1
|
Yin Q, Huang Q, Zhang H, Zhang X, Fan C, Wang H. Anti-rheumatoid arthritis effects of traditional Chinese medicine Fufang Xiaohuoluo pill on collagen-induced arthritis rats and MH7A cells. Front Pharmacol 2024; 15:1374485. [PMID: 38741593 PMCID: PMC11089244 DOI: 10.3389/fphar.2024.1374485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Background Fufang Xiaohuoluo pill (FFXHL) is a commonly used prescription in clinical practice for treating rheumatoid arthritis in China, yet its specific mechanism remains unclear. This study aims to elucidate the pharmacological mechanisms of FFXHL using both in vivo and in vitro experiments. Methods The collagen-induced arthritis (CIA) rat model was established to evaluate FFXHL's therapeutic impact. Parameters that include paw swelling, arthritis scores, and inflammatory markers were examined to assess the anti-inflammatory and analgesic effects of FFXHL. Human fibroblast-like synoviocytes (MH7A cells) is activated by tumour necrosis factor-alpha (TNF-α) were used to explore the anti-inflammatory mechanism on FFXHL. Results Our findings indicate that FFXHL effectively reduced paw swelling, joint pain, arthritis scores, and synovial pannus hyperplasia. It also lowered serum levels of TNF-α, interleukin-1β (IL1β), and interleukin-6 (IL-6). Immunohistochemical analysis revealed decreased expression of nuclear factor-kappa B (NF-κB) p65 in FFXHL-treated CIA rat joints. In vitro experiments demonstrated FFXHL's ability to decrease protein secretion of IL-1β and IL-6, suppress mRNA expression of matrix metalloproteinases (MMP) -3, -9, and -13, reduce reactive oxygen species (ROS) levels, and inhibit NF-κB p65 translocation in TNF-α stimulated MH7A cells. FFXHL also suppressed protein levels of extracellular signal-regulated kinase (ERK), c-Jun Nterminal kinase (JNK), p38 MAP kinase (p38), protein kinase B (Akt), p65, inhibitor of kappa B kinase α/β (IKKα/β), Toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) induced by TNF-α in MH7A cells. Conclusion The findings imply that FFXHL exhibits significant anti-inflammatory and antiarthritic effects in both CIA rat models and TNF-α-induced MH7A cells. The potential mechanism involves the inactivation of TLR4/MyD88, mitogen-activated protein kinases (MAPKs), NF-κB, and Akt pathways by FFXHL.
Collapse
Affiliation(s)
- Qiong Yin
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Qian Huang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Hantao Zhang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Xiaodi Zhang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | | | - Hongping Wang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| |
Collapse
|
2
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Kim JW, Kwon KW, Kim MY, Cho JY. Potentilla paradoxa Nutt. Ethanol Extract Exhibits Anti-Inflammatory Effects by Suppression of the Src/NF-κB Signaling Pathway. PLANTS 2022; 11:plants11131750. [PMID: 35807703 PMCID: PMC9269291 DOI: 10.3390/plants11131750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022]
Abstract
Inflammation is an immune response that protects against harmful stimuli. However, severe inflammation can cause many diseases, such as diabetes, cancer, and arthritis. In this study, we examined the anti-inflammatory efficacy and mechanism of Potentilla paradoxa Nutt. ethanol extract (Pp-EE) as a new strategy for controlling the inflammatory response. Cellular activities and the molecular target of Pp-EE were identified in RAW264.7 cells and HEK293T cells. The effect of Pp-EE was analyzed using the Griess assay, the luciferase assay, reverse transcription-polymerase chain reaction, and Western blotting. To evaluate the in vivo effects, an HCl/EtOH-induced gastritis mouse model was used. NO production and pro-inflammatory gene (iNOS, COX-2, and TNF-α) mRNA levels were decreased by Pp-EE in a concentration-dependent manner without showing cytotoxicity. The activation of the transcription factor, particularly NF-κB, was effectively suppressed by Pp-EE. It was also found that Pp-EE directly inhibits the activation of Src in lipopolysaccharide (LPS)-treated RAW264.7 cells and in Src-overexpressed HEK293 cells by Western blotting analysis and cellular thermal shift assay. Experiments in the gastritis mouse model indicated that Pp-EE suppresses HCl/EtOH-induced gastric lesions, the expression levels of COX-2, IL-6, and TNF-α, and the phosphorylation of p65, p50, and Src. Taken together, these results suggest that Pp-EE can be applied as an anti-inflammatory remedy with a Src/NF-κB inhibitory property.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.W.K.); (K.W.K.)
| | - Ki Woong Kwon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.W.K.); (K.W.K.)
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.W.K.); (K.W.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
4
|
Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021; 26:7136. [PMID: 34885715 PMCID: PMC8659174 DOI: 10.3390/molecules26237136] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotics played an important role in controlling the development of enteric infection. However, the emergence of antibiotic resistance and gut dysbiosis led to a growing interest in the use of natural antimicrobial agents as alternatives for therapy and disinfection. Chitosan is a nontoxic natural antimicrobial polymer and is approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitosan and chitosan derivatives can kill microbes by neutralizing negative charges on the microbial surface. Besides, chemical modifications give chitosan derivatives better water solubility and antimicrobial property. This review gives an overview of the preparation of chitosan, its derivatives, and the conjugates with other polymers and nanoparticles with better antimicrobial properties, explains the direct and indirect mechanisms of action of chitosan, and summarizes current treatment for enteric infections as well as the role of chitosan and chitosan derivatives in the antimicrobial agents in enteric infections. Finally, we suggested future directions for further research to improve the treatment of enteric infections and to develop more useful chitosan derivatives and conjugates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Yan
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (D.Y.); (Y.L.); (Y.L.); (N.L.); (X.Z.)
| |
Collapse
|
5
|
Yang G, Singh S, McDonough CW, Lamba JK, Hamadeh I, Holliday LS, Wang D, Katz J, Lakatos PA, Balla B, Kosa JP, Pelliccioni GA, Price DK, Van Driest SL, Figg WD, Langaee T, Moreb JS, Gong Y. Genome-wide Association Study Identified Chromosome 8 Locus Associated with Medication-Related Osteonecrosis of the Jaw. Clin Pharmacol Ther 2021; 110:1558-1569. [PMID: 34390503 PMCID: PMC8630710 DOI: 10.1002/cpt.2397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
Medication‐related osteonecrosis of the jaw (MRONJ) is a rare but serious drug‐related adverse event. To identify pharmacogenomic markers of MRONJ associated with bisphosphonate therapy, we conducted a genomewide association study (GWAS) meta‐analysis followed by functional analysis of 5,008 individuals of European ancestry treated with bisphosphonates, which includes the largest number of MRONJ cases to date (444 cases and 4,564 controls). Discovery GWAS was performed in randomly selected 70% of the patients with cancer and replication GWAS was performed in the remaining 30% of the patients with cancer treated with intravenous bisphosphonates followed by meta‐analysis of all 3,639 patients with cancer. GWAS was also performed in 1,369 patients with osteoporosis treated with oral bisphosphonates. The lead single‐nucleotide polymorphism (SNP), rs2736308 on chromosome 8, was associated with an increased risk of MRONJ with an odds ratio (OR) of 2.71 and 95% confidence interval (CI) of 1.90–3.86 (P = 3.57*10−8) in the meta‐analysis of patients with cancer. This SNP was validated in the MRONJ GWAS in patients with osteoporosis (OR: 2.82, 95% CI: 1.55–4.09, P = 6.84*10−4). The meta‐analysis combining patients with cancer and patients with osteoporosis yielded the same lead SNP rs2736308 on chromosome 8 as the top SNP (OR: 2.74, 95% CI: 2.09–3.39, P = 9.65*10−11). This locus is associated with regulation of the BLK, CTSB, and FDFT1 genes, which had been associated with bone mineral density. FDFT1 encodes a membrane‐associated enzyme, which is implicated in the bisphosphonate pathway. This study provides insights into the potential mechanism of MRONJ.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,UF Health Cancer Center, Gainesville, Florida, USA
| | - Issam Hamadeh
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Cancer Pharmacology Department, Levine Cancer Institute, Charlotte, North Carolina, USA
| | - L Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Joseph Katz
- Department of Oral Medicine, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Peter A Lakatos
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Bernadett Balla
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Janos P Kosa
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Gian Andrea Pelliccioni
- Department of Biomedical and Neuromotor Sciences - Section of Dentistry, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Douglas K Price
- Genitourinary Malignancies Branch National Cancer Institute, Bethesda, Maryland, USA
| | - Sara L Van Driest
- Departments of Pediatrics and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William D Figg
- Genitourinary Malignancies Branch National Cancer Institute, Bethesda, Maryland, USA
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jan S Moreb
- Hematology, Transplantation and Cellular Therapy Department, Novant Health Cancer Institute, Winston-Salem, North Carolina, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,UF Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
6
|
Nyavor Y, Brands CR, May G, Kuther S, Nicholson J, Tiger K, Tesnohlidek A, Yasuda A, Starks K, Litvinenko D, Linden DR, Bhattarai Y, Kashyap PC, Forney LJ, Balemba OB. High-fat diet-induced alterations to gut microbiota and gut-derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterol Motil 2020; 32:e13838. [PMID: 32168415 PMCID: PMC7319907 DOI: 10.1111/nmo.13838] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND High-fat diet, microbial alterations and lipopolysaccharide (LPS) are thought to cause enteric diabetic neuropathy and intestinal dysmotility. However, the role of the gut microbiota, lipoteichoic acid (LTA) from Gram-positive bacteria and short-chain fatty acids (SCFAs) in the development of diabetic enteric neuropathy and intestinal dysmotility is not well understood. Our aim was to examine the role of the gut microbiota, LTA and SCFAs in the development of diabetic enteric neuropathy and intestinal dysmotility. METHODS We fed germ-free (GF) and conventionally raised (CR) mice either a high-fat (HFD) or standard chow diet (SCD) for 8 weeks. We analyzed the microbial community composition in CR mice using 16S rRNA sequencing and damage to myenteric neurons using immunohistochemistry. We also studied the effects of LPS, LTA, and SCFAs on duodenal muscularis externa contractions and myenteric neurons using cultured preparations. KEY RESULTS High-fat diet ingestion reduced the total number and the number of nitrergic myenteric neurons per ganglion in the duodenum of CR but not in GF-HFD mice. GF mice had fewer neurons per ganglion compared with CR mice. CR mice fed a HFD had increased abundance of Gram-positive bacteria. LTA and LPS did not affect the frequency of duodenal muscularis contractions after 24 hours of cultured but reduced the density of nitrergic myenteric neurons and increased oxidative stress and TNFα production in myenteric ganglia. SCFAs did not affect muscularis contractions or injure myenteric neurons. CONCLUSIONS & INFERENCES Gut microbial alterations induced increase in Gram-positive bacterial LTA may contribute to enteric neuropathy.
Collapse
Affiliation(s)
- Yvonne Nyavor
- University of Idaho, 875 Perimeter Drive, LSS 252 Moscow, ID 83844
| | | | - George May
- University of Idaho, 875 Perimeter Drive, LSS 252 Moscow, ID 83844
| | - Sydney Kuther
- University of Idaho, 875 Perimeter Drive, LSS 252 Moscow, ID 83844
| | | | - Kathryn Tiger
- University of Idaho, 875 Perimeter Drive, LSS 252 Moscow, ID 83844
| | | | - Allysha Yasuda
- University of Idaho, 875 Perimeter Drive, LSS 252 Moscow, ID 83844
| | - Kiefer Starks
- University of Idaho, 875 Perimeter Drive, LSS 252 Moscow, ID 83844
| | - Diana Litvinenko
- University of Idaho, 875 Perimeter Drive, LSS 252 Moscow, ID 83844
| | - David R. Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Yogesh Bhattarai
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Purna C. Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Larry J. Forney
- University of Idaho, 875 Perimeter Drive, LSS 252 Moscow, ID 83844
| | | |
Collapse
|
7
|
Anti-Inflammatory Functions of Alverine via Targeting Src in the NF-κB Pathway. Biomolecules 2020; 10:biom10040611. [PMID: 32326535 PMCID: PMC7225962 DOI: 10.3390/biom10040611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
Alverine, a smooth muscle relaxant, is used to relieve cramps or spasms of the stomach and intestine. Although the effects of alverine on spontaneous and induced contractile activity are well known, its anti-inflammatory activity has not been fully evaluated. In this study, we investigated the anti-inflammatory effects of alverine in vitro and in vivo. The production of nitric oxide (NO) in RAW264.7 cells activated by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly (I:C)) was reduced by alverine. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) was also dose-dependently inhibited by treatment with alverine. In reporter gene assays, alverine clearly decreased luciferase activity, mediated by the transcription factor nuclear factor κB (NF-κB) in TIR-domain-containing adapter-inducing interferon-β (TRIF)- or MyD88-overexpressing HEK293 cells. Additionally, phosphorylation of NF-κB subunits and upstream signaling molecules, including p65, p50, AKT, IκBα, and Src was downregulated by 200 μM of alverine in LPS-treated RAW264.7 cells. Using immunoblotting and cellular thermal shift assays (CETSAs), Src was identified as the target of alverine in its anti-inflammatory response. In addition, HCl/EtOH-stimulated gastric ulcers in mice were ameliorated by alverine at doses of 100 and 200 mg/kg. In conclusion, alverine reduced inflammatory responses by targeting Src in the NF-κB pathway, and these findings provide new insights into the development of anti-inflammatory drugs.
Collapse
|
8
|
The association of toll-like receptor 4 gene polymorphisms with primary open angle glaucoma susceptibility: a meta-analysis. Biosci Rep 2019; 39:BSR20190029. [PMID: 30877182 PMCID: PMC6443948 DOI: 10.1042/bsr20190029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Primary open angle glaucoma (POAG) and normal tension glaucoma (NTG) cause irreversible blindness while current medications cannot completely inhibit disease progression. An understanding of immunopathogenesis is thus a keystone to develop novel drug targets and genetic markers are still required for early diagnosis. Toll-like receptor 4 (TLR4) is an essential player in inflammation in various diseases. However, the TLR4 polymorphisms have not been completely elucidated in both types of glaucoma. The aim of the present study was to identify the association between TLR4 polymorphism and glaucoma (POAG and NTG) via the use of a comprehensive review and meta-analysis. The relevant studies were collected from PubMed, Excerpta Medica Database (EMBASE), and Web of Science to identify eight included articles, assessed for quality by a modified Newcastle-Ottawa Scale (NOS) for gene association study. A meta-analysis was applied to calculate the pooled odds-ratio and 95% confidence intervals (CIs) to evaluate the association between TLR4 polymorphism and glaucoma. The results revealed that TLR4 rs1927911 A/G, rs12377632 C/T, and rs2149356 G/T significantly decrease the risk of POAG and NTG in allele contrast models 0.71-, 0.71-, and 0.67-fold, respectively. Moreover, rs4986790 A/G and rs4986791 C/T showed a stringent association with POAG in allele contrast, heterozygous, recessive, and overdominant models. In conclusion, this meta-analysis represented a significant correlation between TLR4 polymorphisms and both types of glaucoma suggesting that TLR4 might be involved in the pathogenesis of glaucoma and may be applied as a genetic marker for disease screening.
Collapse
|
9
|
Adachi K, Sugiyama T, Yamaguchi Y, Tamura Y, Izawa S, Hijikata Y, Ebi M, Funaki Y, Ogasawara N, Goto C, Sasaki M, Kasugai K. Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gut-related metabolism in Japanese subjects. J Clin Biochem Nutr 2019; 64:231-238. [PMID: 31138957 PMCID: PMC6529700 DOI: 10.3164/jcbn.18-101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Few studies have investigated the host-microbe metabolic axis in people with type 2 diabetes mellitus (T2DM). This study aimed to determine and compare the nutrient intakes and metabolic markers and to elucidate the relationships among these factors in Japanese T2DM patients and control individuals. Fifty-nine Japanese T2DM patients and 59 matched healthy control individuals participated in this study. We examined the differences regarding the participants’ dietary habits, microbiota, and fecal short-chain fatty acids, and analyzed the relationships between the gut microbiota and blood metabolic markers in the T2DM patients and the control subjects. The T2DM patients consumed more carbohydrates, and had lower fecal propionate and butyrate concentrations, larger fecal populations of Bifidobacterium spp. and bacteria of the order Lactobacillales, and smaller fecal Bacteroides spp. populations than the control individuals. In the T2DM patients, the level of Bifidobacterium spp. correlated negatively with the carbohydrate intake and the level of bacteria of the order Lactobacillales correlated negatively with the protein intake. T2DM patients have gut dysbiosis that may contribute to disease onset and influence its prognosis. Furthermore, homeostatic disturbances in the gut-related metabolism may underlie the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Kazunori Adachi
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Tomoya Sugiyama
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yoshiharu Yamaguchi
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yasuhiro Tamura
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Shinya Izawa
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yasutaka Hijikata
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Masahide Ebi
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yasushi Funaki
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Naotaka Ogasawara
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Chiho Goto
- Department of Health and Nutrition, Faculty of Health and Human Life, Nagoya Bunri University
| | - Makoto Sasaki
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Kunio Kasugai
- Department of Gastroenterology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
10
|
Matrine alleviates Staphylococcus aureus lipoteichoic acid-induced endometritis via suppression of TLR2-mediated NF-κB activation. Int Immunopharmacol 2019; 70:201-207. [PMID: 30822611 DOI: 10.1016/j.intimp.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
Endometritis is one of the main diseases that causes great economic losses in the dairy industry. Recent studies have shown that matrine extracted from the traditional Chinese herb Sophora flavescens is an alkaloid with a broad range of bioactivities. Here, we aimed to investigate the protective effects of matrine on Staphylococcus aureus lipoteichoic acid (LTA)-induced endometritis in mice and elucidate the possible molecular mechanisms in vitro. Histopathological changes showed that matrine remarkably attenuated the uterus injury in a mouse model of LTA-induced endometritis. qPCR and ELISA results showed that matrine dose-dependently reduced the expression of pro-inflammatory cytokines (TNF-α and IL-1β). To further elucidate the underlying mechanisms of this protective effect of matrine, LTA-stimulated bovine endometrial epithelial cells (bEECs) were employed in this study. The results demonstrated that TLR2 expression and its downstream nuclear factor (NF)-κB activation were both suppressed by matrine treatment. Furthermore, a small interference RNA targeting TLR2 gene mimicked matrine in its inhibition on LTA-induced activation of TLR2 and NF-κB. In conclusion, these findings suggest the protective effect of matrine against LTA-induced endometritis through negative regulation of TLR2-mediated NF-κB pathway.
Collapse
|
11
|
Resveratrol Attenuates Staphylococcus Aureus-Induced Monocyte Adhesion through Downregulating PDGFR/AP-1 Activation in Human Lung Epithelial Cells. Int J Mol Sci 2018; 19:ijms19103058. [PMID: 30301269 PMCID: PMC6213130 DOI: 10.3390/ijms19103058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a very common Gram-positive bacterium. It is widely distributed in air, soil, and water. S. aureus often causes septicemia and pneumonia in patients. In addition, it is considered to play a key role in mediating cell adhesion molecules upregulation. Resveratrol is a natural antioxidant with diverse biological effects, including the modulation of immune function, anti-inflammation, and cancer chemoprevention. In this study, we proved that S. aureus-upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in human lung epithelial cells (HPAEpiCs) was inhibited by resveratrol. We also observed that resveratrol downregulated S. aureus-enhanced leukocyte count in bronchoalveolar lavage (BAL) fluid in mice. In HPAEpiCs, S. aureus stimulated c-Src, PDGFR, p38 MAPK, or JNK1/2 phosphorylation, which was inhibited by resveratrol. S. aureus induced the adhesion of THP-1 cells (a human monocytic cell line) to HPAEpiCs, which was also reduced by resveratrol. Finally, we found that S. aureus induced c-Src/PDGFR/p38 MAPK and JNK1/2-dependent c-Jun and ATF2 activation and in vivo binding of c-Jun and ATF2 to the VCAM-1 promoter, which were inhibited by resveratrol. Thus, resveratrol functions as a suppressor of S. aureus-induced inflammatory signaling, not only by inhibiting VCAM-1 expression but also by diminishing c-Src, PDGFR, JNK1/2, p38 MAPK, and AP-1 activation in HPAEpiCs.
Collapse
|
12
|
Han ZH, Wang F, Wang FL, Liu Q, Zhou J. Regulation of transforming growth factor β-mediated epithelial-mesenchymal transition of lens epithelial cells by c-Src kinase under high glucose conditions. Exp Ther Med 2018; 16:1520-1528. [PMID: 30116401 DOI: 10.3892/etm.2018.6348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies have reported that high glucose (HG) conditions may contribute to the acceleration of renal cell apoptosis and renal fibrosis by inducing epithelial-mesenchymal transition (EMT) of tubular epithelial cells, in which c-Src kinase and transforming growth factor (TGF)-β are key modulators. In the present study, the roles of c-Src kinase and TGF-β in EMT of lens epithelial cells (LECs) under HG conditions were investigated. Results indicated human lens epithelial B3 (HLE-B3) cells under HG conditions exhibited significantly increased protein expression levels of phosphorylated c-Src (p-Src418) (P<0.05) and secreted a significantly increased amount of TGF-β compared with HLE-B3 cells under normal glucose conditions (P<0.05). Notably the c-Src inhibitor PP1 and the activin receptor-like kinase 5 (ALK5) inhibitor SB431542 suppressed EMT of HLE-B3 cells. Results indicated that PP1 significantly inhibited the activities of c-Src and ALK5 and the secretion of TGF-β, whereas SB431542 only significantly downregulated the protein expression levels and secretion of TGF-β (P<0.05). Following c-Src knockdown, the protein expression levels of p-Src418, ALK5 and TGF-β were significantly decreased, the secretion of TGF-β was significantly suppressed (both P<0.05) and EMT was decreased in HLE-B3 cells. These results suggest that c-Src and TGF-β may promote EMT of LECs under HG conditions, with c-Src as the upstream regulatory molecule. Thus, the signal axis of c-Src/TGF-β in EMT of LECs may be a potential novel therapeutic target for the prevention of diabetic subcapsular cataract.
Collapse
Affiliation(s)
- Zhi-Hua Han
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fang Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fu-Lei Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qi Liu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
13
|
Kim SH, Bang J, Son CN, Baek WK, Kim JM. Grape seed proanthocyanidin extract ameliorates murine autoimmune arthritis through regulation of TLR4/MyD88/NF-κB signaling pathway. Korean J Intern Med 2018; 33:612-621. [PMID: 27271273 PMCID: PMC5943648 DOI: 10.3904/kjim.2016.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS Grape seed proanthocyanidin extract (GSPE) has been reported to have a beneficial effect on regulating inf lammation. However, the anti-inflammatory mechanism of GSPE remains unclear. The aim of this study was to verify the influence of GSPE on the Toll-like receptor 4 (TLR4)-mediated signaling pathway in the regulation of murine autoimmune arthritis. METHODS Collagen-induced arthritis (CIA) was induced in dilute brown non-agouti (DBA)/1J mice. The mice were treated with GSPE (0 or 100 mg/kg) intraperitoneally. The severity of arthritis was assessed clinically, biochemically, and histologically. Immunostaining for TLR4 was performed. The expressions of TLR4 and downstream signaling molecules were analyzed by Western blot. The effect of GSPE on lipopolysaccharide (LPS)-induced TLR4 activation was also evaluated using RAW264.7 cells and fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis and from those with osteoarthritis. RESULTS GSPE attenuated the clinical severity of arthritis and decreased histological damage. GSPE treatment reduced the number of TLR4-stained cells in the synovium of mice with CIA. GSPE also downregulated the expression of TLR4, myeloid differentiation factor 88 (MyD88) and phosphorylated IκBα synovial protein in CIA mice. Concurrently, GSPE inhibited the nuclear translocation of nuclear factor-κB (NF-κB) subunits (p65 and p50). LPS-induced TLR4 activation was suppressed by GSPE in human FLS as well as in murine macrophages in vitro. CONCLUSIONS Our results demonstrated that GSPE ameliorated CIA by regulating the TLR4-MyD88-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Jihye Bang
- Keimyung University School of Medicine, Daegu, Korea
| | - Chang-Nam Son
- Division of Rheumatology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Korea
| | - Ji-Min Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
- Correspondence to Ji-Min Kim, M.D. Division of Rheumatology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, 56 Dalseong-ro, Jung-gu, Daegu 41931, Korea Tel: +82-53-250-7410 Fax: +82-53-250-7434 E-mail:
| |
Collapse
|
14
|
Gao Q, Yin F, Zhang C, Yue Y, Sun P, Min M, Peng S, Shi Z, Lv J. Cloning, characterization, and function of MyD88 in silvery pomfret ( Pampus argenteus ) in response to bacterial challenge. Int J Biol Macromol 2017; 103:327-337. [DOI: 10.1016/j.ijbiomac.2017.05.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023]
|
15
|
Chen J, Yin W, Tu Y, Wang S, Yang X, Chen Q, Zhang X, Han Y, Pi R. L-F001, a novel multifunctional ROCK inhibitor, suppresses neuroinflammation in vitro and in vivo: Involvement of NF-κB inhibition and Nrf2 pathway activation. Eur J Pharmacol 2017; 806:1-9. [DOI: 10.1016/j.ejphar.2017.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/05/2017] [Accepted: 03/15/2017] [Indexed: 10/20/2022]
|
16
|
Zhou X, Ramke M, Chintakuntlawar AV, Lee JY, Rajaiya J, Chodosh J. Role of MyD88 in adenovirus keratitis. Immunol Cell Biol 2016; 95:108-116. [PMID: 27528076 PMCID: PMC5791738 DOI: 10.1038/icb.2016.73] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
Abstract
Pattern recognition receptors (PRRs) are critical to the early detection and innate immune responses to pathogens. In particular, the TLR system and its associated adaptor proteins play essential roles in early host responses to infection. Epidemic keratoconjunctivitis, caused by the human adenovirus, is a severe ocular surface infection associated with corneal inflammation (stromal keratitis). We previously showed that adenovirus capsid was a key molecular pattern in adenovirus keratitis, with viral DNA playing a lesser role. We have now investigated the role of the adaptor molecule MyD88 in a mouse model of adenovirus keratitis in which there is no viral replication. In MyD88−/− mice infected with human adenovirus type 37, clinical keratitis was markedly reduced, along with infiltration of CD45+ cells, and expression of inflammatory cytokines. Reduction of inflammatory cytokines was also observed in infected primary human corneal fibroblasts pretreated with a MyD88 inhibitory peptide. Keratitis similar to wild type mice was observed in TLR2, TLR9, and IL-1R knockout mice, but was reduced in TLR2/9 double knockout mice, consistent with synergy of TLR2 and TLR9 in the response to adenovirus infection. MyD88 co-immunoprecipitated with Src kinase in mice corneas and in human corneal fibroblasts infected with adenovirus, and MyD88 inhibitory peptide reduced Src phosphorylation, linking MyD88 activation to inflammatory gene expression through a signaling cascade previously shown to be directed by Src. Our findings reveal a critical role for the PRRs TLR2 and 9, and their adaptor protein MyD88, in corneal inflammation upon adenovirus infection.
Collapse
Affiliation(s)
- Xiaohong Zhou
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mirja Ramke
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ashish V Chintakuntlawar
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jeong Yoon Lee
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jaya Rajaiya
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - James Chodosh
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int J Biol Macromol 2016; 89:376-88. [DOI: 10.1016/j.ijbiomac.2016.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 11/24/2022]
|
18
|
Eser B, Sahin N. Evaluation of tool-like receptor-2 and 4 and interleukin-6 gene expressions in Turkish rheumatoid arthritis patients. Clin Rheumatol 2016; 35:2693-2697. [PMID: 27108590 DOI: 10.1007/s10067-016-3282-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 11/28/2022]
Abstract
Rheumatoid arthritis (RA) is a progressive inflammatory disease. Although the etiology and pathogenesis of RA are not known well, genetic and environmental factors are proposed to initiate an autoimmune process. We aimed to investigate mRNA expression levels of Toll-like receptor-2 (TLR-2), TLR-4, and interleukin-6 (IL-6) genes in RA disease. This study was conducted with 50 patients who were diagnosed with RA according to the American College of Rheumatology classification criteria for RA and 50 age-matched healthy control individuals who did not have any joint diseases and autoimmune diseases. We collected whole blood from all participants and analyzed expression of TLR-2, TLR-4, and IL-6 genes at mRNA level using real-time qPCR. TLR-2 expression was detected to increase 3.8-fold and IL-6 expression was detected to increase 6.8-fold in RA patients compared to healthy controls. No difference was found between patient and control groups with regard to TLR-4 expression. Overexpression of TLR-2 and IL-6 may be responsible for RA pathogenesis. Inhibition of both TLR and IL signaling pathways may prevent joint inflammation and destruction.
Collapse
Affiliation(s)
- Betul Eser
- Department of Medical Genetics, Faculty of Medicine, Balıkesir University, Balıkesir, 10145, Turkey.
| | - Nilay Sahin
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
19
|
Cvikl B, Lussi A, Moritz A, Sawada K, Gruber R. Differential inflammatory response of dental pulp explants and fibroblasts to saliva. Int Endod J 2015; 49:655-62. [PMID: 26114806 DOI: 10.1111/iej.12493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
Abstract
AIM To investigate the inflammatory response of dental pulp fibroblasts and the respective explants to whole saliva. METHODOLOGY Explants from human and porcine dental pulp tissue and isolated dental pulp fibroblasts were used to investigate the inflammatory response to sterile saliva. Cytokine and chemokine expression was assessed by RT-PCR. Western blot analysis and pharmacologic inhibitors were used to determine the involvement of signalling pathways. RESULTS Dental pulp explants of human and porcine origin exposed to human saliva exhibited no major changes of IL-6 and IL-8 mRNA expression (P > 0.05). In contrast, isolated porcine and human dental pulp fibroblasts, when stimulated with human saliva, exhibited a vastly increased expression of IL-6 and IL-8 mRNA (P < 0.05). In pulp fibroblasts, saliva also increased the expression of other cytokines and chemokines via activation of NFkappaB, ERK and p38 signalling. Notably, a significantly reduced inflammatory response was elicited when pulp fibroblasts were transiently exposed to saliva. CONCLUSIONS Saliva has a potential impact on inflammation of dental pulp fibroblasts in vitro but not when cells are embedded in the intrinsic extracellular matrix of the explant tissue.
Collapse
Affiliation(s)
- B Cvikl
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Conservative Dentistry & Periodontology, Medical University of Vienna, Vienna, Austria
| | - A Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - A Moritz
- Department of Conservative Dentistry & Periodontology, Medical University of Vienna, Vienna, Austria
| | - K Sawada
- Department of Cranio-Maxillofacial Surgery, University of Bern, Bern, Switzerland
| | - R Gruber
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Wang L, Song G, Zheng Y, Wang D, Dong H, Pan J, Chang X. miR-573 is a negative regulator in the pathogenesis of rheumatoid arthritis. Cell Mol Immunol 2015; 13:839-849. [PMID: 26166764 DOI: 10.1038/cmi.2015.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by abnormal inflammation, angiogenesis, and cartilage destruction. Our previous study demonstrated an increased expression of thioredoxin domain containing 5 (TXNDC5) in the synovial tissues of RA, and its overexpression was implicated in RA pathology. Although TXNDC5 variation is linked to genetic susceptibility to RA, the regulation of its abnormal expression has not been well defined. Here, we show that TXNDC5 is directly targeted by microRNA (miR)-573, and TXNDC5, in turn, mediates the suppressive effect of miR-573 on the invasion of synovial fibroblasts of RA (RASFs). miR-573 overexpression suppressed the expression of interleukin 6 (IL-6) and cyclooxygenase 2 in RASFs, as well as the production of tumor necrosis factor-alpha and interleukin-1 beta by activated THP-1 cells in response to lipopolysaccharide (LPS) stimulation. Moreover, treatment with conditioned medium of RASFs transfected with miR-573 mimic inhibited the angiogenic ability of human umbilical vein endothelial cells (HUVECs). Of note, epidermal growth factor receptor and Toll-like receptor 2 were validated as new direct targets of miR-573, and mediate the regulation of miR-573 on IL-6 production as well as the angiogenesis of HUVECs. In addition, exogenous miR-573 expression suppressed the activation of mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3, and phosphatidylinositol-3 kinase/activate protein kinase B in RASFs in response to LPS. Indeed, MAPK signaling was essential to ensure the function of miR-573. Taken together, our study points toward the protective roles of miR-573 in the pathological process of RA and suggests a potential target in the treatment of RA.
Collapse
Affiliation(s)
- Lin Wang
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Academy of Medicinal Sciences, Jinan, People's Republic of China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yabing Zheng
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Dan Wang
- Department of pathology, Linyi People's Hospital Linyi People's Republic of China
| | - Hongyan Dong
- Department of pathology, Linyi People's Hospital Linyi People's Republic of China
| | - Jihong Pan
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Academy of Medicinal Sciences, Jinan, People's Republic of China
| | - Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
21
|
Liu Y, Yin H, Zhao M, Lu Q. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 2015; 47:136-47. [PMID: 24352680 DOI: 10.1007/s12016-013-8402-y] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases are immune disorders characterized by T cell hyperactivity and B cell overstimulation leading to overproduction of autoantibodies. Although the pathogenesis of various autoimmune diseases remains to be elucidated, environmental factors have been thought to contribute to the initiation and maintenance of auto-respond inflammation. Toll-like receptors (TLRs) are pattern recognition receptors belonging to innate immunity that recognize and defend invading microorganisms. Besides these exogenous pathogen-associated molecular patterns, TLRs can also bind with damage-associated molecular patterns produced under strike or by tissue damage or cells apoptosis. It is believed that TLRs build a bridge between innate immunity and autoimmunity. There are five adaptors to TLRs including MyD88, TRIF, TIRAP/MAL, TRAM, and SARM. Upon activation, TLRs recruit specific adaptors to initiate the downstream signaling pathways leading to the production of inflammatory cytokines and chemokines. Under certain circumstances, ligation of TLRs drives to aberrant activation and unrestricted inflammatory responses, thereby contributing to the perpetuation of inflammation in autoimmune diseases. In the past, most studies focused on the intracellular TLRs, such as TLR3, TLR7, and TLR9, but recent studies reveal that cell surface TLRs, especially TLR2 and TLR4, also play an essential role in the development of autoimmune diseases and afford multiple therapeutic targets. In this review, we summarized the biological characteristics, signaling mechanisms of TLR2/4, the negative regulators of TLR2/4 pathway, and the pivotal function of TLR2/4 in the pathogenesis of autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, Sjogren's syndrome, psoriasis, multiple sclerosis, and autoimmune diabetes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan, 410011, People's Republic of China
| | | | | | | |
Collapse
|
22
|
Sato J, Kanazawa A, Ikeda F, Yoshihara T, Goto H, Abe H, Komiya K, Kawaguchi M, Shimizu T, Ogihara T, Tamura Y, Sakurai Y, Yamamoto R, Mita T, Fujitani Y, Fukuda H, Nomoto K, Takahashi T, Asahara T, Hirose T, Nagata S, Yamashiro Y, Watada H. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes. Diabetes Care 2014; 37:2343-50. [PMID: 24824547 DOI: 10.2337/dc13-2817] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Mounting evidence indicates that the gut microbiota are an important modifier of obesity and diabetes. However, so far there is no information on gut microbiota and "live gut bacteria" in the systemic circulation of Japanese patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Using a sensitive reverse transcription-quantitative PCR (RT-qPCR) method, we determined the composition of fecal gut microbiota in 50 Japanese patients with type 2 diabetes and 50 control subjects, and its association with various clinical parameters, including inflammatory markers. We also analyzed the presence of gut bacteria in blood samples. RESULTS The counts of the Clostridium coccoides group, Atopobium cluster, and Prevotella (obligate anaerobes) were significantly lower (P < 0.05), while the counts of total Lactobacillus (facultative anaerobes) were significantly higher (P < 0.05) in fecal samples of diabetic patients than in those of control subjects. Especially, the counts of Lactobacillus reuteri and Lactobacillus plantarum subgroups were significantly higher (P < 0.05). Gut bacteria were detected in blood at a significantly higher rate in diabetic patients than in control subjects (28% vs. 4%, P < 0.01), and most of these bacteria were Gram-positive. CONCLUSIONS This is the first report of gut dysbiosis in Japanese patients with type 2 diabetes as assessed by RT-qPCR. The high rate of gut bacteria in the circulation suggests translocation of bacteria from the gut to the bloodstream.
Collapse
Affiliation(s)
- Junko Sato
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akio Kanazawa
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, JapanCenter for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fuki Ikeda
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Yoshihara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromasa Goto
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Abe
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Komiya
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Minako Kawaguchi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Shimizu
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Ogihara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, JapanSportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko Sakurai
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risako Yamamoto
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoya Mita
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, JapanCenter for Beta Cell Biology and Regeneration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Fukuda
- Department of General Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Nomoto
- Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | - Takuya Takahashi
- Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | - Takashi Asahara
- Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | - Takahisa Hirose
- Department of Metabolism & Endocrinology, Toho University School of Medicine, Tokyo, Japan
| | - Satoru Nagata
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, JapanDepartment of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, JapanCenter for Beta Cell Biology and Regeneration, Juntendo University Graduate School of Medicine, Tokyo, JapanCenter for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Cvikl B, Lussi A, Moritz A, Sculean A, Gruber R. Sterile-filtered saliva is a strong inducer of IL-6 and IL-8 in oral fibroblasts. Clin Oral Investig 2014; 19:385-99. [PMID: 25115993 DOI: 10.1007/s00784-014-1232-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Saliva has been implicated to support oral wound healing, a process that requires a transient inflammatory reaction. However, definitive proof that saliva can provoke an inflammatory response remained elusive. MATERIALS AND METHODS We investigated the ability of freshly harvested and sterile-filtered saliva to cause an inflammatory response of oral fibroblasts and epithelial cells. The expression of cytokines and chemokines was assessed by microarray, RT-PCR, immunoassays, and Luminex technology. The involvement of signaling pathways was determined by Western blot analysis and pharmacologic inhibitors. RESULTS We report that sterile-filtered whole saliva was a potent inducer of IL-6 and IL-8 in fibroblasts from the gingiva, the palate, and the periodontal ligament, but not of oral epithelial cells. This strong inflammatory response requires nuclear factor-kappa B and mitogen-activated protein kinase signaling. The pro-inflammatory capacity is heat stable and has a molecular weight of <40 kDa. Genome-wide microarrays and Luminex technology further revealed that saliva substantially increased expression of other inflammatory genes and various chemokines. To preclude that the observed pro-inflammatory activity is the result of oral bacteria, sterile-filtered parotid saliva, collected under almost aseptic conditions, was used and also increased IL-6 and IL-8 expression in gingiva fibroblasts. The inflammatory response was, furthermore, independent of MYD88, an adapter protein of the Toll-like receptor signaling pathway. CONCLUSIONS We conclude that saliva can provoke a robust inflammatory response in oral fibroblasts involving the classical nuclear factor-kappa B and mitogen-activated protein kinase signaling pathway. CLINICAL RELEVANCE Since fibroblasts but not epithelial cells show a strong inflammatory response, saliva may support the innate immunity of defect sites exposing the oral connective tissue.
Collapse
Affiliation(s)
- Barbara Cvikl
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Bergt S, Güter A, Grub A, Wagner NM, Beltschany C, Langner S, Wree A, Hildebrandt S, Nöldge-Schomburg G, Vollmar B, Roesner JP. Impact of Toll-like receptor 2 deficiency on survival and neurological function after cardiac arrest: a murine model of cardiopulmonary resuscitation. PLoS One 2013; 8:e74944. [PMID: 24066159 PMCID: PMC3774715 DOI: 10.1371/journal.pone.0074944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) is associated with poor survival rate and neurofunctional outcome. Toll-like receptor 2 (TLR2) plays an important role in conditions of sterile inflammation such as reperfusion injury. Recent data demonstrated beneficial effects of the administration of TLR2-blocking antibodies in ischemia/reperfusion injury. In this study we investigated the role of TLR2 for survival and neurofunctional outcome after CA/CPR in mice. METHODS Female TLR2-deficient (TLR2(-/-)) and wild type (WT) mice were subjected to CA for eight min induced by intravenous injection of potassium chloride and CPR by external chest compression. Upon the beginning of CPR, n = 15 WT mice received 5 µg/g T2.5 TLR2 inhibiting antibody intravenously while n = 30 TLR2(-/-) and n = 31 WT controls were subjected to injection of normal saline. Survival and neurological outcome were evaluated during a 28-day follow up period. Basic neurological function, balance, coordination and overall motor function as well as spatial learning and memory were investigated, respectively. In a separate set of experiments, six mice per group were analysed for cytokine and corticosterone serum levels eight hours after CA/CPR. RESULTS TLR2 deficiency and treatment with a TLR2 blocking antibody were associated with increased survival (77% and 80% vs. 51% of WT control; both P < 0.05). Neurofunctional performance was less compromised in TLR2(-/-) and antibody treated mice. Compared to WT and antibody treated mice, TLR2(-/-) mice exhibited reduced IL-6 (both P < 0.05) but not IL-1β levels and increased corticosterone plasma concentrations (both P < 0.05). CONCLUSION Deficiency or functional blockade of TLR2 is associated with increased survival and improved neurofunctional outcome in a mouse model of CA/CPR. Thus, TLR2 inhibition could provide a novel therapeutic approach for reducing mortality and morbidity after cardiac arrest and cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Stefan Bergt
- Clinic for Anaesthesiology and Critical Care Medicine, University Hospital Rostock, Rostock, Germany
| | - Anne Güter
- Clinic for Anaesthesiology and Critical Care Medicine, University Hospital Rostock, Rostock, Germany
| | - Andrea Grub
- Clinic for Anaesthesiology and Critical Care Medicine, University Hospital Rostock, Rostock, Germany
| | - Nana-Maria Wagner
- Clinic for Anaesthesiology and Critical Care Medicine, University Hospital Rostock, Rostock, Germany
| | - Claudia Beltschany
- Clinic for Anaesthesiology and Critical Care Medicine, University Hospital Rostock, Rostock, Germany
| | - Sönke Langner
- Institute for Neuroradiology, University Hospital Greifswald Greifswald, Germany
| | - Andreas Wree
- Department of Anatomy, Rostock University, Rostock, Germany
| | | | - Gabriele Nöldge-Schomburg
- Clinic for Anaesthesiology and Critical Care Medicine, University Hospital Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University, Rostock, Germany
| | - Jan P. Roesner
- Clinic for Anaesthesiology and Critical Care Medicine, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
25
|
Abdi J, Mutis T, Garssen J, Redegeld F. Stimulation of Toll-like receptor-1/2 combined with Velcade increases cytotoxicity to human multiple myeloma cells. Blood Cancer J 2013; 3:e119. [PMID: 23727662 PMCID: PMC3674459 DOI: 10.1038/bcj.2013.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An increasing body of evidence supports the important role of adhesion to bone marrow microenvironment components for survival and drug resistance of multiple myeloma (MM) cells. Previous studies suggested that stimulation of Toll-like receptors by endogenous ligands released during inflammation and tissue damage may be pro-tumorigenic, but no studies have been performed in relation to modulation of cell adhesion and drug cytotoxicity. Here, we investigated the effect of TLR1/2 activation on adhesion of human myeloma cells to fibronectin, and their sensitivity to the proteasome inhibitor Velcade. It was found that TLR1/2 activation with Pam3CSK4 increased the cytotoxicity of Velcade in L363, OPM-2 and U266 human myeloma cells. This effect was not related to a decreased adhesion of the cells to fibronectin, but TLR1/2 activation stimulated the caspase-3 activity in Velcade-treated myeloma cells, which may be responsible for the enhanced cell death. Inhibitors of NF-κB and MAPK reduced the stimulatory effect. These findings indicate that TLR activation of MM cells could bypass protective effects of cell adhesion and suggest that TLR signaling may also have antitumorigenic potential.
Collapse
Affiliation(s)
- J Abdi
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
26
|
Huang BR, Tsai CF, Lin HY, Tseng WP, Huang SS, Wu CR, Lin C, Yeh WL, Lu DY. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid. Toxicol Appl Pharmacol 2013; 269:43-50. [DOI: 10.1016/j.taap.2013.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 01/21/2023]
|
27
|
Barabutis N, Handa V, Dimitropoulou C, Rafikov R, Snead C, Kumar S, Joshi A, Thangjam G, Fulton D, Black SM, Patel V, Catravas JD. LPS induces pp60c-src-mediated tyrosine phosphorylation of Hsp90 in lung vascular endothelial cells and mouse lung. Am J Physiol Lung Cell Mol Physiol 2013; 304:L883-93. [PMID: 23585225 DOI: 10.1152/ajplung.00419.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 90 (Hsp90) inhibitors were initially developed as anticancer agents; however, it is becoming increasing clear that they also possess potent anti-inflammatory properties. Posttranslational modifications of Hsp90 have been reported in tumors and have been hypothesized to affect client protein- and inhibitor-binding activities. In the present study we investigated the posttranslational modification of Hsp90 in inflammation. LPS, a prototypical inflammatory agent, induced concentration- and time-dependent tyrosine (Y) phosphorylation of Hsp90α and Hsp90β in bovine pulmonary arterial and human lung microvascular endothelial cells (HLMVEC). Mass spectrometry identified Y309 as a major site of Y phosphorylation on Hsp90α (Y300 of Hsp90β). LPS-induced Hsp90 phosphorylation was prevented by the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin (17-AAG) in vitro as well as in lungs from LPS-treated mice, in vivo. Furthermore, 17-AAG prevented LPS-induced pp60src activation. LPS-induced Hsp90 phosphorylation was also prevented by the pp60src inhibitor PP2. Additionally, Hsp90 phosphorylation was induced by infecting cells with a constitutively active pp60src adenovirus, whereas either a dominant-negative pp60src adenovirus or reduced expression of pp60src by a specific siRNA prevented the LPS-induced Y phosphorylation of Hsp90. Transfection of HLMVEC with the nonphosphorylatable Hsp90β Y300F mutant prevented LPS-induced Hsp90β tyrosine phosphorylation but not pp60src activation. Furthermore, the Hsp90β Y300F mutant showed a reduced ability to bind the Hsp90 client proteins eNOS and pp60src and HLMVEC transfected with the mutant exhibited reduced LPS-induced barrier dysfunction. We conclude that inflammatory stimuli cause posttranslational modifications of Hsp90 that are Hsp90-inhibitor sensitive and may be important to the proinflammatory actions of Hsp90.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells. Toxicol Appl Pharmacol 2013; 268:68-78. [PMID: 23360889 DOI: 10.1016/j.taap.2013.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 11/23/2022]
Abstract
Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases.
Collapse
|
29
|
Bai KJ, Chen BC, Pai HC, Weng CM, Yu CC, Hsu MJ, Yu MC, Ma HP, Wu CH, Hong CY, Kuo ML, Lin CH. Thrombin-induced CCN2 expression in human lung fibroblasts requires the c-Src/JAK2/STAT3 pathway. J Leukoc Biol 2013; 93:101-112. [DOI: 10.1189/jlb.0911449] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Thrombin might activate c-Src to induce JAK2 activation, which causes STAT3 activation, inducing CCN2 expression in human lung fibroblasts.
Thrombin is a multifunctional serine protease and an important fibrotic mediator that induces CCN2 expression. We previously showed that thrombin induces CCN2 expression via an ASK1-dependent JNK/AP-1 pathway in human lung fibroblasts. In this study, we further investigated the roles of c-Src, JAK2, and STAT3 in thrombin-induced CCN2 expression. Thrombin-induced CCN2 expression and CCN2-Luc activity were attenuated by a JAK inhibitor (AG490) and JAK2DN, STAT3DN, and the STAT decoy ODN. Moreover, transfection of cells with a CCN2-mtSTAT-Luc construct inhibited thrombin-induced CCN2-Luc activity. Treatment of cells with thrombin caused JAK2 phosphorylation at Tyr1007/1008 and STAT3 phosphorylation at Tyr705 in time-dependent manners. Thrombin-induced STAT3 phosphorylation was inhibited by AG490 and JAK2DN. Thrombin-induced STAT3 binding to the CCN2 promoter was analyzed by a DNA-binding affinity pull-down assay. In addition, thrombin-induced CCN2 expression and CCN2-Luc activity were inhibited by c-SrcDN and PP2 (an Src inhibitor). Transfection of cells with c-SrcDN also inhibited thrombin-induced JAK2 and STAT3 phosphorylation. Taken together, these results indicate that thrombin might activate c-Src to induce JAK2 activation, which in turn, causes STAT3 activation, and finally induces CCN2 expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Kua-Jen Bai
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Hui-Chen Pai
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Chih-Ming Weng
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
- Department of Pharmacology, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Hon-Ping Ma
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| | - Chih-Hsiung Wu
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| | - Chuang-Ye Hong
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
| | - Min-Liang Kuo
- Angiogenesis Research Center, Laboratory of Molecular and Cellular Toxicology, Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Chien-Huang Lin
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| |
Collapse
|
30
|
Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species. PLoS One 2012; 7:e49209. [PMID: 23166614 PMCID: PMC3499573 DOI: 10.1371/journal.pone.0049209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/08/2012] [Indexed: 11/29/2022] Open
Abstract
Tunneled central venous catheters (TCVCs) are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus) biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA), a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2). The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM) that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam(3)CSK(4) induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS) activation (as measured by the p-eNOSser1177:p-eNOSthr495 ratio). The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.
Collapse
|
31
|
The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012; 2012:512926. [PMID: 23209344 PMCID: PMC3504478 DOI: 10.1155/2012/512926] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/28/2012] [Indexed: 12/28/2022] Open
Abstract
Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.
Collapse
|
32
|
Finney SJ, Leaver SK, Evans TW, Burke-Gaffney A. Differences in lipopolysaccharide- and lipoteichoic acid-induced cytokine/chemokine expression. Intensive Care Med 2011; 38:324-32. [PMID: 22183712 PMCID: PMC3264860 DOI: 10.1007/s00134-011-2444-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 11/24/2011] [Indexed: 11/03/2022]
Abstract
Purpose To investigate differences in cytokine/chemokine release in response to lipoteichoic acid (LTA) or lipopolysaccharide (LPS) and contributing cellular mechanisms, in order to improve understanding of the pathogenesis of sepsis. Methods Levels of cytokines/chemokines were measured in plasma and peritoneal lavage fluid of 10-week-old male mice (C57/B16) following intraperitoneal injection of LTA or LPS (250 µg), and in supernatants of murine J774.2 cells, immortalised blood monocytes, or isolated human monocytes treated with LTA or LPS (0–10 µg/ml). The role of cytokine/chemokine messenger RNA (mRNA) stability versus nuclear factor-kappaB (NF-κB) and activator protein-1 (AP-1) in mediating cytokine/chemokine release in J774 cells was also assessed. Results In mice, plasma levels of keratinocyte-derived chemokine (KC), macrophage inflammatory protein (MIP)-2, interleukin (IL)-10, interferon (IFN)-γ and tumour necrosis factor-alpha (TNF-α) and peritoneal lavage fluid levels of KC, MIP-2 and TNF-α increased significantly 1 h after LPS. Only KC and MIP-2 levels increased 1 h after LTA. LPS-treated (10 μg/ml) J774 cells released MIP-2, IL-10, IFN-γ and TNF-α but not KC (24 h), whereas cells treated with 10 μg/ml LTA released only MIP-2. LPS-stimulated human monocytes released IL-10 and IL-8 (24 h); by contrast, LTA-treated cells released only IL-8. LPS and LTA activated NF-κB and AP-1 in J774 cells. The protein synthesis inhibitor cycloheximide abolished LPS-induced IL-10 mRNA expression and increased LTA- and LPS-induced mRNA for MIP-2 in J774 cells. Conclusion LTA and LPS, at clinically relevant concentrations, induced differential cytokine/chemokine release in vitro and in vivo, via effects distal to activation of NF-κB/AP-1 that might include chromatin remodelling or mRNA stability. Electronic supplementary material The online version of this article (doi:10.1007/s00134-011-2444-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon J Finney
- Unit of Critical Care, Respiratory Science, NHLI, Faculty of Medicine, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | | | | | | |
Collapse
|
33
|
Yamanaka D, Motoi M, Ishibashi KI, Miura NN, Adachi Y, Ohno N. Effect of Agaricus brasiliensis-derived cold water extract on Toll-like receptor 2-dependent cytokine production in vitro. Immunopharmacol Immunotoxicol 2011; 34:561-70. [PMID: 22126586 DOI: 10.3109/08923973.2011.633526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Agaricus brasiliensis (Agaricus blazei Murrill) is well known as a medicinal mushroom. Fruit body of A. brasiliensis is rich in β-glucan and has shown benefits for various diseases. Both hot and cold water extraction are traditional methods for intake of this mushroom extract. In the present study, we prepared cold water extract of the fruit body of A. brasiliensis (ACWS). The 1,3-β-glucan segment of this fraction was too small and did not interact with the 1,3-β-glucan receptor, dectin-1. However, ACWS could induce production of various cytokines including IL-6 from murine splenocytes. Therefore, we aimed to identify the receptor that modulates IL-6 production using ACWS. We focused our attention on Toll-like receptors (TLRs) and examined them as follows. (i) The interaction between TLRs and ACWS was screened using HEK293 cells transfected with TLR plasmid. (ii) IL-6 production from splenocytes induced by ACWS was inhibited by treatment of anti-TLR antibodies. (iii) Direct binding activity between TLR protein and ACWS was assessed by ELISA-like assay. ACWS was found to activate HEK293 cells via TLR2, 4 and 5. However, only anti-TLR2 monoclonal antibody suppressed IL-6 production from splenocytes. In addition, ACWS has the ability to bind directly to TLR2 protein. Accordingly, we suggest that fruit body of A. brasiliensis has some water-soluble TLR ligand complexes, and TLR2 on splenocytes strongly induces IL-6 production.
Collapse
Affiliation(s)
- Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Hou CH, Fong YC, Tang CH. HMGB-1 induces IL-6 production in human synovial fibroblasts through c-Src, Akt and NF-κB pathways. J Cell Physiol 2011; 226:2006-15. [PMID: 21520052 DOI: 10.1002/jcp.22541] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High mobility group box chromosomal protein 1 (HMGB-1) is a widely studied, ubiquitous nuclear protein that is present in eukaryotic cells, and plays a crucial role in inflammatory response. However, the effects of HMGB-1 on human synovial fibroblasts are largely unknown. In this study, we investigated the intracellular signaling pathway involved in HMGB-1-induced IL-6 production in human synovial fibroblast cells. HMGB-1 caused concentration- and time-dependent increases in IL-6 production. HMGB-1-mediated IL-6 production was attenuated by receptor for advanced glycation end products (RAGE) monoclonal antibody (Ab) or siRNA. Pretreatment with c-Src inhibitor (PP2), Akt inhibitor and NF-κB inhibitor (pyrrolidine dithiocarbamate and L-1-tosylamido-2-phenylenylethyl chloromethyl ketone) also inhibited the potentiating action of HMGB-1. Stimulation of cells with HMGB-1 increased the c-Src and Akt phosphorylation. HMGB-1 increased the accumulation of p-p65 in the nucleus, as well as NF-κB luciferase activity. HMGB-1-mediated increase of NF-κB luciferase activity was inhibited by RAGE Ab, PP2 and Akt inhibitor or RAGE siRNA, or c-Src and Akt mutant. Our results suggest that HMGB-1-increased IL-6 production in human synovial fibroblasts via the RAGE receptor, c-Src, Akt, p65, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
35
|
Lin HY, Tang CH, Chen JH, Chuang JY, Huang SM, Tan TW, Lai CH, Lu DY. Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia. J Cell Physiol 2011; 226:1573-82. [DOI: 10.1002/jcp.22489] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Lipopolysaccharide down-regulates carbolesterases 1 and 2 and reduces hydrolysis activity in vitro and in vivo via p38MAPK-NF-κB pathway. Toxicol Lett 2011; 201:213-20. [PMID: 21237253 DOI: 10.1016/j.toxlet.2011.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/24/2010] [Accepted: 01/06/2011] [Indexed: 12/31/2022]
Abstract
Carboxylesterases constitute a class of enzymes that hydrolyze drugs containing such functional groups as carboxylic acid ester, amide, and thioester. Hydrolysis of many drugs is reduced in liver diseases such as hepatitis and cirrhosis. In this study, we have demonstrated, in vitro and in vivo, treatment with LPS decreased the expression of HCE1 and HCE2 and the capacity of hydrolytic activity. In HepG2 cells, the decreased expression by LPS occurred at both mRNA and protein levels. Both HCE1 and HCE2 promoters were significantly repressed by LPS, and the repression was comparable with the decrease in HCE1 and HCE2 mRNA, suggesting the transrepression is responsible for suppressed expression. Further study showed that both PDTC, a NF-κB inhibitor, and SB203580, a p38MAPK inhibitor, could abolish the repression of HCE1 and HCE2 mediated by LPS, but U0126, a selective ERK1/2 inhibitor, could not do so, suggesting the repression of HCE1 and HCE2 by LPS through the p38MAPK-NF-κB pathway. In addition, being pretreated with LPS, HepG2 cells altered the cellular responsiveness to ester therapeutic agents, including clopidogrel (hydrolyzed by HCE1) and irinotecan (hydrolyzed by HCE2). The altered cellular responsiveness occurred at low micromolar concentrations, suggesting that suppressed expression of carboxylesterases by LPS has profound pharmacological and toxicological consequences, particularly with those that are hydrolyzed in an isoform-specific manner. This study provides new insight into the understanding of the pharmacological and toxicological effects and the mechanisms for repressing drug metabolism enzymes in inflammation.
Collapse
|