. However, the role of PARP-1 in the pathogenesis of systemic sclerosis (SSc) has not been investigated.MethodsThe expression of PARP-1 was determined by quantitative PCR and immunohistochemistry. DNA methylation was analysed by methylated DNA immunoprecipitation assays. Transforming growth factor-β (TGFβ) signalling was assessed using reporter assays, chromatin immunoprecipitation assays and target gene analysis. The effect of PARP-1 inactivation was investigated in bleomycin-induced and topoisomerase-induced fibrosis as well as in tight-skin-1 (Tsk-1) mice.ResultsThe expression of PARP-1 was decreased in patients with SSc, particularly in fibroblasts. The promoter of PARP-1 was hypermethylated in SSc fibroblasts and in TGFβ-stimulated normal fibroblasts. Inhibition of DNA methyltransferases (DNMTs) reduced the promoter methylation and reactivated the expression of PARP-1. Inactivation of PARP-1 promoted accumulation of phosphorylated Smad3, enhanced Smad-dependent transcription and upregulated the expression of TGFβ/Smad target genes. Inhibition of PARP-1 enhanced the effect of TGFβ on collagen release and myofibroblast differentiation in vitro and exacerbated experimental fibrosis in vivo. PARP-1 deficiency induced a more severe fibrotic response to bleomycin with increased dermal thickening, hydroxyproline content and myofibroblast counts. Inhibition of PARylation also exacerbated fibrosis in Tsk-1 mice and in mice with topoisomerase-induced fibrosis.ConclusionPARP-1 negatively regulates canonical TGFβ signalling in experimental skin fibrosis. The downregulation of PARP-1 in SSc fibroblasts may thus directly contribute to hyperactive TGFβ signalling and to persistent fibroblast activation in SSc.
Collapse
|
8
|
Siniscalco D, Trotta MC, Brigida AL, Maisto R, Luongo M, Ferraraccio F, D'Amico M, Di Filippo C. Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. BIOLOGY 2018; 7:biology7010010. [PMID: 29324687 PMCID: PMC5872036 DOI: 10.3390/biology7010010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/27/2022]
Abstract
Background: The rat model of streptozotocin (STZ)-induced pancreatic damage was used to examine whether a systemic oxygen/ozone mixture could be beneficial for the pancreas by reducing the machinery of the local detrimental mediators released by STZ. Results: The results showed that oxygen/ozone administration (150 µg/Kg i.p.) for ten days in STZ rats increased the endogenous glutathione-s-transferase (GST) enzyme and nuclear factor-erythroid 2-related factor 2 (Nrf2) into the pancreatic tissue, together with reduction of 4-hydroxynonenal (4-HNE) and PARP-1 compared to STZ rats receiving O₂ only. Interestingly, these changes resulted in higher levels of serum insulin and leptin, and pancreatic glucagon immunostaining. Consequently, glucose metabolism improved as evidenced by the monitoring of glycemia throughout. Conclusions: This study provides evidence that systemic administration of oxygen/ozone reduces the machinery of detrimental mediators released by STZ into the pancreas with less local damage and better functionality.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Anna Lisa Brigida
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Rosa Maisto
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Margherita Luongo
- "Maria Guarino" Foundation-AMOR No Profit Association, 80078 Pozzuoli, Italy.
| | - Franca Ferraraccio
- Department of Physical and Mental Health and Preventive Medicine, University of Campania, 80138 Naples, Italy.
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Clara Di Filippo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| |
Collapse
|
9
|
Zakaria EM, El-Maraghy NN, Ahmed AF, Ali AA, El-Bassossy HM. PARP inhibition ameliorates nephropathy in an animal model of type 2 diabetes: focus on oxidative stress, inflammation, and fibrosis. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:621-631. [PMID: 28224182 DOI: 10.1007/s00210-017-1360-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) enzyme contributes to nephropathy, a serious diabetic complication which may lead to end-stage renal disease. The study aims to investigate the effect of PARP over-activation on kidney functions in a type 2 diabetic rat model. The study also tests the therapeutic use of PARP inhibitors in diabetic nephropathy. Type 2 diabetes was induced in adult male rats by high-fructose/high-fat diet and low streptozotocin dose. Then, the PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for 10 weeks. At the end, urine samples were collected to measure urine creatinine, albumin, and total proteins. PARP activity, superoxide dismutase (SOD) activity, and nitrite content were measured in kidney tissue homogenate. Glucose, fructosamine, insulin, and tumor necrosis factor-alpha (TNF-α) were measured in serum. Furthermore, histological studies, collagen deposition, and immunofluorescence of nuclear factor kappa B (NFκB) and transforming growth factor beta1 (TGF-β1) were carried out. PARP enzyme activity was significantly higher in the diabetic group and was significantly reduced by 4-AB administration. Diabetic animals had clear nephropathy indicated by proteinuria and increased albumin excretion rate (AER) which were significantly decreased by PARP inhibition. In addition, PARP inhibition increased creatinine clearance in diabetic animals and reduced renal TGF-β1 and glomerular fibrosis. Moreover, PARP inhibition alleviated the elevated serum TNF-α level, renal NFκB, nitrite, and the decrease in SOD activity in diabetic animals. However, PARP inhibition did not significantly affect neither hyperglycemia nor insulin sensitivity. PARP enzyme inhibition alleviates diabetic nephropathy through decreasing inflammation, oxidative stress, and renal fibrosis.
Collapse
Affiliation(s)
- Esraa M Zakaria
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt.
| | - Nabila N El-Maraghy
- Department of Pharmacology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo, Egypt
| | - Ahmed F Ahmed
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Abdelmonim A Ali
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Zakaria EM, El-Bassossy HM, El-Maraghy NN, Ahmed AF, Ali AA. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals. Eur J Pharmacol 2016; 791:444-454. [DOI: 10.1016/j.ejphar.2016.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
|
11
|
Zhang Y, Wang C, Tian Y, Zhang F, Xu W, Li X, Shu Z, Wang Y, Huang K, Huang D. Inhibition of Poly(ADP-Ribose) Polymerase-1 Protects Chronic Alcoholic Liver Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3117-3130. [PMID: 27746183 DOI: 10.1016/j.ajpath.2016.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/02/2016] [Accepted: 08/22/2016] [Indexed: 02/08/2023]
Abstract
Activation of Kupffer cells (KCs) by gut-derived endotoxin plays a pivotal role in the pathogenesis of alcoholic liver diseases (ALD). Limiting the activation of resident KCs attenuates chronic ethanol-induced liver steatosis and injury. Poly (ADP-ribose) polymerase (PARP)-1 is suggested to play a role in a number of chronic inflammatory diseases. In this study, we found a significant increase of hepatic PARP activity in mice with short-term and long-term ethanol-induced ALD. Male mice on a long-term ethanol diet exhibited severe hepatic steatosis and apoptosis and enhanced KC activation and neutrophil infiltration. However, pharmacologic inhibition of PARP activity or genetic depletion of PARP1 significantly attenuated these detrimental effects in vivo. We found that inhibition of PARP1 effectively reduced hepatic expression of genes involved in lipogenesis and elevated hepatic expression of genes involved in lipolysis. Moreover, limited KC activation and neutrophil infiltration were observed in PARP1 knockout mice or PARP inhibitor-treated mice. Furthermore, in vitro experiments found that LPS-induced macrophage activation was limited by PARP inhibitor, and exposure of ethanol-treated hepatocytes to this conditioned medium further decreased the number of apoptotic and steatotic cells. Taken together, these findings suggest that PARP1 inhibition protects against long-term ethanol-induced liver injury, as indicated by limited hepatocytes steatosis, apoptosis, inflammation levels, and neutrophil infiltration, mainly by limiting KC activation during the initiation of ALD.
Collapse
Affiliation(s)
- Yanqing Zhang
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunli Tian
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Xu
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangrao Li
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiping Shu
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Huang
- Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci 2016; 73:2309-24. [PMID: 27048819 PMCID: PMC5490387 DOI: 10.1007/s00018-016-2202-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.
Collapse
Affiliation(s)
- Yuan Ying
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
KIM J. Poly(ADP-Ribose) Polymerase Activation Induces High Mobility Group Box 1 Release From Proximal Tubular Cells During Cisplatin Nephrotoxicity. Physiol Res 2016; 65:333-40. [DOI: 10.33549/physiolres.932948] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cisplatin is one of the most potent chemotherapy drugs against cancer, but its major side effect such as nephrotoxicity limits its use. Inhibition of poly(ADP-ribose) polymerase (PARP) protects against various renal diseases via gene transactivation and/or ADP-ribosylation. However, the role of PARP in necrotic cell death during cisplatin nephrotoxicity remains an open question. Here we demonstrated that pharmacological inhibition of PARP by postconditioning dose-dependently prevented tubular injury and renal dysfunction following cisplatin administration in mice. PARP inhibition by postconditioning also attenuated ATP depletion during cisplatin nephrotoxicity. Systemic release of high mobility group box 1 (HMGB1) protein in plasma induced by cisplatin administration was significantly diminished by PARP inhibition by postconditioning. In in vitro kidney proximal tubular cell lines, PARP inhibition by postconditioning also diminished HMGB1 release from cells. These data demonstrate that cisplatin-induced PARP1 activation contributes to HMGB1 release from kidney proximal tubular cells, resulting in the promotion of inflammation during cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- J. KIM
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea
| |
Collapse
|
14
|
Park S, Yoon SP, Kim J. Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells. Anat Cell Biol 2015; 48:66-74. [PMID: 25806124 PMCID: PMC4371183 DOI: 10.5115/acb.2015.48.1.66] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 11/30/2022] Open
Abstract
Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 activation in kidney proximal tubular cells derived from human, pig and mouse. Treatment with high dose of cisplatin for 4 and 8 hours induced primary necrosis, as represented by the percentage of propidium iodide-positive cells and lactate dehydrogenase release. The primary necrosis was correlated with PARP1 activation during cisplatin injury. Treatment with PJ34, a potent PARP1 inhibitor, at 2 hours after injury attenuated primary necrosis after 8 hours of cisplatin injury as well as PARP1 activation. PARP1 inhibition also reduced the release of lactate dehydrogenase and high mobility group box protein 1 from kidney proximal tubular cells at 8 hours after cisplatin injury. Oxidative stress was increased by treatment with cisplatin for 8 hours as shown by 8-hydroxy-2'-deoxyguanosine and lipid hydroperoxide assays, but PARP1 inhibition at 2 hours after injury reduced the oxidative damage. These data demonstrate that cisplatin-induced PARP1 activation contributes to primary necrosis through oxidative stress in kidney proximal tubular cells, resulting in the induction of cisplatin nephrotoxicity and inflammation.
Collapse
Affiliation(s)
- Seulgee Park
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea. ; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| |
Collapse
|
15
|
Chung HT, Joe Y. Antagonistic crosstalk between SIRT1, PARP-1, and -2 in the regulation of chronic inflammation associated with aging and metabolic diseases. Integr Med Res 2014; 3:198-203. [PMID: 28664098 PMCID: PMC5481777 DOI: 10.1016/j.imr.2014.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022] Open
Abstract
Current studies have indicated the association of chronic sterile inflammation (inflammation in the absence of pathogens) with the pathogenesis of age-related and metabolic diseases. The inflammation is under the control of transcription factor NF-κB through an antagonistic crosstalk between SIRT1, PARP-1, and -2 signaling pathways. The transcriptional activity of NF-κB is increased in various tissues with aging and metabolic abnormalities and is related with various aging and metabolic diseases such as Alzheimer's disease, diabetes, and osteoporosis. Furthermore, NF-κB activation with chronic inflammation is connected with many known life span and metabolic regulators including DNA damage, obesity, SIRT, and PARP. Thus, the crossroads between PARP and SIRT signaling pathways represent efficient therapeutic targets for extending health span without metabolic diseases.
Collapse
Affiliation(s)
- Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| |
Collapse
|
16
|
Abstract
Aims/Introduction: In diabetes, increased oxidative stress as a result of damage to the electron transport chain can lead to tissue injury through upregulation of multiple vasoactive factors and extracellular matrix proteins. Benfotiamine, a lipid soluble thiamine derivative, through reducing mitochondrial superoxide production, blocks multiple pathways leading to tissue damage in hyperglycemia. We investigated if treatment with benfotiamine can prevent diabetes‐induced production of vasoactive factors and extracellular matrix proteins, and whether such effects are tissue‐specific. We also examined whether effects of benfotiamine are mediated through a nuclear mechanism. Materials and Methods: Retinal, renal and cardiac tissues from the streptozotocin‐induced diabetic rats were examined after 4 months of follow up. mRNA levels were quantified using real‐time RT‐PCR. Protein levels were quantified using western blot and ELISA. Cellular expressions of 8‐Hydroxy‐2′‐deoxyguanosine, a marker of nuclear DNA damage and Phospho‐H2AX were also examined. Results: Diabetic animals showed hyperglycemia, glucosuria, increased urinary albumin/creatine ratio and loss of bodyweight. In the kidneys, heart and retina, diabetes caused increased production of endothelin‐1, transforming growth factor‐β1, vascular endothelial growth factor and augmented extracellular matrix proteins (collagen, fibronectin [FN] and its splice variant extradomain B containing FN), along with evidence of structural alterations, characteristic of diabetes‐induced tissue damage. Such changes were prevented by benfotiamine. Furthermore, benfotiamine prevented diabetes‐induced oxidative DNA damage and upregulation of p300, a histone acetylator and a transcription coactivator. Conclusions: Data from the present study suggest that benfotiamine is effective in preventing tissue damage in diabetes and at the transcriptional level such effects are mediated through prevention of p300 upregulation. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00077.x, 2010)
Collapse
Affiliation(s)
- Rana Chakrabarti
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Megan Chen
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Weihua Liu
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Shali Chen
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Zhu S, Yang Y, Hu J, Qian L, Jiang Y, Li X, Yang Q, Bai H, Chen Q. Wld(S) ameliorates renal injury in a type 1 diabetic mouse model. Am J Physiol Renal Physiol 2014; 306:F1348-56. [PMID: 24598800 DOI: 10.1152/ajprenal.00418.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease worldwide. The purpose of this study is to investigate whether the Wld(S) (slow Wallerian degeneration; also known as Wld) gene plays a renoprotective role during the progression of DN. Diabetes was induced in 8-wk-old male wild-type (WT) and C57BL/Wld(S) mice by streptozotocin (STZ) injection. Blood and urinary variables including blood glucose, glycated hemoglobin (GHb), insulin, urea nitrogen, and albumin/creatinine ratio were assessed 4, 7, and 14 wk after STZ injection. Periodic acid-Schiff staining, Masson staining, and silver staining were performed for renal pathological analyses. In addition, the renal ultrastructure was observed by electron microscope. The activities of p38 and ERK signaling in renal cortical tissues were evaluated by Western blotting. NAD(+)/NADH ratio and NADPH oxidase activity were also measured. Moreover, the expressions of TNF-α, IL-1, and IL-6 were examined. We provide experimental evidence demonstrating that the Wld(S) gene is expressed in kidney cells and protects against the early stage of diabetes-induced renal dysfunction and extracellular matrix accumulation through delaying the reduction of the NAD(+)/NADH ratio, inhibiting the activation of p38 and ERK signaling, and suppressing oxidative stress as evidenced by the decreased NADPH oxidase activity and lower expression of TNF-α, IL-1, and IL-6.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yelin Yang
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin Hu
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lingling Qian
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuchen Jiang
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoyu Li
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Yang
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hui Bai
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qi Chen
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Zhou TB, Jiang ZP. Role of poly (ADP-ribose)-polymerase and its signaling pathway with renin-angiotensin aldosterone system in renal diseases. J Recept Signal Transduct Res 2013; 34:143-8. [PMID: 24303937 DOI: 10.3109/10799893.2013.865748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP), a ubiquitous, chromatin-bound enzyme, plays a crucial role in many processes, including DNA repair, cell death, metabolism, and inflammatory responses, by activating DNA repair pathways responsible for cellular survival. Renin-angiotensin-aldosterone system (RAAS) genes encode renin, angiotensinogen, angiotensin-converting enzyme, angiotensin type-1 receptor and aldosterone synthase gene. RAAS is a hormone system which acts on multiple physiologic pathways primarily by regulating blood pressure, electrolyte and fluid homeostasis in mammals, but also by local autocrine and paracrine actions. The current status quo of scientific evidence shows that there might be a signaling pathway between PARP and RAAS. Herein, we review the role of PARP and its signaling pathways with RAAS in renal diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | |
Collapse
|
19
|
Bai P, Virág L. Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett 2012; 586:3771-7. [PMID: 23022557 DOI: 10.1016/j.febslet.2012.09.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/06/2012] [Accepted: 09/16/2012] [Indexed: 12/20/2022]
Abstract
PARP enzymes influence the immune system at several key points and thus modulate inflammatory diseases. PARP enzymes affect immune cell maturation and differentiation and regulate the expression of inflammatory mediators such as cytokines, chemokines, inducible nitric oxide synthase and adhesion molecules. Moreover, PARP enzymes are key regulators of cell death during inflammation-related oxidative and nitrosative stress. Here we provide an overview of the different inflammatory diseases regulated by PARP enzymes.
Collapse
Affiliation(s)
- Péter Bai
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen H-4032, Hungary.
| | | |
Collapse
|
20
|
Animal models as tools to investigate antidiabetic and anti-inflammatory plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:142087. [PMID: 22899950 PMCID: PMC3414199 DOI: 10.1155/2012/142087] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/30/2012] [Indexed: 01/12/2023]
Abstract
Plants have been historically used for diabetes treatment and related anti-inflammatory activity throughout the world; few of them have been validated by scientific criteria. Recently, a large diversity of animal models has been developed for better understanding the pathogenesis of diabetes mellitus and its underlying inflammatory mechanism and new drugs have been introduced in the market to treat this disease. The aim of this work is to review the available animal models of diabetes and anti-inflammatory activity along with some in vitro models which have been used as tools to investigate the mechanism of action of drugs with potential antidiabetic properties and related anti-inflammatory mechanism. At present, the rigorous procedures for evaluation of conventional antidiabetic medicines have rarely been applied to test raw plant materials used as traditional treatments for diabetes; and natural products, mainly derived from plants, have been tested in chemically induced diabetes model. This paper contributes to design new strategies for the development of novel antidiabetic drugs and its related inflammatory activity in order to treat this serious condition which represents a global public health problem.
Collapse
|
21
|
Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 2012; 13:411-24. [PMID: 22713970 DOI: 10.1038/nrm3376] [Citation(s) in RCA: 908] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are enzymes that transfer ADP-ribose groups to target proteins and thereby affect various nuclear and cytoplasmic processes. The activity of PARP family members, such as PARP1 and PARP2, is tied to cellular signalling pathways, and through poly(ADP-ribosyl)ation (PARylation) they ultimately promote changes in gene expression, RNA and protein abundance, and the location and activity of proteins that mediate signalling responses. PARPs act in a complex response network that is driven by the cellular, molecular and chemical biology of poly(ADP-ribose) (PAR). This PAR-dependent response network is crucial for a broad array of physiological and pathological responses and thus is a good target for chemical therapeutics for several diseases.
Collapse
Affiliation(s)
- Bryan A Gibson
- Signalling and Gene Regulation Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-78511, USA
| | | |
Collapse
|
22
|
Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 2012; 26:417-32. [PMID: 22391446 DOI: 10.1101/gad.183509.111] [Citation(s) in RCA: 550] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular stress responses are mediated through a series of regulatory processes that occur at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These responses require a complex network of sensors and effectors from multiple signaling pathways, including the abundant and ubiquitous nuclear enzyme poly(ADP-ribose) (PAR) polymerase-1 (PARP-1). PARP-1 functions at the center of cellular stress responses, where it processes diverse signals and, in response, directs cells to specific fates (e.g., DNA repair vs. cell death) based on the type and strength of the stress stimulus. Many of PARP-1's functions in stress response pathways are mediated by its regulated synthesis of PAR, a negatively charged polymer, using NAD(+) as a donor of ADP-ribose units. Thus, PARP-1's functions are intimately tied to nuclear NAD(+) metabolism and the broader metabolic profile of the cell. Recent studies in cell and animal models have highlighted the roles of PARP-1 and PAR in the response to a wide variety of extrinsic and intrinsic stress signals, including those initiated by oxidative, nitrosative, genotoxic, oncogenic, thermal, inflammatory, and metabolic stresses. These responses underlie pathological conditions, including cancer, inflammation-related diseases, and metabolic dysregulation. The development of PARP inhibitors is being pursued as a therapeutic approach to these conditions. In this review, we highlight the newest findings about PARP-1's role in stress responses in the context of the historical data.
Collapse
Affiliation(s)
- Xin Luo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
23
|
Kim J, Long KE, Tang K, Padanilam BJ. Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity. Kidney Int 2012; 82:193-203. [PMID: 22437413 DOI: 10.1038/ki.2012.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis, necrosis, and inflammation are hallmarks of cisplatin nephrotoxicity; however, the role and mechanisms of necrosis and inflammation remains undefined. As poly(ADP-ribose) polymerase 1 (PARP1) inhibition or its gene deletion is renoprotective in several renal disease models, we tested whether its activation may be involved in cisplatin nephrotoxicity. Parp1 deficiency was found to reduce cisplatin-induced kidney dysfunction, oxidative stress, and tubular necrosis, but not apoptosis. Moreover, neutrophil infiltration, activation of nuclear factor-κB, c-Jun N-terminal kinases, p38 mitogen-activated protein kinase, and upregulation of proinflammatory genes were all abrogated by Parp1 deficiency. Using proximal tubule epithelial cells isolated from Parp1-deficient and wild-type mice and pharmacological inhibitors, we found evidence for a PARP1/Toll-like receptor 4/p38/tumor necrosis factor-α axis following cisplatin injury. Furthermore, pharmacological inhibition of PARP1 protected against cisplatin-induced kidney structural/functional damage and inflammation. Thus, our findings suggest that PARP1 activation is a primary signal and its inhibition/loss protects against cisplatin-induced nephrotoxicity. Targeting PARP1 may offer a potential therapeutic strategy for cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
24
|
Ng DPK, Salim A, Liu Y, Zou L, Xu FG, Huang S, Leong H, Ong CN. A metabolomic study of low estimated GFR in non-proteinuric type 2 diabetes mellitus. Diabetologia 2012; 55:499-508. [PMID: 22038517 DOI: 10.1007/s00125-011-2339-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/19/2011] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS We carried out a urinary metabolomic study to gain insight into low estimated GFR (eGFR) in patients with non-proteinuric type 2 diabetes. METHODS Patients were identified as being non-proteinuric using multiple urinalyses. Cases (n = 44) with low eGFR and controls (n = 46) had eGFR values <60 and ≥60 ml min(-1) 1.73 m(-2), respectively, as calculated using the Modification of Diet in Renal Disease formula. Urine samples were analysed by liquid chromatography/mass spectrometry (LC/MS) and GC/MS. False discovery rates were used to adjust for multiple hypotheses testing, and selection of metabolites that best predicted low eGFR status was achieved using least absolute shrinkage and selection operator logistic regression. RESULTS Eleven GC/MS metabolites were strongly associated with low eGFR after correction for multiple hypotheses testing (smallest adjusted p value = 2.62 × 10(-14), largest adjusted p value = 3.84 × 10(-2)). In regression analysis, octanol, oxalic acid, phosphoric acid, benzamide, creatinine, 3,5-dimethoxymandelic amide and N-acetylglutamine were selected as the best subset for prediction and allowed excellent classification of low eGFR (AUC = 0.996). In LC/MS, 19 metabolites remained significant after multiple hypotheses testing had been taken into account (smallest adjusted p value = 2.04 × 10(-4), largest adjusted p value = 4.48 × 10(-2)), and several metabolites showed stronger evidence of association relative to the uraemic toxin, indoxyl sulphate (adjusted p value = 3.03 × 10(-2)). The potential effect of confounding on the association between metabolites was excluded. CONCLUSIONS/INTERPRETATION Our study has yielded substantial new insight into low eGFR and provided a collection of potential urinary biomarkers for its detection.
Collapse
Affiliation(s)
- D P K Ng
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive MD3, Singapore 117597, Republic of Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mukhopadhyay P, Horváth B, Kechrid M, Tanchian G, Rajesh M, Naura AS, Boulares AH, Pacher P. Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic Biol Med 2011; 51:1774-88. [PMID: 21884784 PMCID: PMC3207278 DOI: 10.1016/j.freeradbiomed.2011.08.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022]
Abstract
Cisplatin is a commonly used chemotherapeutic drug, the clinical use of which is limited by the development of dose-dependent nephrotoxicity. Enhanced inflammatory response, oxidative stress, and cell death have been implicated in the development of cisplatin-induced nephropathy; however, the precise mechanisms are elusive. Overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) by oxidative DNA damage under various pathological conditions promotes cell death and up-regulation of key proinflammatory pathways. In this study, using a well-established model of nephropathy, we have explored the role of PARP-1 in cisplatin-induced kidney injury. Genetic deletion or pharmacological inhibition of PARP-1 markedly attenuated the cisplatin-induced histopathological damage, impaired renal function (elevated serum BUN and creatinine levels), and enhanced inflammatory response (leukocyte infiltration; TNF-α, IL-1β, F4/80, adhesion molecules ICAM-1/VCAM-1 expression) and consequent oxidative/nitrative stress (4-HNE, 8-OHdG, and nitrotyrosine content; NOX2/NOX4 expression). PARP inhibition also facilitated the cisplatin-induced death of cancer cells. Thus, PARP activation plays an important role in cisplatin-induced kidney injury, and its pharmacological inhibition may represent a promising approach to preventing the cisplatin-induced nephropathy. This is particularly exciting because several PARP inhibitors alone or in combination with DNA-damaging anticancer agents show considerable promise in clinical trials for treatment of various malignancies (e.g., triple-negative breast cancer).
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Béla Horváth
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Malek Kechrid
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Galin Tanchian
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohanraj Rajesh
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarjit S Naura
- The Stanley Scott Cancer Center Department and Department of Pharmacology; Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A. Hamid Boulares
- The Stanley Scott Cancer Center Department and Department of Pharmacology; Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Drel VR, Pacher P, Stavniichuk R, Xu W, Zhang J, Kuchmerovska TM, Slusher B, Obrosova IG. Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med 2011; 28:629-35. [PMID: 21617845 PMCID: PMC3375175 DOI: 10.3892/ijmm.2011.709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/09/2011] [Indexed: 01/23/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) activation has been implicated in the pathogenesis of diabetic complications, including nephropathy and peripheral neuropathy. This study aimed at evaluating the manifestations of both complications in diabetic Akita mice, a model of Type 1 (insulin-dependent) diabetes, and their amenability to treatment with the potent PARP inhibitor, 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de] anthracen-3-one (GPI-15427). Male non-diabetic C57Bl6/J and diabetic C57Bl/6-Ins2Akita/J (Akita) mice were maintained with or without treatment with GPI-15427, 30 mg/kg/day, for 4 weeks starting from 16 weeks of age. Sixteen week-old Akita mice displayed sensory nerve conduction velocity (SNCV) deficit, whereas the motor nerve conduction velocity (MNCV) tended to decrease, but the difference with controls did not achieve statistical significance. They also developed thermal and mechanical hypoalgesia and tactile allodynia. SNCV deficit, mechanical hypoalgesia, and tactile allodynia progressed with age whereas the severity of thermal hypoalgesia was similar in 16- and 20-week-old Akita mice. PARP inhibition alleviated, although it did not completely reverse, SNCV deficit, thermal and mechanical hypoalgesia and tactile allodynia. Sixteen-week-old Akita mice displayed MNCV deficit (41.3±2.5 vs. 51.0±1.2 m/sec in non-diabetic controls, P<0.01), axonal atrophy of myelinated fibers, kidney hypertrophy, and albuminuria. MNCV slowing, axonal atrophy, and kidney hypertrophy, but not albuminuria, were less severe in GPI-15427-treated age-matched Akita mice. Neuroprotective and nephroprotective effects of PARP inhibition were not due to alleviation of diabetic hyperglycemia, or peripheral nerve p38 mitogen-activated protein kinase activation. GPI-15427 did not affect any variables in control mice. In conclusion, the findings support an important role for PARP activation in diabetic peripheral neuropathy and kidney hypertrophy associated with Type 1 diabetes, and provide rationale for development and further studies of PARP inhibitors, for the prevention and treatment of these complications.
Collapse
Affiliation(s)
- Viktor R Drel
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Stadler K. Peroxynitrite-driven mechanisms in diabetes and insulin resistance - the latest advances. Curr Med Chem 2011; 18:280-90. [PMID: 21110800 DOI: 10.2174/092986711794088317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/20/2010] [Indexed: 02/07/2023]
Abstract
Since its discovery, peroxynitrite has been known as a potent oxidant in biological systems, and a rapidly growing body of literature has characterized its biochemistry and role in the pathophysiology of various conditions. Either directly or by inducing free radical pathways, peroxynitrite damages vital biomolecules such as DNA, proteins including enzymes with important functions, and lipids. It also initiates diverse reactions leading eventually to disrupted cell signaling, cell death, and apoptosis. The potential role and contribution of this deleterious species has been the subject of investigation in several important diseases, including but not limited to, cancer, neurodegeneration, stroke, inflammatory conditions, cardiovascular problems, and diabetes mellitus. Diabetes, obesity, insulin resistance, and diabetes-related complications represent a major health problem at epidemic levels. Therefore, tremendous efforts have been put into investigation of the molecular basics of peroxynitrite-related mechanisms in diabetes. Studies constantly seek new therapeutical approaches in order to eliminate or decrease the level of peroxynitrite, or to interfere with its downstream mechanisms. This review is intended to emphasize the latest findings about peroxynitrite and diabetes, and, in addition, to discuss recent and novel advances that are likely to contribute to a better understanding of peroxynitrite-mediated damage in this disease.
Collapse
Affiliation(s)
- K Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, LSU System, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| |
Collapse
|
28
|
Yoshioka I, Tsujihata M, Akanae W, Nonomura N, Okuyama A. Angiotensin Type-1 Receptor Blocker Candesartan Inhibits Calcium Oxalate Crystal Deposition in Ethylene Glycol-Treated Rat Kidneys. Urology 2011; 77:1007.e9-1007.e14. [DOI: 10.1016/j.urology.2010.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/28/2010] [Accepted: 11/14/2010] [Indexed: 10/18/2022]
|
29
|
Tsujihata M, Yoshioka I, Tsujimura A, Nonomura N, Okuyama A. Why does atorvastatin inhibit renal crystal retention? ACTA ACUST UNITED AC 2011; 39:379-83. [PMID: 21400107 DOI: 10.1007/s00240-011-0370-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 02/21/2011] [Indexed: 11/26/2022]
Abstract
Recently, we reported that atorvastatin prevents renal tubular cell injury by oxalate and inhibits renal crystal retention. In this study, we investigated the mechanism by which atorvastatin inhibits renal crystal retention. Male Sprague-Dawley rats were separated into four experimental groups, and the ethylene glycol model of hyperoxaluria and the atorvastatin treatment model were analyzed. To clarify the mechanism by which atorvastatin inhibits renal crystal retention, the removed kidneys were used for the quantitative analysis of superoxide dismutase (SOD) and catalase. The subunits of the NADPH oxidase system were evaluated using real-time polymerase chain reaction analysis. Furthermore, the level of transforming growth factor-β (TGF-β) in kidney tissue was compared in each group. Atorvastatin treatment increased the SOD and catalase level compared with the stone-forming control group. Atorvastatin treatment decreased the expression of NOX-1 mRNA. Furthermore, the level of TGF-β was suppressed by atorvastatin treatment. We found that atorvastatin have inhibited calcium oxalate (CaOX) urolithiasis formation. We hypothesize that the mechanism of action of atorvastatin involves inhibiting TGF-β and NADPH oxidase, and increasing the SOD and catalase level. We believe that atorvastatin will be helpful in the treatment of CaOX urolithiasis.
Collapse
Affiliation(s)
- Masao Tsujihata
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan.
| | | | | | | | | |
Collapse
|
30
|
Leung M, Rosen D, Fields S, Cesano A, Budman DR. Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Mol Med 2011; 17:854-62. [PMID: 21424107 DOI: 10.2119/molmed.2010.00240] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/10/2011] [Indexed: 12/17/2022] Open
Abstract
The hereditary forms of breast cancer identified by BRCA1 and BRCA2 genes have a defect in homologous DNA repair and demonstrate a dependence on alternate DNA repair processes by base excision repair, which requires poly(ADP-ribose) polymerase 1 (PARP-1). siRNA and deletion mutations demonstrate that interference with PARP-1 function results in enhanced cell death when the malignancy has a defect in homologous recombination. These findings resulted in a plethora of agents in clinical trials that interfere with DNA repair, and these agents offer the potential of being more selective in their effects than classic chemotherapeutic drugs. An electronic search of the National Library of Medicine for published articles written in English used the terms "PARP inhibitors" and "breast cancer" to find prospective, retrospective and review articles. Additional searches were done for articles dealing with mechanism of action. A total of 152 articles dealing with breast cancer and PARP inhibition were identified. PARP inhibition not only affects nonhomologous repair, but also has several other nongenomic functions. Mutational resistance to these agents was seen in preclinical studies. To date, PARP-1 inhibitors were shown to enhance cytotoxic effects of some chemotherapy agents. This new class of agents may offer more therapeutic specificity by exploiting a DNA repair defect seen in some human tumors with initial clinical trials demonstrating antitumor activity. Although PARP inhibitors may offer a therapeutic option for selected malignancies, the long-term effects of these agents have not yet been defined.
Collapse
Affiliation(s)
- Mary Leung
- Division of Experimental Therapeutics, Monter Cancer Center and the Feinstein Institute, Hofstra University School of Medicine, Lake Success, New York, USA
| | | | | | | | | |
Collapse
|
31
|
Shevalye H, Maksimchyk Y, Watcho P, Obrosova IG. Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1020-7. [PMID: 20621183 DOI: 10.1016/j.bbadis.2010.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/01/2010] [Accepted: 07/05/2010] [Indexed: 11/19/2022]
Abstract
Poly(ADP-ribose)polymerase (PARP) inhibitors prevent or alleviate diabetic nephropathy. This study evaluated the role for PARP-1 in diabetic kidney disease using the PARP-1-deficient mouse. PARP-1-/- and the wild-type (129S1/SvImJ) mice were made diabetic with streptozotocin, and were maintained for 12 weeks. Final blood glucose concentrations were increased ∼ 3.7-fold in both diabetic groups. PARP-1 protein expression (Western blot analysis) in the renal cortex was similar in non-diabetic and diabetic wild-type mice (100% and 107%) whereas all knockouts were PARP-1-negative. PARP-1 gene deficiency reduced urinary albumin (ELISA) and protein excretion prevented diabetes-induced kidney hypertrophy, and decreased mesangial expansion and collagen deposition (both assessed by histochemistry) as well as fibronectin expression. Renal podocyte loss (immunohistochemistry) and nitrotyrosine and transforming growth factor-β₁ accumulations (both by ELISA) were slightly lower in diabetic PARP-1-/- mice, but the differences with diabetic wild-type group did not achieve statistical significance. In conclusion, PARP-1-/- gene deficiency alleviates although does not completely prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | | | | |
Collapse
|
32
|
Giansanti V, Donà F, Tillhon M, Scovassi AI. PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 2010; 80:1869-77. [PMID: 20417190 DOI: 10.1016/j.bcp.2010.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Poly(ADP-ribosylation) consists in the conversion of β-NAD(+) into ADP-ribose, which is then bound to acceptor proteins and further used to form polymers of variable length and structure. The correct turnover of poly(ADP-ribose) is ensured by the concerted action of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes, which are responsible for polymer synthesis and degradation, respectively. Despite the positive role of poly(ADP-ribosylation) in sensing and repairing DNA damage, generated also by ROS, PARP over-activation could allow NAD depletion and consequent necrosis, thus leading to an inflammatory condition in many diseases. In this respect, inhibition of PARP enzymes could exert a protective role towards a number of pathological conditions; i.e. the combined treatment of tumors with PARP inhibitors/anticancer agents proved to have a beneficial effect in cancer therapy. Thus, pharmacological inactivation of poly(ADP-ribosylation) could represent a novel therapeutic strategy to limit cellular injury and to attenuate the inflammatory processes that characterize many disorders.
Collapse
Affiliation(s)
- Vincenzo Giansanti
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|