1
|
Envisaging marine diatom Thalassiosira weissflogii as a "SMART" drug delivery system for insoluble drugs. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Gao R, Kalathur RKR, Coto‐Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G, Tang F. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 2021; 13:e14351. [PMID: 34664408 PMCID: PMC8649869 DOI: 10.15252/emmm.202114351] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In this study, a combination of shRNA-mediated synthetic lethality screening and transcriptomic analysis revealed the transcription factors YAP/TAZ as key drivers of Sorafenib resistance in hepatocellular carcinoma (HCC) by repressing Sorafenib-induced ferroptosis. Mechanistically, in a TEAD-dependent manner, YAP/TAZ induce the expression of SLC7A11, a key transporter maintaining intracellular glutathione homeostasis, thus enabling HCC cells to overcome Sorafenib-induced ferroptosis. At the same time, YAP/TAZ sustain the protein stability, nuclear localization, and transcriptional activity of ATF4 which in turn cooperates to induce SLC7A11 expression. Our study uncovers a critical role of YAP/TAZ in the repression of ferroptosis and thus in the establishment of Sorafenib resistance in HCC, highlighting YAP/TAZ-based rewiring strategies as potential approaches to overcome HCC therapy resistance.
Collapse
Affiliation(s)
- Ruize Gao
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | | | - Caner Ercan
- Institute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - David Buechel
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Song Shuang
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Michael T Dill
- Stem Cell ProgramBoston Children's HospitalBostonMAUSA
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
| | - Fernando D Camargo
- Stem Cell ProgramBoston Children's HospitalBostonMAUSA
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
| | | | - Fengyuan Tang
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
3
|
Shin HJ, Jo MJ, Jin IS, Park CW, Kim JS, Shin DH. Optimization and Pharmacokinetic Evaluation of Synergistic Fenbendazole and Rapamycin Co-Encapsulated in Methoxy Poly(Ethylene Glycol)- b-Poly(Caprolactone) Polymeric Micelles. Int J Nanomedicine 2021; 16:4873-4889. [PMID: 34295160 PMCID: PMC8291852 DOI: 10.2147/ijn.s315782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose We aimed to develop a nanocarrier formulation incorporating fenbendazole (FEN) and rapamycin (RAPA) with strong efficacy against A549 cancer cells. As FEN and RAPA are poorly soluble in water, it is difficult to apply them clinically in vivo. Therefore, we attempted to resolve this problem by encapsulating these drugs in polymeric micelles. Methods We evaluated drug synergy using the combination index (CI) values of various molar ratios of FEN and RAPA. We formed and tested micelles composed of different polymers. Moreover, we conducted cytotoxicity, stability, release, pharmacokinetic, and biodistribution studies to investigate the antitumor effects of FEN/RAPA-loaded mPEG-b-PCL micelles. Results We selected mPEG-b-PCL-containing FEN and RAPA at a molar ratio of 1:2 because these particles were consistent in size and had high encapsulation efficiency (EE, %) and drug loading (DL, %) capacity. The in vitro cytotoxicity was assessed for various FEN, RAPA, and combined FEN/RAPA formulations. After long-term exposures, both the solutions and the micelles had similar efficacy against A549 cancer cells. The in vivo pharmacokinetic study revealed that FEN/RAPA-loaded mPEG-b-PCL micelles had a relatively higher area under the plasma concentration–time curve from 0 to 2 h (AUC0–2 h) and 0 to 8 h (AUC0–8 h) and plasma concentration at time zero (Co) than that of the FEN/RAPA solution. The in vivo biodistribution assay revealed that the IV injection of FEN/RAPA-loaded mPEG-b-PCL micelles resulted in lower pulmonary FEN concentration than the IV injection of the FEN/RAPA solution. Conclusion When FEN and RAPA had a 1:2 molar ratio, they showed synergism. Additionally, using data from in vitro cytotoxicity, synergism between a 1:2 molar ratio of FEN and RAPA was observed in the micelle formulation. The FEN/RAPA-loaded mPEG-b-PCL micelle had enhanced bioavailability than the FEN/RAPA solution.
Collapse
Affiliation(s)
- Hee Ji Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ik Sup Jin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| |
Collapse
|
4
|
Nie JJ, Liu Y, Qi Y, Zhang N, Yu B, Chen DF, Yang M, Xu FJ. Charge-reversal nanocomolexes-based CRISPR/Cas9 delivery system for loss-of-function oncogene editing in hepatocellular carcinoma. J Control Release 2021; 333:362-373. [PMID: 33785418 DOI: 10.1016/j.jconrel.2021.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. There are still challenges for HCC treatments, especially high resistance of the cancer cells to chemotherapy and/or target therapy. In this study, a responsive charge-reversal vehicle consists of negatively charged heparin core and positively charged ethanolamine (EA)-modified poly(glycidyl methacrylate) (PGEA) shell (named Hep@PGEA) with self-accelerating release for condensed nucleic acids was proposed to deliver the pCas9 plasmid encoding clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) and the sgRNA targeting oncogene survivin to treat HCC. The Hep@PGEA/pCas9 system showed high anti-tumor efficiency via inducing apoptosis and inhibiting proliferation, migration and invasion capability of HCC cells. The Hep@PGEA/pCas9 system was further utilized to treat orthotopic HCC in mice via tail vein injection. The system exhibited an evident accumulation in the liver of mice and achieved obvious anti-tumor effects. The Hep@PGEA/pCas9 system also showed marked improvement of HCC therapy with sorafenib and provided promising combination HCC treatment potentials. Moreover, enrichment of the Hep@PGEA-based delivery system in liver highlights its possibilities for treatments of other liver diseases.
Collapse
Affiliation(s)
- Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China; Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanli Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Yu Qi
- Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Bingran Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Da-Fu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Gallo C, Barra G, Saponaro M, Manzo E, Fioretto L, Ziaco M, Nuzzo G, d’Ippolito G, De Palma R, Fontana A. A New Bioassay Platform Design for the Discovery of Small Molecules with Anticancer Immunotherapeutic Activity. Mar Drugs 2020; 18:E604. [PMID: 33260400 PMCID: PMC7760914 DOI: 10.3390/md18120604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy takes advantage of the immune system to prevent, control, and eliminate neoplastic cells. The research in the field has already led to major breakthroughs to treat cancer. In this work, we describe a platform that integrates in vitro bioassays to test the immune response and direct antitumor effects for the preclinical discovery of anticancer candidates. The platform relies on the use of dendritic cells that are professional antigen-presenting cells (APC) able to activate T cells and trigger a primary adaptive immune response. The experimental procedure is based on two phenotypic assays for the selection of chemical leads by both a panel of nine tumor cell lines and growth factor-dependent immature mouse dendritic cells (D1). The positive hits are then validated by a secondary test on human monocyte-derived dendritic cells (MoDCs). The aim of this approach is the selection of potential immunotherapeutic small molecules from natural extracts or chemical libraries.
Collapse
Affiliation(s)
- Carmela Gallo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Giusi Barra
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Marisa Saponaro
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Laura Fioretto
- Consorzio Italbiotec, Via Fantoli, 16/15, 20138 Milan, Italy;
| | - Marcello Ziaco
- BioSearch Srl., Villa Comunale c/o Stazione Zoologica “A.Dohrn”, 80121 Naples, Italy;
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Giuliana d’Ippolito
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
| | - Raffaele De Palma
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
- Internal Medicine, Clinical Immunology and Translational Medicine, University of Genova and IRCCS-Hospital S. Martino, 16132 Genova, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Naples, Italy; (G.B.); (M.S.); (E.M.); (G.N.); (G.d.); (R.D.P.)
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126 Naples, Italy
| |
Collapse
|
6
|
Abstract
Survivin is one of the most cancer-specific proteins overexpressed in almost all malignancies, but is nearly undetectable in most normal tissues in adults. Functionally, as a member of the inhibitor of apoptosis family, survivin has been shown to inhibit apoptosis and increase proliferation. The antiapoptotic function of survivin seems to be related to its ability to inhibit caspases directly or indirectly. Furthermore, the role of survivin in cell cycle division control is related to its role in the chromosomal passenger complex. Consistent with its determining role in these processes, survivin plays a crucial role in cancer progression and cancer cell resistance to anticancer drugs and ionizing radiation. On the basis of these findings, recently survivin has been investigated intensively as an ideal tumor biomarker. Thus, multiple molecular approaches such as use of the RNA interfering technique, antisense oligonucleotides, ribozyme, and small molecule inhibitors have been used to downregulate survivin regulation and inhibit its biological function consequently. In this review, all these approaches are explained and other compounds that induced apoptosis in different cell lines through survivin inhibition are also reported.
Collapse
|
7
|
Cao C, Zhou JY, Xie SW, Guo XJ, Li GT, Gong YJ, Yang WJ, Li Z, Zhong RH, Shao HH, Zhu Y. Metformin Enhances Nomegestrol Acetate Suppressing Growth of Endometrial Cancer Cells and May Correlate to Downregulating mTOR Activity In Vitro and In Vivo. Int J Mol Sci 2019; 20:E3308. [PMID: 31284427 PMCID: PMC6650946 DOI: 10.3390/ijms20133308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effect of a novel progestin and its combination with metformin on the growth of endometrial cancer (EC) cells. Inhibitory effects of four progestins, including nomegestrol acetate (NOMAC), medroxyprogesterone acetate, levonorgestrel, and cyproterone acetate, were evaluated in RL95-2, HEC-1A, and KLE cells using cell counting kit-8 assay. Flow cytometry was performed to detect cell cycle and apoptosis. The activity of Akt (protein kinase B), mTOR (mammalian target of rapamycin) and its downstream substrates 4EBP1 (4E-binding protein 1) and eIF4G (Eukaryotic translation initiation factor 4G) were assayed by Western blotting. Nude mice were used to assess antitumor effects in vivo. NOMAC inhibited the growth of RL95-2 and HEC-1A cells, accompanied by arresting the cell cycle at G0/G1 phase, inducing apoptosis, and markedly down-regulating the level of phosphorylated mTOR/4EBP1/eIF4G in both cell lines (p < 0.05). Metformin significantly increased the inhibitory effect of and apoptosis induced by NOMAC and strengthened the depressive effect of NOMAC on activity of mTOR and its downstream substrates, compared to their treatment alone (p < 0.05). In xenograft tumor tissues, metformin (100 mg/kg) enhanced the suppressive effect of NOMAC (100 mg/kg) on mTOR signaling and increased the average concentration of NOMAC by nearly 1.6 times compared to NOMAC treatment alone. Taken together, NOMAC suppressing the growth of EC cells likely correlates to down-regulating the activity of the mTOR pathway and metformin could strengthen this effect. Our findings open a new window for the selection of progestins in hormone therapy of EC.
Collapse
Affiliation(s)
- Can Cao
- Pharmacy School, Fudan University, Shanghai 200032, China
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Jie-Yun Zhou
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Shu-Wu Xie
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Xiang-Jie Guo
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Guo-Ting Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Yi-Juan Gong
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Wen-Jie Yang
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Zhao Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Rui-Hua Zhong
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Hai-Hao Shao
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Yan Zhu
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Wang ZZ, Liu F, Gong YF, Huang TY, Zhang XM, Huang XY. Antiarthritic Effects of Sorafenib in Rats with Adjuvant-Induced Arthritis. Anat Rec (Hoboken) 2018; 301:1519-1526. [DOI: 10.1002/ar.23856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Zhen-Zhen Wang
- Department of Anatomy; Anhui Medical University; Hefei China
| | - Fei Liu
- Department of Anatomy; Anhui Medical University; Hefei China
| | - Yong-Fang Gong
- Department of Anatomy; Bengbu Medical College; Bengbu China
| | - Tian-Yu Huang
- Grade 2016, The First Department of Clinical Medicine; Bengbu Medical College; Bengbu China
| | - Xiao-Ming Zhang
- Department of Anatomy; Anhui Medical University; Hefei China
| | - Xue-Ying Huang
- Department of Anatomy; Anhui Medical University; Hefei China
| |
Collapse
|
9
|
Zheng M, Xu H, Liao XH, Chen CP, Zhang AL, Lu W, Wang L, Yang D, Wang J, Liu H, Zhou XZ, Lu KP. Inhibition of the prolyl isomerase Pin1 enhances the ability of sorafenib to induce cell death and inhibit tumor growth in hepatocellular carcinoma. Oncotarget 2018; 8:29771-29784. [PMID: 28404959 PMCID: PMC5444702 DOI: 10.18632/oncotarget.15967] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer, but is the second leading cause of cancer deaths, partially due to its heterogeneity and drug resistance. Sorafenib is the only medical treatment with a proven efficacy against advanced HCC, but its overall clinical efficacy is still modest. Therefore, a major challenge is how to improve its therapeutic efficacy. The unique prolyl isomerase Pin1 regulates numerous cancer-driving pathways. Notably, Pin1 is overexpressed in about 70% HBV-positive HCC patients and contributes to HCC tumorigenesis. However, the role of Pin1 in the efficacy of sorafenib against HCC is unknown. Here we found that sorafenib down-regulated Pin1 mRNA and protein expression, likely through inhibition of Pin1 transcription by the Rb/E2F pathway. Importantly, Pin1 knockdown potently enhanced the ability of sorafenib to induce cell death in HCC, which was further supported by the findings that Pin1 knockdown led to stabilization of Fbxw7 and destabilization of Mcl-1. Furthermore, all-trans retinoic acid (ATRA), a known anticancer drug that inhibits and ultimately induces degradation of active Pin1 in cancer cells, also potently sensitized HCC cells to sorafenib-induced cell death at least in part through a caspase-dependent manner. Moreover, ATRA also synergistically enhanced the ability of sorafenib to reduce Pin1 and inhibit tumor growth of HCC in mouse xenograft models. Collectively, these results not only demonstrate that Pin1 down-regulation is a key event underlying the anti-tumor effects of sorafenib, but also uncover that Pin1 inhibitors offer a novel approach to enhance the therapeutic efficacy of sorafenib against HCC.
Collapse
Affiliation(s)
- Min Zheng
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Huijuan Xu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Xin-Hua Liao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Champ Peng Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Arina Li Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Wenxian Lu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Jichuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Xiao Zhen Zhou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China.,Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kun Ping Lu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China.,Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
10
|
Sim MY, Huynh H, Go ML, Yuen JSP. Action of YM155 on clear cell renal cell carcinoma does not depend on survivin expression levels. PLoS One 2017; 12:e0178168. [PMID: 28582447 PMCID: PMC5459331 DOI: 10.1371/journal.pone.0178168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The dioxonapthoimidazolium YM155 is a survivin suppressant which has been investigated as an anticancer agent in clinical trials. Here, we investigated its growth inhibitory properties on a panel of immortalized and patient derived renal cell carcinoma (RCC) cell lines which were either deficient in the tumour suppressor von Hippel-Lindau (VHL) protein or possessed a functional copy. Neither the VHL status nor the survivin expression levels of these cell lines influenced their susceptibility to growth inhibition by YM155. Of the various RCC lines, the papillary subtype was more resistant to YM155, suggesting that the therapeutic efficacy of YM155 may be restricted to clear cell subtypes. YM155 was equally potent in cells (RCC786.0) in which survivin expression had been stably silenced or overexpressed, implicating a limited reliance on survivin in the mode of action of YM155. A follow-up in-vitro high throughput RNA microarray identified possible targets of YM155 apart from survivin. Selected genes (ID1, FOXO1, CYLD) that were differentially expressed in YM155-sensitive RCC cells and relevant to RCC pathology were validated with real-time PCR and western immunoblotting analyses. Thus, there is corroboratory evidence that the growth inhibitory activity of YM155 in RCC cell lines is not exclusively mediated by its suppression of survivin. In view of the growing importance of combination therapy in oncology, we showed that a combination of YM155 and sorafenib at ½ x IC50 concentrations was synergistic on RCC786.0 cells. However, when tested intraperitoneally on a murine xenograft model derived from a nephrectomised patient with clear cell RCC, a combination of suboptimal doses of both drugs failed to arrest tumour progression. The absence of synergy in vivo highlighted the need to further optimize the dosing schedules of YM155 and sorafenib, as well as their routes of administration. It also implied that the expression of other oncogenic proteins which YM155 may target is either low or absent in this clear cell RCC.
Collapse
Affiliation(s)
- Mei Yi Sim
- Department of Urology, Singapore General Hospital, Republic of Singapore
- * E-mail:
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Republic of Singapore
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, Republic of Singapore
| | | |
Collapse
|
11
|
Hong SE, Kim CS, An S, Kim HA, Hwang SG, Song JY, Lee JK, Hong J, Kim JI, Noh WC, Jin HO, Park IC. TRAIL restores DCA/metformin-mediated cell death in hypoxia. Biochem Biophys Res Commun 2016; 478:1389-95. [DOI: 10.1016/j.bbrc.2016.08.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023]
|
12
|
Ou DL, Shyue SK, Lin LI, Feng ZR, Liou JY, Fan HH, Lee BS, Hsu C, Cheng AL. Growth arrest DNA damage-inducible gene 45 gamma expression as a prognostic and predictive biomarker in hepatocellular carcinoma. Oncotarget 2016; 6:27953-65. [PMID: 26172295 PMCID: PMC4695037 DOI: 10.18632/oncotarget.4446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/19/2015] [Indexed: 12/29/2022] Open
Abstract
Growth arrest DNA damage-inducible gene 45 (GADD45) family proteins play a crucial role in regulating cellular stress responses and apoptosis. The present study explored the prognostic and predictive role of GADD45γ in hepatocellular carcinoma (HCC) treatment. GADD45γ expression in HCC cells was examined using quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. The control of GADD45γ transcription was examined using a luciferase reporter assay and chromatin immunoprecipitation. The in vivo induction of GADD45γ was performed using adenoviral transfer. The expression of GADD45γ in HCC tumor tissues from patients who had undergone curative resection was measured using qRT-PCR. Sorafenib induced expression of GADD45γ mRNA and protein, independent of its RAF kinase inhibitor activity. GADD45γ induction was more prominent in sorafenib-sensitive HCC cells (Huh-7 and HepG2, IC50 6–7 μM) than in sorafenib-resistant HCC cells (Hep3B, Huh-7R, and HepG2R, IC50 12–15 μM). Overexpression of GADD45γ reversed sorafenib resistance in vitro and in vivo, whereas GADD45γ expression knockdown by using siRNA partially abrogated the proapoptotic effects of sorafenib on sorafenib-sensitive cells. Overexpression of survivin in HCC cells abolished the antitumor enhancement between GADD45γ overexpression and sorafenib treatment, suggesting that survivin is a crucial mediator of antitumor effects of GADD45γ. GADD45γ expression decreased in tumors from patients with HCC who had undergone curative surgery, and low GADD45γ expression was an independent prognostic factor for poor survival, in addition to old age and vascular invasion. The preceding data indicate that GADD45γ suppression is a poor prognostic factor in patients with HCC and may help predict sorafenib efficacy in HCC.
Collapse
Affiliation(s)
- Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Liang-In Lin
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zi-Rui Feng
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiang-Hsuan Fan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bin-Shyun Lee
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiun Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ann-Lii Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Zhao X, Cao M, Lu Z, Wang T, Ren Y, Liu C, Nelson D. Small-molecule inhibitor sorafenib regulates immunoreactions by inducing survival and differentiation of bone marrow cells. Innate Immun 2016; 22:493-502. [PMID: 27440860 DOI: 10.1177/1753425916659702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
Sorafenib has been used for the treatment of liver cancer. However, its clinical impact on human immunity system remains poorly known. Our previous study has shown that sorafenib modulates immunosuppressive cell populations in murine liver cancer models. Here, we continue to report that low doses of sorafenib promotes the survival of murine bone marrow cells (BMCs) in a dose-dependent manner by up-regulating the anti-apoptotic protein survivin. Sorafenib induces differentiation of BMCs into suppressive dendritic cells that inhibit autologous T-cell proliferation and stimulate CD4+ T cells to express increased IL-1β, IL-2, IL-4, IL-10, IFN-γ and TNF-α, and reduced levels of IL-6 and CD25, which indicates that sorafenib-induced dendritic cells represent a distinct cellular subset with unique properties. Taken together, our findings suggest that in addition to its anticancer effects, sorafenib has an immunoregulatory property that is apparent at low doses.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Mengde Cao
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Zaiming Lu
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
| | - Ton Wang
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ying Ren
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
| | - Chen Liu
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - David Nelson
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
14
|
El-Madani M, Hénin E, Lefort T, Tod M, Freyer G, Cassier P, Valette PJ, Rodriguez-Lafrasse C, Berger F, Guitton J, Lachuer J, Slimane K, Barrois C, You B. Multiparameter Phase I trials: a tool for model-based development of targeted agent combinations--example of EVESOR trial. Future Oncol 2016; 11:1511-8. [PMID: 25963428 DOI: 10.2217/fon.15.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optimal development of targeted drug combinations is one of the future challenges to be addressed. Computerization and mathematical models able to describe biological phenomena and to simulate the effects of changes in experimental conditions may help find solutions to this issue. We propose the concept of 'multiparameter trials', where biological, radiological and clinical data required for modeling purpose are collected and illustrated by the ongoing academic EVESOR trial. The objective of the model-based work would be the determination of the optimized doses and dosing schedules of everolimus and sorafenib, offering the maximization of the predicted modeled benefit/toxicity ratio in patients with solid tumors. It may embody the 'proof of concept' of model-based drug development of anticancer agent combinations.
Collapse
|
15
|
Terracciano M, Shahbazi MA, Correia A, Rea I, Lamberti A, De Stefano L, Santos HA. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. NANOSCALE 2015; 7:20063-20074. [PMID: 26568517 DOI: 10.1039/c5nr05173h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.
Collapse
Affiliation(s)
- Monica Terracciano
- Institute for Microelectronics and Microsystems, National Research Council, Naples, 80131, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sanhueza C, Wehinger S, Castillo Bennett J, Valenzuela M, Owen GI, Quest AFG. The twisted survivin connection to angiogenesis. Mol Cancer 2015; 14:198. [PMID: 26584646 PMCID: PMC4653922 DOI: 10.1186/s12943-015-0467-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Survivin, a member of the inhibitor of apoptosis family of proteins (IAPs) that controls cell division, apoptosis, metastasis and angiogenesis, is overexpressed in essentially all human cancers. As a consequence, the gene/protein is considered an attractive target for cancer treatment. Here, we discuss recent findings related to the regulation of survivin expression and its role in angiogenesis, particularly in the context of hypoxia. We propose a novel role for survivin in cancer, whereby expression of the protein in tumor cells promotes VEGF synthesis, secretion and angiogenesis. Mechanistically, we propose the existence of a positive feed-back loop involving PI3-kinase/Akt activation and enhanced β-Catenin-TCF/LEF-dependent VEGF expression followed by secretion. Finally, we elaborate on the possibility that this mechanism operating in cancer cells may contribute to enhanced tumor vascularization by vasculogenic mimicry together with conventional angiogenesis.
Collapse
Affiliation(s)
- C Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - S Wehinger
- Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - J Castillo Bennett
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - M Valenzuela
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - G I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Facultad de Ciencias Biológicas & Center UC Investigation in Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A F G Quest
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| |
Collapse
|
17
|
Wang X, Zhang C, Yan X, Lan B, Wang J, Wei C, Cao X, Wang R, Yao J, Zhou T, Zhou M, Liu Q, Jiang B, Jiang P, Kesari S, Lin X, Guo F. A Novel Bioavailable BH3 Mimetic Efficiently Inhibits Colon Cancer via Cascade Effects of Mitochondria. Clin Cancer Res 2015; 22:1445-58. [PMID: 26515494 DOI: 10.1158/1078-0432.ccr-15-0732] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Gossypol and its analogs, through their ability to bind to and inactivate BH3 domain-containing antiapoptotic proteins, have been shown to inhibit the growth of various human cancer cells in culture and xenograft models. Here, we evaluated the antitumor efficacy of a novel gossypol derivative and BH3 mimetic ch282-5 (2-aminoethanesulfonic acid sodium-gossypolone) in colon cancer models. Several innovative combination strategies were also explored and elaborated. EXPERIMENTAL DESIGN Ch282-5 was synthesized by modifying the active aldehyde groups and R groups of gossypol according to a computer-aided drug design program. The stability of ch282-5 was examined by high-performance liquid chromatography, and cytotoxic effects of ch282-5 on colon cancer cells were assessed by MTS assay. Activation of mitochondrial apoptotic pathway by ch282-5 was evidenced with a series of molecular biology techniques. In vivo antitumor activity of ch282-5 and its combination with chloroquine, rapamycin, oxaliplatin, and ABT-263 was also evaluated in colon cancer xenograft models and experimental liver metastasis models. RESULTS Ch282-5 showed antiproliferative and pro-cell death activity against colon cancer cells both in vitro and in vivo, and the response to the drug correlated with inhibition of antiapoptotic Bcl-2 proteins, induction of mitochondria-dependent apoptotic pathway, and disruption of mitophagy and mTOR pathway. Ch282-5 also suppressed liver metastasis produced by intrasplenic injection of colon cancer cells. Furthermore, ch282-5 could potentiate the effectiveness of oxaliplatin and rescue ABT-263 efficacy by downregulation of Mcl-1 and elevation of platelet number. CONCLUSIONS These findings provide a rational basis for clinical investigation of this highly promising BH3 mimetic in colon cancer.
Collapse
Affiliation(s)
- Xuefeng Wang
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangming Yan
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Lan
- Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China. Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyong Wang
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chongyang Wei
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingxin Cao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Renxiao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Yao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Tao Zhou
- Academy of Life Science, Shanghai University, Shanghai, China
| | - Mi Zhou
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoling Liu
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Biao Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Jiang
- Department of Medicine and UC San Diego Moores Cancer Center, University of California-San Diego, La Jolla, California
| | - Santosh Kesari
- Department of Medicine and UC San Diego Moores Cancer Center, University of California-San Diego, La Jolla, California
| | - Xinjian Lin
- Department of Medicine and UC San Diego Moores Cancer Center, University of California-San Diego, La Jolla, California.
| | - Fang Guo
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Liu Y, Miao C, Wang Z, He X, Shen W. Survivin small interfering RNA suppresses glioblastoma growth by inducing cellular apoptosis. Neural Regen Res 2015; 7:924-31. [PMID: 25722677 PMCID: PMC4341288 DOI: 10.3969/j.issn.1673-5374.2012.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/20/2012] [Indexed: 01/14/2023] Open
Abstract
A survivin small interfering RNA sequence specific for a human and mouse homogenous sequence was constructed. Survivin small interfering RNA could significantly inhibit glioma cell proliferation and induce apoptosis when it was transfected into either a human glioma cell line U251 or rat glioma C6 cells in vitro. In addition, treatment of rat orthotopic glioma models with survivin small interfering demonstrated the inhibition of glioma growth in vivo. Our experimental findings suggest that the use of RNA interference techniques to target the survivin sequence may be useful in the treatment of glioma.
Collapse
Affiliation(s)
- Yanbo Liu
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| | - Chunming Miao
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| | - Zhenjiang Wang
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| | - Xin He
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| | - Weigao Shen
- Beihua University Faculty of Medicine, Jilin 132013, Jilin Province, China
| |
Collapse
|
19
|
Jin HO, Lee YH, Park JA, Lee HN, Kim JH, Kim JY, Kim B, Hong SE, Kim HA, Kim EK, Noh WC, Kim JI, Chang YH, Hong SI, Hong YJ, Park IC, Lee JK. Piperlongumine induces cell death through ROS-mediated CHOP activation and potentiates TRAIL-induced cell death in breast cancer cells. J Cancer Res Clin Oncol 2014; 140:2039-46. [PMID: 25023940 DOI: 10.1007/s00432-014-1777-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/05/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE Piperlongumine (PL) has been shown to selectively induce apoptotic cell death in cancer cells via reactive oxygen species (ROS) accumulation. In this study, we characterized a molecular mechanism for PL-induced cell death. METHODS Cell viability and cell death were assessed by MTT assay and Annexin V-FITC/PI staining, respectively. ROS generation was measured using the H2DCFDA. Small interfering RNA (siRNA) was used for suppressing gene expression. The mRNA and protein expression were analyzed by RT-PCR and Western blot analysis, respectively. RESULTS We found that PL promotes C/EBP homologous protein (CHOP) induction, which leads to the up-regulation of its targets Bim and DR5. Pretreatment with the ROS scavenger N-acetyl-cysteine abolishes the PL-induced up-regulation of CHOP and its target genes, suggesting an essential role for ROS in PL-induced CHOP activation. The down-regulation of CHOP or Bim with siRNA efficiently attenuates PL-induced cell death, suggesting a critical role for CHOP in this cell death. Furthermore, PL potentiates TRAIL-induced cytotoxicity in breast cancer cells by upregulating DR5, as DR5 knockdown abolished the sensitizing effect of PL on TRAIL responses. CONCLUSIONS Overall, our data suggest a new mechanism for the PL-induced cell death in which ROS mediates CHOP activation, and combination treatment with PL and TRAIL could be a potential strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139-709, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pennati M, Sbarra S, De Cesare M, Lopergolo A, Locatelli SL, Campi E, Daidone MG, Carlo-Stella C, Gianni AM, Zaffaroni N. YM155 sensitizes triple-negative breast cancer to membrane-bound TRAIL through p38 MAPK- and CHOP-mediated DR5 upregulation. Int J Cancer 2014; 136:299-309. [PMID: 24866585 DOI: 10.1002/ijc.28993] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022]
Abstract
Because available treatments have limited efficacy in triple-negative breast cancer (TNBC), the identification of new therapeutic strategies to improve patients' outcome is urgently needed. In our study, we investigated the effects of the administration of the small molecule selective survivin suppressant YM155, alone or in association with CD34+ cells transduced with a replication-deficient adenovirus encoding the human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene (CD34-TRAIL+ cells), in three TNBC cell models. YM155 exposure significantly impaired TNBC cell growth and selectively modulated survivin expression at both mRNA and protein level. In addition, co-culturing YM155-treated TNBC cells with CD34-TRAIL+ cells resulted in markedly increased cytotoxic effect and apoptotic response in comparison with single treatments. Such a chemosensitizing effect was observed only in TNBC cells inherently expressing DR5 and relied on the ability of YM155 to upregulate DR5 expression through a p38 MAPK- and CHOP-dependent mechanism. YM155/CD34-TRAIL+ combination also showed a significant inhibitory effect on the growth of DR5-expressing TNBC cells following xenotransplantation into NOD/SCID mice, in the absence of toxicity. Overall, our data (i) provide, for the first time, evidence that YM155 sensitizes TNBC cells to CD34-TRAIL+ cells-induced apoptosis by a mechanism involving the downregulation of survivin and the simultaneous p38 MAPK- and CHOP-mediated upregulation of DR5, and (ii) suggest the combination of YM155 with TRAIL-armed CD34+ progenitor cells as a promising therapeutic option for patients with TNBC expressing DR5.
Collapse
Affiliation(s)
- Marzia Pennati
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014; 3:e02523. [PMID: 24844246 PMCID: PMC4054777 DOI: 10.7554/elife.02523] [Citation(s) in RCA: 1365] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/17/2014] [Indexed: 02/06/2023] Open
Abstract
Exchange of extracellular cystine for intracellular glutamate by the antiporter system xc (-) is implicated in numerous pathologies. Pharmacological agents that inhibit system xc (-) activity with high potency have long been sought, but have remained elusive. In this study, we report that the small molecule erastin is a potent, selective inhibitor of system xc (-). RNA sequencing revealed that inhibition of cystine-glutamate exchange leads to activation of an ER stress response and upregulation of CHAC1, providing a pharmacodynamic marker for system xc (-) inhibition. We also found that the clinically approved anti-cancer drug sorafenib, but not other kinase inhibitors, inhibits system xc (-) function and can trigger ER stress and ferroptosis. In an analysis of hospital records and adverse event reports, we found that patients treated with sorafenib exhibited unique metabolic and phenotypic alterations compared to patients treated with other kinase-inhibiting drugs. Finally, using a genetic approach, we identified new genes dramatically upregulated in cells resistant to ferroptosis.DOI: http://dx.doi.org/10.7554/eLife.02523.001.
Collapse
Affiliation(s)
- Scott J Dixon
- Department of Biological Sciences, Columbia University, New York, United States
| | - Darpan N Patel
- Department of Biological Sciences, Columbia University, New York, United States
| | - Matthew Welsch
- Department of Biological Sciences, Columbia University, New York, United States
| | - Rachid Skouta
- Department of Biological Sciences, Columbia University, New York, United States
| | - Eric D Lee
- Department of Biological Sciences, Columbia University, New York, United States
| | - Miki Hayano
- Department of Biological Sciences, Columbia University, New York, United States
| | - Ajit G Thomas
- Brain Science Institute, Johns Hopkins Medicine, Baltimore, United States
| | - Caroline E Gleason
- Department of Biological Sciences, Columbia University, New York, United States
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, United States Department of Medicine, Columbia University, New York, United States Department of Systems Biology, Columbia University, New York, United States
| | - Barbara S Slusher
- Brain Science Institute, Johns Hopkins Medicine, Baltimore, United States Department of Neurology, Johns Hopkins Medicine, Baltimore, United States
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, United States Department of Systems Biology, Columbia University, New York, United States Department of Chemistry, Columbia University, New York, United States Howard Hughes Medical Institute, Columbia University, New York, United States
| |
Collapse
|
22
|
Gonzalez-Sanchez E, Marin JJG, Perez MJ. The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharm 2014; 11:1856-68. [PMID: 24824514 DOI: 10.1021/mp400732p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deletions and mutations in mitochondrial DNA (mtDNA), which are frequent in human tumors, such as hepatocellular carcinoma (HCC), may contribute to enhancing their malignant phenotype. Here we have investigated the effect of mtDNA depletion in the expression of genes accounting for mechanisms of chemoresistance (MOC) in HCC. Using human HCC SK-Hep-1 cells depleted of mtDNA (Rho), changes in gene expression in response to antitumor drugs previously assayed in HCC treatment were analyzed. In Rho cells, a decreased sensitivity to doxorubicin-, SN-38-, cisplatin (CDDP)-, and sorafenib-induced cell death was found. Both constitutive and drug-induced reactive oxygen species generation were decreased. Owing to activation of the NRF2-mediated pathway, MDR1, MRP1, and MRP2 expression was higher in Rho than in wild-type cells. This difference was maintained after further upregulation induced by treatment with doxorubicin, SN-38, or CDDP. Topoisomerase-IIa expression was also enhanced in Rho cells before and after treatment with these drugs. Moreover, the ability of doxorubicin, SN-38 and CDDP to induce proapoptotic signals was weaker in Rho cells, as evidenced by survivin upregulation and reductions in Bax/Bcl-2 expression ratios. Changes in these genes seem to play a minor role in the enhanced resistance of Rho cells to sorafenib, which may be related to an enhanced intracellular ATP content together with the loss of expression of the specific target of sorafenib, tyrosine kinase receptor Kit. In conclusion, these results suggest that mtDNA depletion may activate MOC able to hinder the efficacy of chemotherapy against HCC.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca , Salamanca, Spain
| | | | | |
Collapse
|
23
|
Lee DW, Chang H, Kim YJ, Kim KM, Lee HJ, Lee JS. Sorafenib-Induced Tumor Response in a Patient With Metastatic Epithelioid Angiomyolipoma. J Clin Oncol 2014; 32:e42-5. [DOI: 10.1200/jco.2012.48.1960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Dae-Won Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyun Chang
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yu-Jung Kim
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwhan-Mien Kim
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hee-Jin Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong-Seok Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
24
|
Polyakov VR, Moorcroft ND, Drawid A. Enrichment Analysis for Discovering Biological Associations in Phenotypic Screens. J Chem Inf Model 2014; 54:377-86. [DOI: 10.1021/ci400245c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Valery R. Polyakov
- Sanofi, 55 Corporate Drive, Bridgewater, New Jersey 08807, United States
| | - Neil D. Moorcroft
- Sanofi, 55 Corporate Drive, Bridgewater, New Jersey 08807, United States
| | - Amar Drawid
- Sanofi, 55 Corporate Drive, Bridgewater, New Jersey 08807, United States
| |
Collapse
|
25
|
Jin HO, Lee YH, Park JA, Kim JH, Hong SE, Kim HA, Kim EK, Noh WC, Kim BH, Ye SK, Chang YH, Hong SI, Hong YJ, Park IC, Lee JK. Blockage of Stat3 enhances the sensitivity of NSCLC cells to PI3K/mTOR inhibition. Biochem Biophys Res Commun 2014; 444:502-8. [DOI: 10.1016/j.bbrc.2014.01.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 01/25/2023]
|
26
|
Tian Y, Wang H, Li B, Ke M, Wang J, Dou J, Zhou C. The cathelicidin-BF Lys16 mutant Cbf-K16 selectively inhibits non-small cell lung cancer proliferation in vitro. Oncol Rep 2013; 30:2502-10. [PMID: 23982315 DOI: 10.3892/or.2013.2693] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/02/2013] [Indexed: 11/05/2022] Open
Abstract
The 30-amino acid antimicrobial peptide Cbf-K16 is a cathelicidin-BF (BF-30) Lys16 mutant derived from the snake venom of Bungarus fasciatus. Our previous study found that BF-30 selectively inhibited the proliferation of the metastatic melanoma cell line B16F10 in vitro and in vivo, but had a negligible effect on human lung cells. In the present study, it was demonstrated for the first time that Cbf-K16 selectively inhibits the proliferation of lung carcinoma cells in vitro, with low toxicity to normal cells. The half-maximal inhibitory concentrations (IC50) of Cbf-K16 against H460 human non-small cell lung carcinoma cells and mouse Lewis lung cancer cells were only 16.5 and 10.5 µM, respectively, which were much less compared to that of BF-30 (45 and 40.3 µM). Data using a transmission electron microscope (TEM) assay showed that, at 20 and 40 µM, Cbf-K16 induced the rupture of the cytoplasmic membrane, which was consistent with data obtained from lactate dehydrogenase (LDH) release assays. The LDH release increased from 17.8 to 52.9% as the duration and dosage of Cbf-K16 increased. Annexin V-fluorescein and propidium iodide staining assays indicated that there were no obvious apoptotic effects at the different dosages and times tested. In H460 cells, the rate of genomic DNA binding increased from 51.9 to 86.8% as the concentration of Cbf-K16 increased from 5 to 10 µM. These data indicate that Cbf-K16 selectively inhibits the proliferation of lung carcinoma cells via cytoplasmic membrane permeabilization and DNA binding, rather than apoptosis. Although Cbf-K16 displayed significant cytotoxic activity (40 µM) against tumor cells, in splenocytes no significant inhibitory effect was observed and hemolysis was only 5.6%. These results suggest that Cbf-K16 is a low-toxicity anti-lung cancer drug candidate.
Collapse
Affiliation(s)
- Yuwei Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | | | | | | | | | | | | |
Collapse
|
27
|
Kollipara PS, Jeong HS, Han SB, Hong JT. (E)-2,4-bis(p-hydroxyphenyl)-2-butenal has an antiproliferative effect on NSCLC cells induced by p38 MAPK-mediated suppression of NF-κB and up-regulation of TNFRSF10B (DR5). Br J Pharmacol 2013; 168:1471-84. [PMID: 23082969 DOI: 10.1111/bph.12024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/06/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE The Maillard Reaction Products (MRPs) are known to be effective in chemoprevention. Here we focused on the anticancer effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (a MRP) on human non-small-cell lung cancer (NSCLC) cells and its mechanism of action. EXPERIMENTAL APPROACH We analysed the activity of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on NSCLC cells (NCI-H460 and A549) by use of Western blot analysis for major apoptotic proteins, MAPK, NF-κB and death receptor expression. We also used RT-PCR to determine its effects on death receptor mRNA expression, EMSA for effects on NF-κB DNA binding activity and colony formation assay for effects of inhibitors on (E)-2,4-bis(p-hydroxyphenyl)-2-butenal's actions. KEY RESULTS (E)-2,4-bis(p-hydroxyphenyl)-2-butenal induced a concentration (10-40 μg·mL⁻¹)- and time (30 min-72 h)-dependent inhibitory effect on the growth of NSCLC cells due to induction of apoptosis. Concomitantly, it significantly increased the expression of apoptotic proteins such as cleaved caspase-3, cleaved caspase-9, Bax and p53, but down-regulated the expression of anti-apoptotic proteins Bcl-2, cIAP1 and cIAP2. This effect was induced by up-regulation of MAPK and death receptor proteins TNFRSF12, TNFRSF10B and TNFRSF21, but suppression of NF-κB. Of the death receptors activated, only TNFRSF10B knock down with siRNA reversed the effect of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal. Even though all the MAPKs were activated, only pretreatment with a p38 MAPK inhibitor reversed (E)-2,4-bis(p-hydroxyphenyl)-2-butenal-induced cell growth inhibition, increase in cleaved caspase-3, -9 and TNFRSF10B expression, and NF-κB inactivation. CONCLUSIONS AND IMPLICATIONS (E)-2,4-bis(p-hydroxyphenyl)-2-butenal induces apoptosis in NSCLC cells by p38 MAPK-mediated suppression of NF-κB and activation of TNFRSF10B, which then activates the caspase-3 and caspase-9 pathways.
Collapse
|
28
|
Hong SE, Kim EK, Jin HO, Kim HA, Lee JK, Koh JS, Seol H, Kim JI, Park IC, Noh WC. S6K1 inhibition enhances tamoxifen-induced cell death in MCF-7 cells through translational inhibition of Mcl-1 and survivin. Cell Biol Toxicol 2013; 29:273-82. [PMID: 23942996 DOI: 10.1007/s10565-013-9253-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
S6 kinase 1 (S6K1) was suggested to be a marker for endocrine therapy resistance in breast cancer. We examined whether tamoxifen's effect can be modulated by S6K1 inhibition. S6K1 inhibition by PF4708671, a selective inhibitor of S6K1, acts synergistically with tamoxifen in S6K1-high MCF-7 cells. Similarly, the knockdown of S6K1 with small interfering RNA (siRNA) significantly sensitized MCF-7 cells to tamoxifen. Inhibition of S6K1 by PF4708671 led to a marked decrease in the expression levels of the anti-apoptotic proteins Mcl-1 and survivin, which was not related to mRNA levels. In addition, suppression of Mcl-1 or survivin, using specific siRNA, further enhanced cell sensitivity to tamoxifen. These results showed that inhibition of S6K1 acts synergistically with tamoxifen, via translational modulation of Mcl-1 and survivin. Based on these findings, we propose that targeting S6K1 may be an effective strategy to overcome tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Sung-Eun Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul, 139-706, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Inhibition of vacuolar H+ ATPase enhances sensitivity to tamoxifen via up-regulation of CHOP in breast cancer cells. Biochem Biophys Res Commun 2013; 437:463-8. [DOI: 10.1016/j.bbrc.2013.06.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
30
|
Premkumar DR, Jane EP, Foster KA, Pollack IF. Survivin inhibitor YM-155 sensitizes tumor necrosis factor- related apoptosis-inducing ligand-resistant glioma cells to apoptosis through Mcl-1 downregulation and by engaging the mitochondrial death pathway. J Pharmacol Exp Ther 2013; 346:201-10. [PMID: 23740602 DOI: 10.1124/jpet.113.204743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of apoptosis by the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor therapy. However, not all tumor cells are sensitive to TRAIL, highlighting the need for strategies to overcome TRAIL resistance. Inhibitor of apoptosis family member survivin is constitutively activated in various cancers and blocks apoptotic signaling. Recently, we demonstrated that YM-155 [3-(2-methoxyethyl)-2-methyl-4,9-dioxo-1-(pyrazin-2-ylmethyl)-4,9-dihydro-3H-naphtho[2,3-d]imidazol-1-ium bromide], a small molecule inhibitor, downregulates not only survivin in gliomas but also myeloid cell leukemia sequence 1 (Mcl-1), and it upregulates proapoptotic Noxa levels. Because Mcl-1 and survivin are critical mediators of resistance to various anticancer therapies, we questioned whether YM-155 could sensitize resistant glioma cells to TRAIL. To address this hypothesis, we combined YM-155 with TRAIL and examined the effects on cell survival and apoptotic signaling. TRAIL or YM-155 individually induced minimal killing in highly resistant U373 and LNZ308 cell lines, but combining TRAIL with YM-155 triggered a synergistic proapoptotic response, mediated through mitochondrial dysfunction via activation of caspases-8, -9, -7, -3, poly-ADP-ribose polymerase, and Bid. Apoptosis induced by combination treatments was blocked by caspase-8 and pan-caspase inhibitors. In addition, knockdown of Mcl-1 by RNA interference overcame apoptotic resistance to TRAIL. Conversely, silencing Noxa by RNA interference reduced the combined effects of YM-155 and TRAIL on apoptosis. Mechanistically, these findings indicate that YM-155 plays a role in counteracting glioma cell resistance to TRAIL-induced apoptosis by downregulating Mcl-1 and survivin and amplifying mitochondrial signaling through intrinsic and extrinsic apoptotic pathways. The significantly enhanced antitumor activity of the combination of YM-155 and TRAIL may have applications for therapy of malignant glioma.
Collapse
Affiliation(s)
- Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | |
Collapse
|
31
|
Yang L, Su L, Cao C, Xu L, Zhong D, Xu L, Liu X. The chalcone 2′-hydroxy-4′,5′-dimethoxychalcone activates death receptor 5 pathway and leads to apoptosis in human nonsmall cell lung cancer cells. IUBMB Life 2013; 65:533-43. [DOI: 10.1002/iub.1161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022]
|
32
|
Inhibition of S6K1 enhances glucose deprivation-induced cell death via downregulation of anti-apoptotic proteins in MCF-7 breast cancer cells. Biochem Biophys Res Commun 2013; 432:123-8. [DOI: 10.1016/j.bbrc.2013.01.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 02/04/2023]
|
33
|
Pignochino Y, Dell'Aglio C, Basiricò M, Capozzi F, Soster M, Marchiò S, Bruno S, Gammaitoni L, Sangiolo D, Torchiaro E, D'Ambrosio L, Fagioli F, Ferrari S, Alberghini M, Picci P, Aglietta M, Grignani G. The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin Cancer Res 2013; 19:2117-31. [PMID: 23434734 DOI: 10.1158/1078-0432.ccr-12-2293] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The multikinase inhibitor sorafenib displays antitumor activity in preclinical models of osteosarcoma. However, in sorafenib-treated patients with metastatic-relapsed osteosarcoma, disease stabilization and tumor shrinkage were short-lived and drug resistance occurred. We explored the sorafenib treatment escape mechanisms to overcome their drawbacks. EXPERIMENTAL DESIGN Immunoprecipitation, Western blotting, and immunohistochemistry were used to analyze the mTOR pathway [mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2)]. Cell viability, colony growth, and cell migration were evaluated in different osteosarcoma cell lines (MNNG-HOS, HOS, KHOS/NP, MG63, U-2OS, SJSA-1, and SAOS-2) after scalar dose treatment with sorafenib (10-0.625 μmol/L), rapamycin-analog everolimus (100-6.25 nmol/L), and combinations of the two. Cell cycle, reactive oxygen species (ROS) production, and apoptosis were assessed by flow cytometry. Nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice injected with MNNG-HOS cells were used to determine antitumor and antimetastatic effects. Angiogenesis and vascularization were evaluated in vitro by exploiting endothelial branching morphogenesis assays and in vivo in xenografted mice and chorioallantoic membranes. RESULTS After sorafenib treatment, mTORC1 signaling was reduced (downstream target P-S6), whereas mTORC2 was increased (phospho-mTOR Ser2481) in MNNG-HOS xenografts compared with vehicle-treated mice. Combining sorafenib with everolimus resulted in complete abrogation of both mTORC1 [through ROS-mediated AMP-activated kinase (AMPK) activation] and mTORC2 (through complex disassembly). The sorafenib/everolimus combination yielded: (i) enhanced antiproliferative and proapoptotic effects, (ii) impaired tumor growth, (iii) potentiated antiangiogenesis, and (iv) reduced migratory and metastatic potential. CONCLUSION mTORC2 activation is an escape mechanism from sorafenib treatment. When sorafenib is combined with everolimus, its antitumor activity is increased by complete inhibition of the mTOR pathway in the preclinical setting.
Collapse
Affiliation(s)
- Ymera Pignochino
- Sarcoma Group, Fondazione del Piemonte per l'Oncologia, Institute for Cancer Research and Treatment at Candiolo, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cagle PT, Allen TC. Lung cancer genotype-based therapy and predictive biomarkers: present and future. Arch Pathol Lab Med 2013. [PMID: 23194040 DOI: 10.5858/arpa.2012-0508-ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The advent of genotype-based therapy and predictive biomarkers for lung cancer has thrust the pathologist into the front lines of precision medicine for this deadly disease. OBJECTIVE To provide the clinical background, current status, and future perspectives of molecular targeted therapy for lung cancer patients, including the pivotal participation of the pathologist. DATA SOURCES Data were obtained from review of the pertinent peer-reviewed literature. CONCLUSIONS First-generation tyrosine kinase inhibitors have produced clinical response in a limited number of non-small cell lung cancers demonstrated to have activating mutations of epidermal growth factor receptor or anaplastic lymphoma kinase rearrangements with fusion partners. Patients treated with first-generation tyrosine kinase inhibitors develop acquired resistance to their therapy. Ongoing investigations of second-generation tyrosine kinase inhibitors and new druggable targets as well as the development of next-generation genotyping and new antibodies for immunohistochemistry promise to significantly expand the pathologist's already crucial role in precision medicine of lung cancer.
Collapse
Affiliation(s)
- Philip T Cagle
- Department of Pathology & Genomic Medicine, The Methodist Hospital, Houston, Texas, USA.
| | | |
Collapse
|
35
|
Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts. Leukemia 2013; 27:1677-87. [PMID: 23360848 DOI: 10.1038/leu.2013.28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 12/19/2022]
Abstract
The effects of the Akt inhibitor perifosine and the RAF/MEK/ERK inhibitor sorafenib were investigated using two CD30(+)Hodgkin lymphoma cell lines (L-540 and HDLM-2) and the CD30(-)HD-MyZ histiocytic cell line. The combined perifosine/sorafenib treatment significantly inhibited mitogen-activated protein kinase and Akt phosphorylation in two of the three cell lines. Profiling of the responsive cell lines revealed that perifosine/sorafenib decreased the amplitude of transcriptional signatures that are associated with the cell cycle, DNA replication and cell death. Tribbles homolog 3 (TRIB3) was identified as the main mediator of the in vitro and in vivo antitumor activity of perifosine/sorafenib. Combined treatment compared with single agents significantly suppressed cell growth (40-80%, P<0.001), induced severe mitochondrial dysfunction and necroptotic cell death (up to 70%, P<0.0001) in a synergistic manner. Furthermore, in vivo xenograft studies demonstrated a significant reduction in tumor burden (P<0.0001), an increased survival time (81 vs 45 days, P<0.0001), an increased apoptosis (2- to 2.5-fold, P<0.0001) and necrosis (2- to 8-fold, P<0.0001) in perifosine/sorafenib-treated animals compared with mice receiving single agents. These data provide a rationale for clinical trials using perifosine/sorafenib combination.
Collapse
|
36
|
Li F. Discovery of survivin inhibitors and beyond: FL118 as a proof of concept. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:217-52. [PMID: 23890383 DOI: 10.1016/b978-0-12-407695-2.00005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Survivin, a novel antiapoptotic protein molecule, plays a central role in cancer cell survival/proliferation networks and has therefore become a therapeutic target for cancer drug discovery efforts. There are two strategies for discovering survivin inhibitors. One is based on survivin interactions within the cell and the other strategy is based on blocking survivin expression. Survivin inhibitors developed by the first strategy would disrupt a particular survivin function. These survivin inhibitors could also be useful tools for delineating the mechanism of action of survivin. The second strategy may use a reporter system of the survivin gene to screen drug libraries. To date, two molecules, YM155 and FL118, have been identified using this strategy. These two examples provide a proof of concept that screens for inhibitors of survivin expression using survivin gene reporter assays as surrogate markers will uncover versatile small molecules that not only inhibit survivin but also inhibit other essential cancer survival/proliferation-associated targets and/or signaling pathways. This review provides an overview of current information in the area relevant to survivin inhibitors that may facilitate future studies.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.
| |
Collapse
|
37
|
Xu L, Su L, Liu X. PKCδ regulates death receptor 5 expression induced by PS-341 through ATF4-ATF3/CHOP axis in human lung cancer cells. Mol Cancer Ther 2012; 11:2174-82. [PMID: 22848091 DOI: 10.1158/1535-7163.mct-12-0602] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PS-341 (bortezomib), a proteasome inhibitor, has been approved for the treatment of multiple myeloma. Our previous work has shown that PS-341 induces death receptor 5 (DR5)-dependent apoptosis and enhances the TNF-related apoptosis-inducing ligand-induced apoptosis in human non-small cell lung cancer cells. However, the definite mechanism remains undefined. In the present study, we reveal that PKCδ and RSK2 mediate PS-341-induced DR5 upregulation, involving coactivation of endoplasmic reticulum (ER) stress. We discovered that PS-341 activated ER stress through elevating the expression of BiP, p-eIF2α, IRE1α, ATF4, ATF3, and CCAAT/enhancer-binding protein homologous protein (CHOP). Further study showed that DR5 upregulation was dependent on ATF4, ATF3, and CHOP expression. Silencing either one of the ATF4, ATF3, and CHOP expression decreased DR5 upregulation and subsequent apoptosis. We determined that ATF4 regulated ATF3 and CHOP expression. Thereafter, ATF3 and CHOP formed a complex and regulated DR5 expression. In addition, we discovered that the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and RSK2 were elevated after PS-341 treatment and inhibition of their phosphorylation using MAP-ERK kinase 1/2 inhibitor decreased the DR5 level, indicating that ERK/RSK2 signaling is involved in DR5 upregulation. Furthermore, we detected the cleavage of PKCδ, and the blockage of PKCδ expression cut down DR5 upregulation and apoptosis. Importantly, knockdown of PKCδ expression decreased the induction of ER stress and the phosphorylation of ERK1/2 and RSK2, suggesting that PKCδ regulates DR5 expression through ERK/RSK2 signaling and ATF4-CHOP/ATF3 axis. Collectively, we show that PS-341 induces PKCδ-dependent DR5 expression through activation of ERK/RSK2 and ER stress signaling pathway.
Collapse
Affiliation(s)
- Linyan Xu
- Shandong University School of Life Sciences, Room 103, South Building, 27 Shanda South Road, Jinan, Shandong 250100, China
| | | | | |
Collapse
|
38
|
Siegelin MD. Utilization of the cellular stress response to sensitize cancer cells to TRAIL-mediated apoptosis. Expert Opin Ther Targets 2012; 16:801-17. [PMID: 22762543 DOI: 10.1517/14728222.2012.703655] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising death ligand who has received significant attention due to its specific anti-cancer activity. Recently, a number of clinical trials involving either recombinant soluble TRAIL or agonistic death receptor (DR) antibodies have even been initiated. One major caveat in TRAIL-based anti-cancer therapies is that a considerable number of cancer cells are notorious resistant to apoptosis induction by TRAIL. Overcoming this primary or secondary evolved resistance is an utmost important goal of present cancer research. The current literature suggests that TRAIL resistance is mediated by a number of endogenous factors. AREAS COVERED According to recent research, stress-related transcription factors have acquired a pivotal role in the sensitization of highly resistant cancer cells, for example, pancreatic cancer and glioblastoma cells, to TRAIL-mediated cell death. Out of this transcription factor family, C/EBP-homologous protein (CHOP) is linked to the control of DR-mediated apoptosis by modulation of several apoptotic and anti-apoptotic factors. Stress responses in certain organelles, such as endoplasmic reticulum (ER) and mitochondria, are potent inductors of CHOP expression. This report focuses on the influence of stress responses on endogenous or acquired resistance to extrinsic apoptosis in tumor cells and summarizes recent findings and results. The Medline and ClinicalTrials database with key words were used for this review. EXPERT OPINION A potential novel treatment strategy for highly treatment-resistant tumors is the induction of a cellular stress response in cancer cells. The induction of an organelle-related stress response, such as nuclear, ER and mitochondrial stress, leads to a dramatic sensitization of a broad variety of cancer cells of different tumor entities to the apoptotic ligand, TRAIL. Importantly, non-neoplastic cells are not sensitized to TRAIL-mediated cell death through the unfolded protein response in most instances, suggesting that this treatment is not only of high efficacy, but even more less of unwanted toxicity in patients.
Collapse
Affiliation(s)
- Markus David Siegelin
- Department of Pathology & Cell Biology, Columbia University College of Physicians & Surgeons, 630 W. 168th Street, VC14-239, New York, NY 10032, USA.
| |
Collapse
|
39
|
Hsiao CJ, Hsiao SH, Chen WL, Guh JH, Hsiao G, Chan YJ, Lee TH, Chung CL. Pycnidione, a fungus-derived agent, induces cell cycle arrest and apoptosis in A549 human lung cancer cells. Chem Biol Interact 2012; 197:23-30. [PMID: 22450442 DOI: 10.1016/j.cbi.2012.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/03/2012] [Accepted: 03/07/2012] [Indexed: 11/24/2022]
Abstract
Pycnidione, a small tropolone first isolated from the fermented broth of Theissenia rogersii 92031201, exhibits antitumor activities through an undefined mechanism. The present study evaluated the effects and mechanisms of pycnidione on the growth and death of A549 human lung cancer cells. Pycnidione significantly inhibited the proliferation of A549 cells in a concentration-dependent manner, with a 50% growth inhibition (GI(50)) value of approximately 9.3nM at 48h. Pycnidione significantly decreased the expression of cyclins D1 and E and induced G(1)-phase cell cycle arrest and a subsequent increase in the sub-G(1) phase population. Pycnidione also markedly reduced the expression of survivin and activated caspase-8 and -3, increased reactive oxygen species (ROS) generation, caused the collapse of the mitochondrial membrane potential (MMP), and enhanced PAI-1 production, thus triggering apoptosis in the A549 cells. Taken together, pycnidione exerts anti-proliferative effects on human lung cancer cells through the induction of cell cycle arrest and apoptosis. Therefore, testing of its effects in vivo is warranted to evaluate its potential as a therapeutic agent against lung cancer.
Collapse
Affiliation(s)
- Che-Jen Hsiao
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|