1
|
Chen P, Li X, Zhang Y, Wang H, Yu Y, Wu C, Jia L, Zhang J. Oudemansiella radicata polysaccharides alleviated LPS-induced liver damage via regulating TLR4/NF-κB and Bax/Bcl-2 signaling pathways. Int J Biol Macromol 2024; 282:137370. [PMID: 39521227 DOI: 10.1016/j.ijbiomac.2024.137370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The study was aimed to develop natural non-toxic substances to prevent LPS-induced liver damages and its complications. In present work, a pyranose polysaccharide of Oudemansiella radicata polysaccharides (ORP) with typical characteristics of α-type glycosidic linkage was isolated from the O. radicata fruiting body by physico-chemical analysis, and the potential impact against LPS-induced liver damage were performed in mice model. The results demonstrated that ORP showed significant hepatoprotective effects through its potential anti-oxidative, anti-inflammatory and anti-apoptosis activities via regulating the TLR4/NF-κB and Bax/Bcl-2 signaling pathway, independently or synergistically. These findings had established a robust theoretical framework for promoting the comprehensive utilization of ORP as supplements in the development of functional foods or drugs targeting LPS-induced liver damage and its associated complications.
Collapse
Affiliation(s)
- Peiying Chen
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China
| | - Xiaoxu Li
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Houpeng Wang
- Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China
| | - Yunke Yu
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Chao Wu
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, China; Shandong Ocean Agricultural Development Co. LTD, Jining 272600, China.
| |
Collapse
|
2
|
Li C, Li J, Wang YZ. A Review of Gastrodia Elata Bl.: Extraction, Analysis and Application of Functional Food. Crit Rev Anal Chem 2024:1-30. [PMID: 39355975 DOI: 10.1080/10408347.2024.2397994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Gastrodia elata Bl. still widely known as a medicinal plant due to its anti-inflammatory, neuroprotection, cardiovascular protection etc. Additionally, these medical applications cannot be separated from its antioxidant, anti-aging, regulating cell apoptosis ability, which make it have potential as a functional food as well as it has been eaten for more than 2,000 years in China. At present, although Gastrodia elata Bl. has appeared in a large number of studies, much of the research is based on drugs rather than foods. The review of Gastrodia elata Bl. from the perspective of food is one of the necessary steps to promote related development, by reviewing the literature on analytical methods of Gastrodia elata Bl. in recent years, critical components change in the extraction, analytical methods and improvement of food applications, all of aspects of it was summarized. Based on the report about physical and chemical changes in Gastrodia elata Bl. to discover the pathway of Gastrodia elata Bl. functional food development from current to the future.
Collapse
Affiliation(s)
- ChenMing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jieqing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
3
|
Hu Y, Li L, Li Q, Pan S, Feng G, Lan X, Jiao J, Zhong L, Sun L. A biomimetic tri-phasic scaffold with spatiotemporal patterns of gastrodin to regulate hierarchical tissue-based vascular regeneration. Bioact Mater 2024; 38:512-527. [PMID: 38798891 PMCID: PMC11126808 DOI: 10.1016/j.bioactmat.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Clinical use of small-diameter vascular grafts remains a challenging issue in neovessel regeneration in view of thrombosis and intimal hyperplasia. Developing a vascular graft with structure and function similar to those of the native vessels necessitates a major direction of vascular tissue regeneration. Thus, this study sought to design and fabricate a range of tri-phasic scaffolds (0, 2, and 5 wt% gastrodin-polyurethane (PU)) with spatiotemporally defined structure and gastrodin-release for regulating the highly coordinated processes in growth of the intima and media. While the small pores of inner layer guided infiltration of human umbilical vein endothelial cells (HUVECs), the bigger pores of medial layer could offer smooth muscle cell (SMC)-friendly habitat, and external fibers conferred adequate mechanical properties. Correspondingly, spatial distribution and differential regulation of key proteins in HUVECs and SMCs were mediated by hierarchical release of gastrodin, of which rapid release in inner layer elicited enhanced HUVEC proliferation and migration against those of the SMC via activated endothelial nitric oxide synthase (eNOS) and heat shock protein 70 (HSP70) signal. Of note, superior anti-coagulation was reflected in 2 wt% gastrodin-PU ex vivo extracorporeal blood circulation experiment. After in vivo implantation for 12 weeks, there was no formation of obvious thrombosis and intimal hyperplasia in 2 wt% gastrodin-PU. The scaffold maintained high patency and improved vascular remodeling, including the formation of thin endothelialization in lumen and dense extracellular matrix deposition in medial layer. Taken together, the results demonstrate the positive function of hierarchical releasing system that responded to tri-phasic structure, which not only suppressed intimal thickening but also tightly controlled tissue regeneration.
Collapse
Affiliation(s)
- Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650101, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shilin Pan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guangli Feng
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Xiaoqian Lan
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lianmei Zhong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lin Sun
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650101, China
| |
Collapse
|
4
|
Tang Z, Peng Y, Jiang Y, Wang L, Guo M, Chen Z, Luo C, Zhang T, Xiao Y, Ni R, Qi X. Gastrodin ameliorates synaptic impairment, mitochondrial dysfunction and oxidative stress in N2a/APP cells. Biochem Biophys Res Commun 2024; 719:150127. [PMID: 38761634 DOI: 10.1016/j.bbrc.2024.150127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease is characterized by abnormal β-amyloid and tau accumulation, mitochondrial dysfunction, oxidative stress, and synaptic dysfunction. Here, we aimed to assess the mechanisms and signalling pathways in the neuroprotective effect of gastrodin, a phenolic glycoside, on murine neuroblastoma N2a cells expressing human Swedish mutant APP (N2a/APP). We found that gastrodin increased the levels of presynaptic-SNAP, synaptophysin, and postsynaptic-PSD95 and reduced phospho-tau Ser396, APP and Aβ1-42 levels in N2a/APP cells. Gastrodin treatment reduced reactive oxygen species generation, lipid peroxidation, mitochondrial fragmentation and DNA oxidation; restored mitochondrial membrane potential and intracellular ATP production. Upregulated phospho-GSK-3β and reduced phospho-ERK and phospho-JNK were involved in the protective effect of gastrodin. In conclusion, we demonstrated the neuroprotective effect of gastrodin in the N2a/APP cell line by ameliorating the impairment on synaptic and mitochondrial function, reducing tau phosphorylation, Aβ1-42 levels as well as reactive oxygen species generation. These results provide new mechanistic insights into the potential effect of gastrodin in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yi Jiang
- Department of Pathology, Affiliated Hospital of Traditional Chinese Medicine of Guangzhou Medical University, Guangzhou, China
| | - Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Min Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Chao Luo
- Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
El Menyiy N, Elouafy Y, Moubachir R, Abdnim R, Benali T, Taha D, Khalid A, Abdalla AN, Hamza SMA, Elhadi Ibrahim S, El-Shazly M, Zengin G, Bouyahya A. Chemistry, Biological Activities, and Pharmacological Properties of Gastrodin: Mechanism Insights. Chem Biodivers 2024; 21:e202400402. [PMID: 38573028 DOI: 10.1002/cbdv.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Gastrodin, a bioactive compound derived from the rhizome of the orchid Gastrodia elata, exhibits a diverse range of biological activities. With documented neuroprotective, anti-inflammatory, antioxidant, anti-apoptotic, and anti-tumor effects, gastrodin stands out as a multifaceted therapeutic agent. Notably, it has demonstrated efficacy in protecting against neuronal damage and enhancing cognitive function in animal models of Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Additionally, gastrodin showcases immunomodulatory effects by mitigating inflammation and suppressing the expression of inflammatory cytokines. Its cytotoxic activity involves the inhibition of angiogenesis, suppression of tumor growth, and induction of apoptosis. This comprehensive review seeks to elucidate the myriad potential effects of Gastrodin, delving into the intricate molecular mechanisms underpinning its pharmacological properties. The findings underscore the therapeutic potential of gastrodin in addressing various conditions linked to neuroinflammation and cancer.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, 34025, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat, BP 1014, Morocco
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, 11201, Meknes, Marocco
| | - Rhizlan Abdnim
- Laboratoire de bioressources, biotechnologie, ethnopharmacologie et santé, Département de biologie, Faculté des sciences, Université Mohamed premier, Boulevard Mohamed VI; BP:717, 60000, Oujda, Marocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi, 46030, Morocco
| | - Douae Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Rabat, 10106, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Unit, Health Research Cener, Jazan University, P.O. Box: 114, Jazan, 11111, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, 11111, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Siddiqa M A Hamza
- Department of Pathology, College of Medicine, Umm Alqura University, 24832, Alqunfudah, Saudi Arabia
| | - Salma Elhadi Ibrahim
- Department of Physiology, College of Medicine, Umm Alqura University, 24832, Alqunfudah, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
6
|
Zuo HJ, Wang PX, Ren XQ, Shi HL, Shi JS, Guo T, Wan C, Li JJ. Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia. Mol Neurobiol 2024; 61:2728-2744. [PMID: 37930585 DOI: 10.1007/s12035-023-03743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Activated microglia and their mediated inflammatory responses play an important role in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Therefore, regulating microglia activation is considered a potential therapeutic strategy. The neuroprotective effects of gastrodin were evaluated in HIBD model mice, and in oxygen glucose deprivation (OGD)-treated and lipopolysaccharide (LPS)activated BV-2 microglia cells. The potential molecular mechanism was investigated using western blotting, immunofluorescence labeling, quantitative realtime reverse transcriptase polymerase chain reaction, and flow cytometry. Herein, we found that PI3K/AKT signaling can regulate Sirt3 in activated microglia, but not reciprocally. And gastrodin exerts anti-inflammatory and antiapoptotic effects through the PI3K/AKT-Sirt3 signaling pathway. In addition, gastrodin could promote FOXO3a phosphorylation, and inhibit ROS production in LPSactivated BV-2 microglia. Moreover, the level P-FOXO3a decreased significantly in Sirt3-siRNA group. However, there was no significant change after gastrodin and siRNA combination treatment. Notably, gastrodin might also affect the production of ROS in activated microglia by regulating the level of P-FOXO3a via Sirt3. Together, this study highlighted the neuroprotective role of PI3K/AKT-Sirt3 axis in HIBD, and the anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects of gastrodin on HIBD.
Collapse
Affiliation(s)
- Han-Jun Zuo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Peng-Xiang Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Xue-Qi Ren
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Hao-Long Shi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Jin-Sha Shi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Tao Guo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Cheng Wan
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Juan-Juan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China.
| |
Collapse
|
7
|
Li Y, Ji Y, Li F. A review: Mechanism and prospect of gastrodin in prevention and treatment of T2DM and COVID-19. Heliyon 2023; 9:e21218. [PMID: 37954278 PMCID: PMC10637887 DOI: 10.1016/j.heliyon.2023.e21218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrodin is an extract from the dried tuber of the Chinese herb Gastrodia elata (Tian ma), with anti-inflammatory, antioxidant, and antiviral properties. Recent studies have shown that, compared to commonly used diabetes drugs, gastrodin has antidiabetic effects in multiple ways, with characteristics of low cost, high safety, less side effects, protection of β-cell function, relieving insulin resistance and alleviating multiple complications. In addition, it is confirmed that gastrodin can protect the function of lung and other organs, enhance antiviral activity via upregulating the type I interferon (IFN-I), and inhibit angiotensin II (AngII), a key factor in "cytokine storm" caused by COVID-19. Therefore, we reviewed the effect and mechanism of gastrodin on type 2 diabetes mellitus (T2DM), and speculated other potential mechanisms of gastrodin in alleviating insulin resistance from insulin signal pathway, inflammation, mitochondrial and endoplasmic reticulum and its potential in the prevention and treatment of COVID-19. We hope to provide new direction and treatment strategy for basic research and clinical work: gastrodin is considered as a drug for the prevention and treatment of diabetes and COVID-19.
Collapse
Affiliation(s)
- Yi Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Yuanyuan Ji
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Fenglan Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Xiao G, Tang R, Yang N, Chen Y. Review on pharmacological effects of gastrodin. Arch Pharm Res 2023; 46:744-770. [PMID: 37749449 DOI: 10.1007/s12272-023-01463-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Gastrodia elata Blume is a well-known traditional Chinese medicine that is mainly used to treat diseases related to the nervous system, such as stroke, epilepsy, and headache. Gastrodin is the main bioactive component of Gastrodia elata Blume, and studies have shown that it has extensive pharmacological activity. This narrative review aims to systematically review relevant studies on the pharmacological effects of gastrodin to provide researchers with the latest and most useful information. Studies have shown that gastrodin has prominent neuroprotective effects and can treat or improve epilepsy, Tourette syndrome, Alzheimer's disease, Parkinson's disease, emotional disorders, cerebral ischemia-reperfusion injury, cognitive impairment, and neuropathic pain. Gastrodin can also improve myocardial hypertrophy, hypertension, and myocardial ischemia-reperfusion injury. In addition, gastrodin can mitigate liver, kidney, and bone tissue damage caused by oxidative stress and inflammation. In short, gastrodin is expected to treat many diseases, and it is worth investing more effort in research on this compound.
Collapse
Affiliation(s)
- Guirong Xiao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- Department of Pharmacy, Sichuan Hospital of Stomatology, Chengdu, 610031, China.
| | - Nan Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanhua Chen
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
9
|
Cao Y, Wang J, Li X, Liu B, Li C, Sun Y, Zou K. Gastrodin protects porcine sertoli cells from zearalenone-induced abnormal secretion of glial cell line-derived neurotrophic factor through the NOTCH signaling pathway. Reprod Biol 2023; 23:100781. [PMID: 37285694 DOI: 10.1016/j.repbio.2023.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Zearalenone (ZEA) is a prevalent mycotoxin found in moldy diets and is associated with reproductive dysfunction. However, the molecular underpinning of ZEA in impairment of spermatogenesis remains largely unknown. To unveil the toxic mechanism of ZEA, we established a co-culture model using porcine Sertoli cells and porcine spermatogonial stem cells (pSSCs) to investigate the impact of ZEA on these cell types and their associated signaling pathways. Our findings showed that low concentration of ZEA inhibited cell apoptosis, while high concentration induced cell apoptosis. Furthermore, the expression levels of Wilms' tumor 1 (WT1), proliferating cell nuclear antigen (PCNA) and glial cell line-derived neurotrophic factor (GDNF) were significantly decreased in ZEA treatment group, while concurrently upregulating the transcriptional levels of the NOTCH signaling pathway target genes HES1 and HEY1. The addition of the NOTCH signaling pathway inhibitor DAPT (GSI-IX) alleviated the damage to porcine Sertoli cells caused by ZEA. Gastrodin (GAS) significantly increased the expression levels of WT1, PCNA and GDNF, and inhibited the transcription of HES1 and HEY1. GAS also efficiently restored the decreased expression levels of DDX4, PCNA and PGP9.5 in co-cultured pSSCs suggesting its potential in ameliorating the damage caused by ZEA to Sertoli cells and pSSCs. In conclusion, the present study demonstrates that ZEA disrupts pSSCs self-renewal by affecting the function of porcine Sertoli cell, and highlights the protective mechanism of GAS through the regulation of the NOTCH signaling pathway. These findings may offer a novel strategy for alleviating ZEA-induced male reproductive dysfunction in animal production.
Collapse
Affiliation(s)
- Yulu Cao
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Biyun Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongjun Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yijin Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Sun F, Xu K, Zhou J, Zhang W, Duan G, Lei M. Allicin protects against LPS-induced cardiomyocyte injury by activating Nrf2-HO-1 and inhibiting NLRP3 pathways. BMC Cardiovasc Disord 2023; 23:410. [PMID: 37596540 PMCID: PMC10439633 DOI: 10.1186/s12872-023-03442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Allicin is a bioactive compound with potent antioxidative activity and plays a protective effect in myocardial damage and fibrosis. The role and mechanism of Allicin in septic cardiomyopathy are unclear. In this study, we investigated the effects and underlying mechanisms of Allicin on lipopolysaccharide (LPS) induced injury in H9c2 cardiomyocytes. METHODS H9c2 cardiomyocyte cells were pretreated with Allicin (0, 25, 50, and 100 µM) for 2 h, followed by incubation with LPS (10 µg/mL) for 24 h at 37 °C. Cell viability (cell counting kit-8 [CCK-8]), apoptosis (TUNEL staining), oxidative stress (malondialdehyde [MDA] and superoxide dismutase [SOD]), and cytokines release (Interleukin beta [IL-β], Interleukin 6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) were determined. The mRNA and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NLR family pyrin domain containing 3 (NLRP3) signaling pathway molecules were quantified by real-time quantitative PCR (RT-qPCR) and western blot, respectively. RESULTS Allicin had no effect on H9c2 cell viability but attenuated LPS-induced injury, with increased cell viability, reduction in inflammatory cytokines release, apoptosis, reduced MDA, and increased SOD (P < 0.05). Additionally, Allicin increased Nrf2 and cellular HO-1 expressions in LPS-treated H9c2 cells. Moreover, Allicin modulated the NLRP3 inflammasome, increased the cleaved caspase-1 (p10) protein, and attenuated the LPS-induced increase in NLRP3, pro-IL-1β, and IL-1β proteins. Silencing of Nrf2 by siRNA (siNrf2) significantly attenuated Allicin-induced increase in cell viability and HO-1 and decrease in NLRP3 protein in LPS-stimulated H9c2 cells. CONCLUSIONS Allicin protects cardiomyocytes against LPS‑induced injury through activation of Nrf2/HO-1 and inhibition of NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Fangyuan Sun
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No.358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Kailiang Xu
- Department of Critical Care Medicine, The Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Jiayi Zhou
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No.358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Wei Zhang
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No.358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Guihe Duan
- Department of Critical Care Medicine, The Shache County People's Hospital of Xinjiang Kashgar Prefecture, Xinjiang, 844710, China
| | - Ming Lei
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No.358, Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
11
|
Su Z, Yang Y, Chen S, Tang Z, Xu H. The processing methods, phytochemistry and pharmacology of Gastrodia elata Bl.: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116467. [PMID: 37187361 DOI: 10.1016/j.jep.2023.116467] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Bl. (GE) is one of the rare Chinese medicinal materials with a long history of medicine and cooking. It consists of a variety of chemical components, including aromatic compounds, organic acids and esters, steroids, saccharides and their glycosides, etc., which has medicinal and edible value, and is widely used in various diseases, such as infantile convulsions, epilepsy, tetanus, headache, dizziness, limb numbness, rheumatism and arthralgia. It is also commonly used in health care products and cosmetics. Thus, its chemical composition and pharmacological activity have attracted more and more attention from the scientific community. AIM In this review, the processing methods, phytochemistry and pharmacological activities of GE were comprehensively and systematically summarized, which provides a valuable reference for researchers the rational of GE. MATERIALS AND METHODS A comprehensive search of published literature and classic books from 1958 to 2023 was conducted using online bibliographic databases PubMed, Google Scholar, ACS, Science Direct Database, CNKI and others to identify original research related to GE, its processing methods, active ingredients and pharmacological activities. RESULTS GE is traditionally used to treat infantile convulsion, epilepsy, tetanus, headache, dizziness, limb numbness, rheumatism and arthralgia. To date, more than 435 chemical constituents were identified from GE including 276 chemical constituents, 72 volatile components and 87 synthetic compounds, which are the primary bioactive compounds. In addition, there are other biological components, such as organic acids and esters, steroids and adenosines. These extracts have nervous system and cardiovascular and cerebrovascular system activities such as sedative-hypnotic, anticonvulsant, antiepileptic, neuron protection and regeneration, analgesia, antidepressant, antihypertensive, antidiabetic, antiplatelet aggregation, anti-inflammatory, etc. CONCLUSION: This review summarizes the processing methods, chemical composition, pharmacological activities, and molecular mechanism of GE over the last 66 years, which provides a valuable reference for researchers to understand its research status and applications.
Collapse
Affiliation(s)
- Zenghu Su
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuangui Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Shizhong Chen
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongbo Xu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
12
|
Baradaran Rahimi V, Rahmanian Devin P, Askari VR. Boswellia serrata inhibits LPS-induced cardiotoxicity in H9c2 cells: Investigating role of anti-inflammatory and antioxidant effects. Toxicon 2023; 229:107132. [PMID: 37086900 DOI: 10.1016/j.toxicon.2023.107132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
Sepsis-induced myocardial dysfunction is the main reason for mortality and morbidity. Recent investigations have shown that inflammation and oxidative stress play a central role in lipopolysaccharide (LPS)-induced cardiac injury pathophysiology. Gum-resin extracts of Boswellia serrata have been traditionally used in folk medicine for centuries to treat various chronic inflammatory diseases. The present study aimed to investigate the effects of B. serrata pretreatment on LPS-induced cardiac damage in H9c2 cells. The cells were pretreated with various concentrations of B. serrata (5-45 μg/ml) for 24 h and then stimulated with LPS (10 μg/ml) for another 24 h. Afterward, the levels of cell viability, tumor necrosis factor (TNF)-α, prostaglandin (PGE)-2, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, nitric oxide (NO) and glutathione (GSH) were determined using enzyme-linked immunosorbent assay (ELISA), real time-PCR or appropriated biochemical methods. Our results demonstrated that LPS treatment caused a remarkable decrease in cell viability and GSH, and on the contrary, it led to a significant increase in the levels of gene and protein expression of inflammatory markers and NO. However, pretreatment of B. serrata (5, 15, and 45 μg/ml) decreased the levels of TNF-α, PGE2, IL-1β, COX-2, iNOS, IL-6, and NO production, while cell viability and GSH levels were increased. Taken together, our results demonstrated that B. serrata might be a potential therapeutic agent against LPS and endotoxemia-induced cardiac injury, through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Pouria Rahmanian Devin
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Lu R, Wang YG, Qu Y, Wang SX, Peng C, You H, Zhu W, Chen A. Dihydrocaffeic acid improves IL-1β-induced inflammation and cartilage degradation via inhibiting NF-κB and MAPK signalling pathways. Bone Joint Res 2023; 12. [PMID: 37492935 PMCID: PMC10076109 DOI: 10.1302/2046-3758.124.bjr-2022-0384.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Aims Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism. Methods In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage. Results DHCA prevented iNOS and IL-6 from being upregulated by IL-1β. Moreover, the IL-1β-induced upregulation of MMPs could be inhibited by DHCA. Additionally, the administration of DHCA counteracted IL-1β-induced downregulation of aggrecan, collagen II, and SOX9. DHCA protected articular cartilage by blocking the NF-κB and MAPK pathways. Furthermore, DHCA mitigated the destruction of articular cartilage in vivo. Conclusion We present evidence that DHCA alleviates inflammation and cartilage degradation in OA chondrocytes via suppressing the NF-κB and MAPK pathways, indicating that DHCA may be a potential agent for OA treatment. Cite this article: Bone Joint Res 2023;12(4):259–273.
Collapse
Affiliation(s)
- Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Guang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Xi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence should be sent to Anmin Chen. E-mail:
| |
Collapse
|
14
|
Gastrodin alleviates rat chondrocyte senescence and mitochondrial dysfunction through Sirt3. Int Immunopharmacol 2023; 118:110022. [PMID: 36933487 DOI: 10.1016/j.intimp.2023.110022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
Several researchers have focused on understanding the pathogenesis and treatment strategies for osteoarthritis (OA). Gastrodin (GAS) is a potential anti-inflammatory agent. In this study, we constructed an in vitro OA chondrocyte model by treating chondrocytes with IL-1β. Next, we determined the expression of aging-related markers and mitochondrial functions in chondrocytes treated with GAS. Further, we constructed a "drug-component-target-pathway-disease" interactive network and determined the effect of GAS on the functions and pathways related to OA. Finally, we constructed the OA rat model by removing the medial meniscus of the right knee and transection of the anterior cruciate ligament. The results revealed that GAS reduced senescence and improved mitochondrial functions in OA chondrocytes. We used network pharmacology and bioinformatics to screen for key molecules Sirt3 and the PI3K-AKT pathway involved in regulating the effect of GAS on OA. Further studies showed an increase in SIRT3 expression and reduced chondrocyte aging, mitochondrial damage, and the phosphorylation of the PI3K-AKT pathway. The results showed that GAS ameliorates pathological changes related to aging, increases SIRT3 expression, and protects the ECM in the OA rat model. These results were consistent with our bioinformatics results and previous studies. In summary, GAS slows down the aging of chondrocytes and mitochondrial damage in OA by regulating the phosphorylation of the PI3K-AKT pathway via SIRT3.
Collapse
|
15
|
Xue X, Li F, Xu M, Chen B, Zhao Y, Wang M, Li L. Gastrodin ameliorates atherosclerosis by inhibiting foam cells formation and inflammation through down-regulating NF-κB pathway. Nutr Metab (Lond) 2023; 20:9. [PMID: 36759876 PMCID: PMC9912514 DOI: 10.1186/s12986-022-00722-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Gastrodin is an effective polyphenol extracted from Chinese natural herbal Gastrodiae elata Blume, which exhibits antioxidant and anti-inflammatory effects. It has been reported to benefit neurodegenerative diseases, but the effect of Gastrodin on atherosclerosis and the underlying mechanisms remain elusive. The aim of this study is to investigate the function and mechanism of Gastrodin in atherosclerosis. METHODS Atherosclerosis mouse model was established by fed low density lipoprotein receptor-deficient (Ldlr-/-) mice with a high fat diet (HFD, 20% fat and 0.5 cholesterol) for 8 weeks and Gastrodin was administered daily via oral gavage. Plasma lipid levels were measured using commercial kits. En face and aortic sinus lipid accumulation were analyzed with Oil Red O staining. In vitro cell models using foam cell formation model and classical atherosclerosis inflammation model, macrophages were incubated with oxygenized low-density lipoproteins (ox-LDL) or lipopolysaccharide (LPS) in the presence of different concentration of Gastrodin or vehicle solution. Foam cell formation and cellular lipid content were evaluated by Oil Red O staining and intracellular lipids extraction analysis. Gene expression and proteins related to cholesterol influx and efflux were examined by quantitative reverse transcription PCR (RT-qPCR) and western blotting analysis. Furthermore, the effect of Gastrodin on LPS induced macrophage inflammatory responses and NF-κB pathway were evaluated by RT-qPCR and western blotting analysis. RESULTS Gastrodin administration reduced the body weight, plasma lipid levels in Ldlr-/- mice after fed a high fat diet. Oil Red O staining showed Gastrodin-treated mice displayed less atherosclerosis lesion area. Furthermore, Gastrodin treatment significantly ameliorated ox-LDL-induced macrophage-derived foam cells formation through suppressing genes expression related to cholesterol efflux including scavenger receptor class B and ATP-binding cassette transporter A1. Moreover, Gastrodin markedly suppressed pro-inflammatory cytokines secretion and LPS induced inflammatory response in macrophage through downregulating NF-κB pathway. CONCLUSIONS Our study demonstrated that Gastrodin attenuates atherosclerosis by suppressing foam cells formation and LPS-induced inflammatory response and represents a novel therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaofei Xue
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Fulei Li
- grid.412633.10000 0004 1799 0733Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengke Xu
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Bowen Chen
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Yanyan Zhao
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Mengyu Wang
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Xie S, Min K, Li H, Wang Y, Liu M, Ma M, Zhou D, Tu H, Chen B. pH as a Key Factor for the Quality Assurance of the Preparation of Gastrodiae Rhizoma Formula Granules. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228091. [PMID: 36432193 PMCID: PMC9699468 DOI: 10.3390/molecules27228091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Gastrodiae rhizoma (GR) formula granules and preparations have been used as a popular traditional Chinese medicine for clinical treatment since they have good pharmacological activity to treat nervous system diseases. Gastrodin and parishins have been the main active components in aqueous extracts for GR formula granules, but their pharmacological activities and metabolism are different. For quality control of the extracts, the extraction conditions should be investigated to accurately control the contents of two kinds of components. In this paper, the transfer rate of six index components (including gastrodin, p-hydroxybenzyl alcohol, parishin A, parishin B, parishin C, and parishin E) obtained by HPLC were used as indicators to investigate the effect of pH on the GR extraction process. The results demonstrated that pH is a key factor for preventing transforming parishins into gastrodin and maintaining high content of parishins in the extracts. It can be concluded that the weak acid environment could improve the transfer rate of parishins, thus ensuring the gastrodin and parishins consistency between GR raw materials and its aqueous extracts. Therefore, pH is an essential condition for accurate quality control of the extracts.
Collapse
Affiliation(s)
- Shuting Xie
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ke Min
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hai Li
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ying Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Mincong Liu
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Desheng Zhou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
- Correspondence: (D.Z.); (H.T.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| | - Haijun Tu
- College of Biology, Hunan University, Changsha 410082, China
- Correspondence: (D.Z.); (H.T.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Correspondence: (D.Z.); (H.T.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| |
Collapse
|
17
|
Dong Z, Yang L, Jiao J, Jiang Y, Li H, Yin G, Yang P, Sun L. Aspirin in combination with gastrodin protects cardiac function and mitigates gastric mucosal injury in response to myocardial ischemia/reperfusion. Front Pharmacol 2022; 13:995102. [PMID: 36238560 PMCID: PMC9553090 DOI: 10.3389/fphar.2022.995102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury after percutaneous coronary intervention (PCI) is common in acute myocardial infarction. Aspirin is commonly prescribed as anti-thrombotic therapy with coronary heart disease (CHD). However, long-term use of aspirin causes severe gastric mucosal damage. Gastrodin is a Chinese natural medicine with anti-inflammatory and anti-oxidative properties. In this study, we investigated the effects of combined therapy with aspirin and gastrodin on the myocardial and gastric mucosal injury in response to myocardial I/R injury and underlying mechanisms using the Sprague-Dawley (SD) rat model. Our results demonstrated that myocardial I/R caused significant cardiac dysfunction and gastric mucosal damage. Administration of aspirin led to significantly reduce myocardial infarction size and myocardial enzyme release, as well as significantly improved cardiac function through exerting anti-inflammatory effects. However, aspirin exacerbated gastric mucosal damage by increasing the levels of inflammatory mediators and endothelin (ET) while reducing prostaglandin E2 (PGE2) levels. The combined treatment with aspirin and gastrodin not only significantly protected gastric mucosa by normalizing the expression levels of the inflammatory factors, ET and PGE2, but also significantly reduced myocardial infarction size and improved cardiac function by inhibiting inflammation in response to I/R. The combination therapy also dramatically down-regulated the levels of pyroptosis-related proteins in the myocardium and gastric mucosa. The combination therapy showed obviously reduced level of thromboxane B2 (TXB2), which was simultaneously accompanied with increased levels of the tissue plasminogen activator (t-PA). This suggested that gastrodin did not inhibit the anti-thrombotic function of aspirin. Accordingly, aspirin in combination with gasrtodin protected the structural and functional integrity of the heart and stomach by suppressing pyroptosis and inflammation. Therefore, combination of aspirin and gastrodin is a promising treatment for cardiac dysfunction and gastric mucosa injury after myocardial I/R.
Collapse
Affiliation(s)
- Zhiwu Dong
- Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jianlin Jiao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Yongliang Jiang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Hao Li
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Gaosheng Yin
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Ping Yang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Ping Yang, ; Lin Sun,
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Ping Yang, ; Lin Sun,
| |
Collapse
|
18
|
Duan Z, Xie H, Yu S, Wang S, Yang H. Piperine Derived from Piper nigrum L. Inhibits LPS-Induced Inflammatory through the MAPK and NF-κB Signalling Pathways in RAW264.7 Cells. Foods 2022; 11:foods11192990. [PMID: 36230067 PMCID: PMC9563280 DOI: 10.3390/foods11192990] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/28/2022] Open
Abstract
Piperine, an important natural product, has a good anti-inflammatory effect. However, few researchers have studied its mechanism in these pathways. The objective of this research was to evaluate the molecular mechanism underlying the anti-inflammatory responses of piperine in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The purification and characterization of piperine from Piper nigrum L. were determined by HPLC, UPLC-Q-TOF-MS and 1H NMR. Then, the anti-inflammatory activity was evaluated by a reagent test kit, ELISA kits, RT-PCR and Western blot experiments. The results suggested that piperine (90.65 ± 0.46% purity) at a concentration of 10–20 mg/L attenuated the production of NO and ROS, downregulated the protein and mRNA expression levels of TNF-α, IL-1β and IL-6, and upregulated the protein and mRNA transcription levels of IL-10. Meanwhile, the Western blot results indicated that piperine could inhibit the phosphorylation levels of the ERK, JNK, p38 and p65 proteins. Our findings suggest that piperine is a potential anti-inflammatory substance, whose molecular mechanism may be to regulate the key factors of the NF-κB and MAPK signalling pathways.
Collapse
Affiliation(s)
- Zhouwei Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Hui Xie
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Shasha Yu
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Shiping Wang
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
19
|
Gastrodin Alleviates Acetaminophen-Induced Liver Injury in a Mouse Model Through Inhibiting MAPK and Enhancing Nrf2 Pathways. Inflammation 2022; 45:1450-1462. [PMID: 35474551 DOI: 10.1007/s10753-021-01557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
Gastrodin is a major active phenolic glycoside extract from Gastrodia elata, an important herb used in traditional medicine. Previous research has reported that gastrodin possesses anti-inflammatory and anti-oxidant properties. Therefore, we aimed to investigate its hepatoprotective effects and mechanisms on acetaminophen (APAP)-induced liver injury in a mouse model. Mice included in this study were intraperitoneally administered with a hepatotoxic APAP dose (300 mg/kg). At 30 min after APAP administration, gastrodin was intraperitoneally injected at concentrations of 0, 15, 30, and 45 mg/kg. Then, all mice were sacrificed at 16 h after APAP injection for further analysis. The results showed that gastrodin treatment ameliorated acute liver injury caused by APAP, as indicated by serum alanine aminotransferase level, hepatic myeloperoxidase activity, and cytokine (TNF-α, IL-1β, and IL-6) production. It also significantly decreased hepatic malondialdehyde activity but increased superoxide dismutase activity. In addition, gastrodin decreased ERK/JNK MAPK expression but promoted Nrf2 expression. These results demonstrated that gastrodin may be a potential therapeutic target for the prevention of APAP-induced hepatotoxicity via amelioration of the inflammatory response and oxidative stress, inhibition of ERK/JNK MAPK signaling pathways, and activation of Nrf2 expression levels.
Collapse
|
20
|
Zhang L, Wen K, Zhang Z, Ma C, Zheng N. 3,4-Dihydroxyphenylethanol ameliorates lipopolysaccharide-induced septic cardiac injury in a murine model. Open Life Sci 2022; 16:1313-1320. [PMID: 35005242 PMCID: PMC8691377 DOI: 10.1515/biol-2021-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
3,4-Dihydroxyphenylethanol (DOPET) is a polyphenol found in olive oil. The present study evaluated the protective role of DOPET on LPS provoked septic cardiac injury in a murine model. Four groups were used in the study (n = 3): control, LPS, DOPET alone, and DOPET + LPS. LPS (15 mg/kg; i.p.); they were used to induce cardiac sepsis. The cardiac markers like LDH, CK-MB, and troponin-T, as well as inflammatory cytokines like TNF-α and IL-6 were measured in the serum. The antioxidants and oxidative stress parameters were measured in cardiac tissues. RT-PCR and western blot methods were done to evaluate the expression of inflammatory mediators and apoptotic markers. DOPET significantly decreased the cardiac markers (LDH, CK-MB, and troponin-T) and TNF-α and IL-6 level in the serum. DOPET effectively reduced the levels of MDA and NO in LPS intoxicated rats. DOPET also increased the levels of antioxidants like SOD, CAT, GPx, and GSH in LPS intoxicated rats. The mRNA levels of TNF-α, IL-6, and NF-κB were significantly downregulated by DOPET in cardiac tissues of LPS rats. The protein expression of Bcl-2 was upregulated, and Bax and caspase-3 were downregulated by DOPET. DOPET effectively attenuates LPS-induced cardiac dysfunction through its antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Kun Wen
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Zhiqiang Zhang
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Chengen Ma
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Ni Zheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong Province, 250021, China
| |
Collapse
|
21
|
WANG X, YANG J, LIU H, LIU J, WANG L. Mechanism of Baicalein in the treatment of arthritis by regulating JNK/ERK/p38MAPK and PI3K/Akt signaling pathways. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaobo WANG
- Wendeng Orthopedic and Traumatic Hospital, China
| | - Jing YANG
- Wendeng Orthopedic and Traumatic Hospital, China
| | | | | | | |
Collapse
|
22
|
Liu SB, Yang ST. Cardiovascular protective properties of gastrodin. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.340558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Qi Z, Wang R, Liao R, Xue S, Wang Y. Neferine Ameliorates Sepsis-Induced Myocardial Dysfunction Through Anti-Apoptotic and Antioxidative Effects by Regulating the PI3K/AKT/mTOR Signaling Pathway. Front Pharmacol 2021; 12:706251. [PMID: 34366860 PMCID: PMC8344844 DOI: 10.3389/fphar.2021.706251] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Septic cardiomyopathy is a common complication of severe sepsis, which is one of the leading causes of death in intensive care units. Therefore, finding an effective therapy target is urgent. Neferine is an alkaloid extracted from the green embryos of mature seeds of Nelumbo nucifera Gaertn., which has been reported to exhibit various biological activities and pharmacological properties. This study aims to explore the protective effects of neferine against lipopolysaccharide (LPS)-induced myocardial dysfunction and its mechanisms. The LPS-induced cardiac dysfunction mouse model was employed to investigate the protective effects of neferine. In this study, we demonstrated that neferine remarkably improved cardiac function and survival rate and ameliorated morphological damage to heart tissue in LPS-induced mice. Neferine also improved cell viability and mitochondrial function and reduced cell apoptosis and the production of reactive oxygen species in LPS-treated H9c2 cells. In addition, neferine significantly upregulated Bcl-2 expression and suppressed cleaved caspase 3 activity in LPS-induced mouse heart tissue and H9c2 cells. Furthermore, neferine also upregulated the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) signaling pathway in vivo and in vitro. Conversely, LY294002 (a PI3K inhibitor) reversed the protective effect of neferine in LPS-induced H9c2 cells. Our findings thus demonstrate that neferine ameliorates LPS-induced cardiac dysfunction by activating the PI3K/AKT/mTOR signaling pathway and presents a promising therapeutic agent for the treatment of LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Zhen Qi
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renrong Wang
- Department of Cardiology, Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Rongheng Liao
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Akseh S, Nemati M, Zamani-Gharehchamani E, Rezaie Nezhad Zamani A, Jodati A, Pezeshkian M, Nouri M, Gholizadeh D, Safaie N, Faridvand Y. Amnion membrane proteins attenuate LPS-induced inflammation and apoptosis by inhibiting TLR4/NF-κB pathway and repressing MicroRNA-155 in rat H9c2 cells. Immunopharmacol Immunotoxicol 2021; 43:487-494. [PMID: 34227443 DOI: 10.1080/08923973.2021.1945086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Amnion membrane (AM) has been popular for the treatment of inflammatory disorders due to its cell repairing properties. This current study aims to find the underlying mechanisms of amnion membrane proteins (AMPs) against the pro-inflammatory miRNA, miR-155, miR-146, and anti-apoptotic microRNA, miR-21, in LPS-treated H9c2 cells. METHODS Cell viability and apoptosis were determined by MTT assay and annexin V/PI staining. The production of the cytokines, TNF-α and IL-6 were evaluated by using qPCR and Enzyme-linked immunosorbent assay (ELISA), respectively. In addition, the expression of miRNAs was quantified by qPCR, and also the protein level of TLR4 and NF-kβ was determined with western blotting. RESULTS We found that AMPs ameliorated LPS-induced reduction of cell viability and augment apoptosis in H9c2 cells. AMPs efficiently inhibited cytokine expression (IL-6 and TNF-α) and activity of TLR4/NF-κB pathway in LPS-treated H9c2 cells. Correspondingly, in parallel with the suppression of pro-inflammatory cytokines and apoptosis, AMPs mitigated pro-inflammatory miRNA, miR-155 expression, while, the expression of miR-155 was found to be increased in LPS-treated H9c2 cells. Also, AMPs activated miR-146 expression in H9c2 cells under LPS treatment. Additionally, the elevated expression of miR-21 provoked by LPS was further enhanced by AMPs. CONCLUSIONS In conclusion, AMPs could alleviate LPS-induced cardiomyocytes cells injury via up-regulation of miR-21, miR-146, and suppression of TLR4/NF-κB pathway, which plays a key role in the down-regulation of LPS-mediated miR-155 and inflammatory cytokine expression.
Collapse
Affiliation(s)
- Saeideh Akseh
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Genetics, Islamic Azad University, Ahar, Iran
| | - Maryam Nemati
- Department of Genetic, Islamic Azad University, Tabriz, Iran
| | | | | | - Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Gholizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Lu J, Ma X, Gao WC, Zhang X, Fu Y, Liu Q, Tian L, Qin XD, Yang W, Zheng HY, Zheng CB. Gastrodin Exerts Cardioprotective Action via Inhibition of Insulin-Like Growth Factor Type 2/Insulin-Like Growth Factor Type 2 Receptor Expression in Cardiac Hypertrophy. ACS OMEGA 2021; 6:16763-16774. [PMID: 34250336 PMCID: PMC8264851 DOI: 10.1021/acsomega.1c00797] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
Pathological cardiac hypertrophy is commonly associated with an upregulation of fetal genes, fibrosis, cardiac dysfunction, and heart failure. Previous studies have demonstrated that gastrodin (GAS) exerts cardioprotective action in the treatment of cardiac hypertrophy. However, the mechanism by which GAS protects against cardiac hypertrophy is yet to be elucidated. A mouse model of myocardial hypertrophy was established using an angiotensin II (Ang II) induction. GAS (5 or 50 mg/kg/d) was orally administered every day starting 7 days prior to the Ang II infusion combined with sham-operated controls. Heart samples from each group were collected for RNA sequencing. Using bioinformatics analysis, the key differentially expressed genes (DEGs) that are involved in reversing cardiac function were identified. Through bioinformatics analysis, the key DEGs that are involved in GAS's inhibition of Ang II-induced abnormal gene expression within the heart were identified. This was further validated using quantitative real-time PCR and Western blotting in neonatal rat cardiomyocytes (NRCMs). Oral administration of GAS significantly suppressed the Ang II-induced increase in heart size and heart weight to body weight. Furthermore, pretreatment of the NRCMs with GAS led to a dose-dependent inhibition of Ang II-induced increases in Nppb mRNA expression. We identified 620 upregulated and 87 downregulated Ang II-induced DEGs II, among which the expression patterns of 58 and 146 genes were inverted by low-dose and high-dose GAS, respectively. These inverted DEGs were found to be mainly enriched in the biological processes of regulation of Ras protein signal transduction, heart contraction, covalent chromatin modification, glucose metabolism, and positive regulation of cell cycle. Among them, the insulin-like growth factor type 2 (Igf2) gene, which was found to be highly reversed and downregulated by GAS, served as a core gene linking energy metabolism, immune regulation, and systemic development. Subsequent functional verification demonstrated that IGF2, and its receptor IGF2R, is one of the targets of GAS that helps protect against cardiac hypertrophy. Taken together, we have identified, for the first time, IGF2/IGF2R as a potential target influenced by GAS in the prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Jun Lu
- Department
of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Xin Ma
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
- Key
Laboratory of Animal Models and Human Diseases Mechanisms of Chinese
Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen-Cong Gao
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
- Key
Laboratory of Animal Models and Human Diseases Mechanisms of Chinese
Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Zhang
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yuanling Fu
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Qian Liu
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
- Key
Laboratory of Animal Models and Human Diseases Mechanisms of Chinese
Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lixiang Tian
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xiao-Dan Qin
- Department
of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Weimin Yang
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hong-Yi Zheng
- Key
Laboratory of Animal Models and Human Diseases Mechanisms of Chinese
Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chang-Bo Zheng
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
26
|
Gastrodin alleviates inflammatory injury of cardiomyocytes in septic shock mice via inhibiting NLRP3 expression. In Vitro Cell Dev Biol Anim 2021; 57:571-581. [PMID: 34106415 DOI: 10.1007/s11626-021-00593-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
Septic shock leads to myocardial dysfunction and induces inflammation. Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes are involved in inflammation, and gastrodin can inhibit the activity of inflammasomes. Our study aimed to explore the effect of gastrodin against septic shock-induced injury through inhibiting NLRP3. Before establishing septic shock mice model, the mice were injected with gastrodin of various concentrations. The cardiac function of mice was detected by a PowerLab, and the histopathological changes of mouse myocardial tissues were detected by hematoxylin-eosin staining. Apoptosis of cardiomyocytes from mice was detected by TUNEL assay, and IL-1β concentration was detected by enzyme-linked immunosorbent assay. After culture in vitro and treatment with gastrodin, lipopolysaccharide (LPS), and NLRP3 vector, the cell viability and apoptosis of cardiomyocytes were detected by cell counting kit-8 and flow cytometry respectively. Besides, the expressions of NLRP3, Caspase-1, IL-1β, Bax, and Bcl-2 in mouse myocardial tissue or cultured cardiomyocytes were detected by Western blot. Gastrodin improved survival and promoted the recovery of cardiac function in septic shock mice, as it reversed the abnormality of left ventricular function indices in septic shock mice. Besides, gastrodin decreased IL-1β concentration and apoptosis in myocardial tissues of septic shock mice and decreased apoptosis and increased cell viability in LPS-induced cardiomyocytes. In addition, gastrodin downregulated NLRP3, Caspase-1, IL-1β, and Bax expressions and upregulated Bcl-2 expression in myocardial tissues of septic shock mice and LPS-induced cardiomyocytes. NLRP3 overexpression reversed the effect of gastrodin on LPS-induced cardiomyocytes. Gastrodin promoted cardiac function recovery and protected cardiomyocytes against septic shock-induced injury by regulating NLRP3.
Collapse
|
27
|
Tao J, Yang P, Xie L, Pu Y, Guo J, Jiao J, Sun L, Lu D. Gastrodin induces lysosomal biogenesis and autophagy to prevent the formation of foam cells via AMPK-FoxO1-TFEB signalling axis. J Cell Mol Med 2021; 25:5769-5781. [PMID: 33973365 PMCID: PMC8184689 DOI: 10.1111/jcmm.16600] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Abnormal accumulation of lipids and massive deposition of foam cells is a primary event in the pathogenesis of atherosclerosis. Recent studies have demonstrated that autophagy and lysosomal function of atherosclerotic macrophages are impaired, which exacerbates the accumulation of lipid in macrophages and formation of foam cells. Gastrodin, a major active component of Gastrodia elata Bl., has exerted a protective effect on nervous system, but the effect of gastrodin on atherosclerotic vascular disease remains unknown. We aimed to evaluate the effect of gastrodin on autophagy and lysosomal function of foam cells and explored the mechanism underlying gastrodin's effect on the formation of foam cells. In an in vitro foam cell model constructed by incubating macrophages with oxygenized low-density lipoproteins (ox-LDL), our results showed that lysosomal function and autophagy of foam cells were compromised. Gastrodin restored lysosomal function and autophagic activity via the induction of lysosomal biogenesis and autophagy. The restoration of lysosomal function and autophagic activity enhanced cholesterol efflux from macrophages, therefore, reducing lipid accumulation and preventing formation of foam cells. AMP-activated protein kinase (AMPK) was activated by gastrodin to promote phosphorylation and nuclear translocation of forkhead box O1 (FoxO1), subsequently resulting in increased transcription factor EB (TFEB) expression. TFEB was activated by gastrodin to promote lysosomal biogenesis and autophagy. Our study revealed that the effect of gastrodin on foam cell formation and that induction of lysosomal biogenesis and autophagy of foam cells through AMPK-FoxO1-TFEB signalling axis may be a novel therapeutic target of atherosclerosis.
Collapse
Affiliation(s)
- Jun Tao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Ping Yang
- Department of Anatomy, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Liqiu Xie
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuwei Pu
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jiazhi Guo
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Jianlin Jiao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| |
Collapse
|
28
|
Dong Z, Bian L, Wang YL, Sun LM. Gastrodin protects against high glucose-induced cardiomyocyte toxicity via GSK-3β-mediated nuclear translocation of Nrf2. Hum Exp Toxicol 2021; 40:1584-1597. [PMID: 33764184 DOI: 10.1177/09603271211002885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major complications of diabetes that causes mortality and morbidity in diabetic patients. Gastrodin (GSTD) is a bioactive phenolic glucoside component of an ancient Chinese herb Tianma (Gastrodia elata Bl.), which is widely used for cardiovascular and cerebrovascular diseases by ancient Chinese. Up to now, whether GSTD has a beneficial effect on DCM is unclear. Therefore, this study aimed to investigate the effect of GSTD on high glucose-induced injury in H9c2 rat cardiomyocytes and HL-1 mouse cardiomyocytes, and its underlying mechanisms. High glucose (33 mM) treatment caused cardiomyocyte toxicity, oxidative stress and apoptosis in both H9c2 and HL-1 cells. Under both normal (5.5 mM glucose) and high glucose conditions, GSTD showed protective effect against high glucose-induced cytotoxicity and promoted the nuclear translocation of Nrf2 in a concentration and time-dependent manner in H9c2 and HL-1 cells. Knockdown of Nrf2 expression using siRNA specifically targeting Nrf2 attenuated the protective effect of GSTD. Furthermore, GSTD promoted the nuclear translocation of Nrf2 via activating glycogen synthase kinse-3β (GSK-3β) signaling pathway. 4-benzyl, 2-methyl, 1, 2, 4-thiadiazolidine, 3, 5 dione (TDZD-8), an inhibitor of GSK-3β, inhibited the nuclear translocation of Nrf2 induced by GSTD, and attenuated the protective effect of GSTD as Nrf2 knockdown did. In summary, GSTD could protect against high glucose-induced cardiomyocyte toxicity via GSK-3β-mediated nuclear translocation of Nrf2.
Collapse
Affiliation(s)
- Z Dong
- Department of Vasculocardiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - L Bian
- Department of Vasculocardiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Y-L Wang
- Department of Vasculocardiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - L-M Sun
- Department of Vasculocardiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|
29
|
Shyni GL, Renjitha J, B Somappa S, Raghu KG. Zerumin A attenuates the inflammatory responses in LPS-stimulated H9c2 cardiomyoblasts. J Biochem Mol Toxicol 2021; 35:1-11. [PMID: 33755281 DOI: 10.1002/jbt.22777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Zerumin A (ZA) is one of the potential components of Curcuma amada rhizomes, and it has been shown to possess a variety of pharmacological activities. This study deals with the beneficial activity of ZA in lipopolysaccharide (LPS)-stimulated inflammation in H9c2 cardiomyoblasts. Herein, H9c2 cells were preincubated with ZA for 1 h and stimulated with LPS for 24 h. The cells were analyzed for the expression of various pro-inflammatory mediators and signaling molecules. Results showed that the cell viability was significantly improved and reactive oxygen species production was alleviated remarkably with ZA pretreatment. We also found that ZA pretreatment significantly suppressed the upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) protein levels, and nitric oxide (NO) release in LPS-stimulated cells. In addition, ZA significantly ameliorated LPS-elicited overexpression of pro-inflammatory chemokines and cytokines such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor α (TNF- α), interferon-γ (IFN-γ), and interleukin-1 (IL-1) in H9c2 cells, and it upregulated the synthesis of the anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, pretreatment with ZA and the mitogen-activated protein kinases (MAPK) pathway inhibitors also reduced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinases (JNK), and p38. ZA significantly inhibited IkB-a phosphorylation and nuclear factor (NF)-kB p65 subunit translocation into nuclei. Overall data demonstrated that ZA protects cardiomyocytes against LPS injury by inhibiting NF-kB p65 activation via the MAPK signaling pathway in vitro. These findings suggest that ZA may be a promising agent for a detailed study for the prevention or treatment of myocardial dysfunction in sepsis.
Collapse
Affiliation(s)
- G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - J Renjitha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
30
|
Myc is involved in Genistein protecting against LPS-induced myocarditis in vitro through mediating MAPK/JNK signaling pathway. Biosci Rep 2021; 40:225215. [PMID: 32515469 PMCID: PMC7303346 DOI: 10.1042/bsr20194472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/12/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genistein is widely used as a pharmacological compound as well as a food additive. However, the pharmaceutical effects of Genistein on myocarditis and its potential mechanisms have not been studied in detail. METHODS H9c2 cells were continuously stimulated by lipopolysaccharide (LPS) for 12 h to simulate the in vitro model of myocarditis injury. DrugBank, String, and GEO dataset were used to investigate specific genes that interacting with Genistein. KEGG and GO enrichment analysis were employed to explore Myc-related signaling pathways. Biological behaviors of H9c2 cells were observed with the support of cell counting kit-8, MTT and flow cytometry. Expression levels of cytokines including TNF-α and ILs were evaluated by enzyme-linked immunosorbent assay. Western blot was applied to detect the expression of Myc and MAPK pathway related proteins. RESULTS Genistein alleviated the damage of H9c2 cells subjected to LPS from the perspective of elevating cells growth ability, and inhibiting cells apoptosis and inflammatory response. Through bioinformatics analysis, we identified Myc as the potential target of Genistein in myocarditis, and MAPK as the signaling pathway. Significantly, Myc was highly up-regulated in myocarditis samples. More importantly, by performing biological experiments, we discovered that Genistein relieved H9c2 cells apoptosis and inflammatory reaction which caused by LPS stimulation through inhibiting Myc expression. Additionally, the marked augmentation of p-P38 MAPK and p-JNK expression in LPS-induced cardiomyocyte model were blocked by Genistein and si-Myc. CONCLUSIONS Our research revealed that Myc mediated the protective effects of Genistein on H9c2 cells damage caused by LPS partly through modulation of MAPK/JNK signaling pathway.
Collapse
|
31
|
Sun F, Chen G, Yang Y, Lei M. Fatty acid-binding protein 4 silencing protects against lipopolysaccharide-induced cardiomyocyte hypertrophy and apoptosis by inhibiting the Toll-like receptor 4-nuclear factor-κB pathway. J Int Med Res 2021; 49:300060521998233. [PMID: 33719658 PMCID: PMC7952852 DOI: 10.1177/0300060521998233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the effects and potential mechanisms of fatty acid-binding protein 4 (FABP4) in a lipopolysaccharide (LPS)-induced in vitro septic cardiomyopathy model. Methods Rat cardiomyocyte H9c2 cells were transfected with small interfering RNA (siRNA) against FABP4 (siFABP4), then induced with LPS. The following parameters were measured: cell viability, lactate dehydrogenase release, cardiac hypertrophy and related marker expression, apoptosis, inflammatory cytokine release and expression, and the activation of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) pathways. Results LPS increased the mRNA and protein expression of FABP4 in H9c2 cells. FABP4 silencing by siFABP4 significantly inhibited LPS-induced cardiac hypertrophy and reduced the mRNA expression of the myocardial hypertrophy markers atrial natriuretic peptide and brain natriuretic peptide. siFABP4 also attenuated LPS-induced increase in TUNEL-positive apoptotic cells, caspase-3 and caspase-9 activities, and the release and expression of proinflammatory cytokines. Mechanistically, we found that FABP4 silencing inhibited the mRNA and protein expression of TLR4 and suppressed the NF-kappa B signaling pathway, as evidenced by reduced nuclear NF-κB p65 and increased cytoplasmic I-κBα expression in LPS-stimulated H9c2 cells. Conclusion FABP4 silencing reduces LPS-induced cardiomyocyte hypertrophy and apoptosis by down-regulating the TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Fangyuan Sun
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Gang Chen
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yingyao Yang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of TCM, Shanghai, P.R. China
| | - Ming Lei
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
32
|
Sun B, Jiang J, Zhu X, Yang D, Cui Z, Zhang Y, Zhang M, Qian Y, Liu R, Yang W. Protective effects of gastrodin pretreatment on mouse hepatic ischemia-reperfusion occurring through antioxidant and anti-apoptotic mechanisms. Exp Ther Med 2021; 21:471. [PMID: 33767766 DOI: 10.3892/etm.2021.9902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) often occurs following surgical procedures such as liver resection and transplantation. However, despite its clinical prominence, to the best of our knowledge, there remain no effective strategies to treat HIRI. Therefore, the aim of present study was to identify therapeutic agents that can exert beneficial effects against HIRI. The present study found that following hepatic IR modeling in mice, gastrodin (Gas) pretreatment improved the IR outcomes in terms of the serum biochemical indexes (alanine transaminase and aspartate transaminase), tissue biochemical indexes (superoxide dismutase, malondialdehyde and reduced glutathione content) and tissue pathology (H&E staining). In addition, compared with those in the IR + vehicle group, the IR + Gas group showed upregulated expression levels of nuclear erythroid 2-related factor 2, heme oxygenase 1 and Bcl-2 as detected by western blotting and reverse transcription-quantitative PCR. The mRNA and protein expression levels of Bax and caspase-3 were downregulated in the IR + Gas group compared with the IR + vehicle group. Concurrently, no significant differences were observed in the parameters between the Sham + vehicle and the Sham + Gas groups, indicating that Gas pretreatment may not cause liver damage. In conclusion, the findings of the present study revealed that Gas pretreatment exerted a protective effect in HIRI through both antioxidant and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jie Jiang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xinyan Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Dan Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhenyu Cui
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yu Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Minbo Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ruilin Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
33
|
Su ZDZ, Wei XB, Fu YB, Xu J, Wang ZH, Wang Y, Cao JF, Huang JL, Yu DQ. Melatonin alleviates lipopolysaccharide-induced myocardial injury by inhibiting inflammation and pyroptosis in cardiomyocytes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:413. [PMID: 33842634 PMCID: PMC8033388 DOI: 10.21037/atm-20-8196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Melatonin (MT) has been shown to protect against various cardiovascular diseases. However, the effect of MT on lipopolysaccharide (LPS)-induced myocardial injury is poorly understood. This study aims to evaluate the effects of MT on LPS-induced myocardial injury in vitro. Methods H9C2 cells were divided into a control group, MT group, LPS group, and MT + LPS group. The control group was treated with sterile saline solution, the LPS group received 8 µg/mL LPS for 24 h, MT + LPS cells were pretreated with 200 µmol/L MT for 2 h then with 8 µg/mL LPS for 24 h, and the MT group received only 200 µmol/L MT for 2 h. The CCK-8 assay and lactate dehydrogenase (LDH) activity assay were used to analyze cell viability and LDH release, respectively. Intracellular reactive oxygen species (ROS) and the rate of pyroptosis were measured using the fluorescent probe dichloro-dihydro-fluorescein diacetate (DCFH-DA) and propidium iodide (PI) staining, respectively. The cell supernatants were used to measure the levels of inflammatory cytokines, including IL-6, TNF-α, and IL-1β by enzyme-linked immunosorbent assay (ELISA). The protein levels of iNOS, COX-2, NF-κB, p-NF-κB, NLRP3, caspase-1, and GSDMD were detected by western blot. Results MT pretreatment significantly improved LPS-induced myocardial injury by inhibiting inflammation and pyroptosis in H9C2 cells. Moreover, MT inhibited the activation of the NF-κB pathway, and reduced the expression of inflammation-related proteins (iNOS and COX-2), and pyroptosis-related proteins (NLRP3, caspase-1, and GSDMD). Conclusions Our data suggests that MT can alleviate LPS-induced myocardial injury, providing novel insights into the treatment of sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Ze-Da-Zhong Su
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Biao Wei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan-Bin Fu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jia Xu
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhong-Hua Wang
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Feng Cao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Leng Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dan-Qing Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
34
|
Zheng M, Guo J, Li Q, Yang J, Han Y, Yang H, Yu M, Zhong L, Lu D, Li L, Sun L. Syntheses and characterization of anti-thrombotic and anti-oxidative Gastrodin-modified polyurethane for vascular tissue engineering. Bioact Mater 2021; 6:404-419. [PMID: 32995669 PMCID: PMC7486448 DOI: 10.1016/j.bioactmat.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular grafts must avoid negative inflammatory responses and thrombogenesis to prohibit fibrotic deposition immediately upon implantation and promote the regeneration of small diameter blood vessels (<6 mm inner diameter). Here, polyurethane (PU) elastomers incorporating anti-coagulative and anti-inflammatory Gastrodin were fabricated. The films had inter-connected pores with porosities equal to or greater than 86% and pore sizes ranging from 250 to 400 μm. Incorporation of Gastrodin into PU films resulted in desirable mechanical properties, hydrophilicity, swelling ratios and degradation rates without collapse. The released Gastrodin maintained bioactivity over 21 days as assessed by its anti-oxidative capability. The Gastrodin/PU had better anti-coagulation response (less observable BSA, fibrinogen and platelet adhesion/activation and suppressed clotting in whole blood). Red blood cell compatibility, measured by hemolysis, was greatly improved with 2Gastrodin/PU compared to other Gastrodin/PU groups. Notably, Gastrodin/PU upregulated anti-oxidant factors Nrf2 and HO-1 expression in H2O2 treated HUVECs, correlated with decreasing pro-inflammatory cytokines TNF-α and IL-1β in RAW 264.7 cells. Upon implantation in a subcutaneous pocket, PU was encapsulated by an obvious fibrous capsule, concurrent with a large amount of inflammatory cell infiltration, while Gastrodin/PU induced a thinner fibrous capsule, especially 2Gastrodin/PU. Further, enhanced adhesion and proliferation of HUVECs seeded onto films in vitro demonstrated that 2Gastrodin/PU could help cell recruitment, as evidenced by rapid host cell infiltration and substantial blood vessel formation in vivo. These results indicate that 2Gastrodin/PU has the potential to facilitate blood vessel regeneration, thus providing new insight into the development of clinically effective vascular grafts.
Collapse
Affiliation(s)
- Meng Zheng
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jiazhi Guo
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yi Han
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Hongcai Yang
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Mali Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
35
|
Khan HU, Aamir K, Jusuf PR, Sethi G, Sisinthy SP, Ghildyal R, Arya A. Lauric acid ameliorates lipopolysaccharide (LPS)-induced liver inflammation by mediating TLR4/MyD88 pathway in Sprague Dawley (SD) rats. Life Sci 2020; 265:118750. [PMID: 33188836 DOI: 10.1016/j.lfs.2020.118750] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) is an endotoxin that leads to inflammation in many organs, including liver. It binds to pattern recognition receptors, that generally recognise pathogen expressed molecules to transduce signals that result in a multifaceted network of intracellular responses ending up in inflammation. Aim In this study, we used lauric acid (LA), a constituent abundantly found in coconut oil to determine its anti-inflammatory role in LPS-induced liver inflammation in Sprague Dawley (SD) rats. METHOD Male SD rats were divided into five groups (n = 8), injected with LPS and thereafter treated with LA (50 and 100 mg/kg) or vehicle orally for 14 days. After fourteen days of LA treatment, all the groups were humanely killed to investigate biochemical parameters followed by pro-inflammatory cytokine markers; tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Moreover, liver tissues were harvested for histopathological studies and evaluation of targeted protein expression with western blot and localisation through immunohistochemistry (IHC). RESULTS The study results showed that treatment of LA 50 and 100 mg/kg for 14 days were able to reduce the elevated level of pro-inflammatory cytokines, liver inflammation, and downregulated the expression of TLR4/NF-κB mediating proteins in liver tissues. CONCLUSION These findings suggest that treatment of LA has a protective role against LPS-induced liver inflammation in rats, thus, warrants further in-depth investigation through mechanistic approaches in different study models.
Collapse
Affiliation(s)
- Hidayat Ullah Khan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Khurram Aamir
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Patricia Regina Jusuf
- School of Biosciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sreenivas Patro Sisinthy
- Faculty of Pharmacy and Health Sciences, University of Kuala Lumpur, Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Aditya Arya
- School of Biosciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia; Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
36
|
Liu M, Zhao L, Han L, Li H, Shi Y, Cui J, Wang C, Xu L, Zhong L. Discovery and identification of proangiogenic chemical markers from Gastrodiae Rhizoma based on zebrafish model and metabolomics approach. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:835-845. [PMID: 32495458 DOI: 10.1002/pca.2949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Angiogenesis is closely related to a variety of diseases, and therapies based on angiogenesis are intensely investigated. Studies have shown that the use of Gastrodiae Rhizoma (GR, Gastrodia elata) can benefit the treatment of ischemic cardiovascular diseases and atherosclerosis by stimulating angiogenesis. OBJECTIVE This study tested the angiogenesis effects of a group of chemical markers isolated from GR. MATERIAL AND METHODS Zebrafish model was used to evaluate angiogenesis by setting four groups: blank control group, model group, positive control group and treatment group (0.1, 1, and 100 μg/mL RGP). The Gray correlation analysis (GCA) was implemented to calculate the correlation coefficients of each compound between the peak area in liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) and the bioactivity, the top ten components with the correlation degree > 0.9 were listed. RESULTS AND DISCUSSION The optimum final concentration of GR on proangiogenesis effect was determined to be 100 μg/mL. Ten compounds, including gastrodin, parishin E, stigmasterol, p-hydroxybenzyl alcohol, citric acid, etc., were identified to have high correlation coefficients with proangiogenic activity. Furthermore, the network pharmacologic analysis of these compounds revealed that the compounds systematically regulate the formation of new blood vessels via networked vital targets and signalling pathways. CONCLUSION GR can promote the growth of blood vessels, ten chemical components discovered contribute to this proangiogenesis activity. These chemical markers of GR thus provide a foundation for further studies on medicinal substances and quality evaluation of GR, also providing a scientific basis for modern interpretation of the processing theory of traditional Chinese medicine.
Collapse
Affiliation(s)
- Mengyujie Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haonan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yongping Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jing Cui
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Chenyang Wang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Li Xu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Lihong Zhong
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
37
|
Quantitative determination of multi-class bioactive constituents for quality assessment of ten Anoectochilus, four Goodyera and one Ludisia species in China. CHINESE HERBAL MEDICINES 2020; 12:430-439. [PMID: 36120169 PMCID: PMC9476377 DOI: 10.1016/j.chmed.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
|
38
|
Cheng QQ, Wan YW, Yang WM, Tian MH, Wang YC, He HY, Zhang WD, Liu X. Gastrodin protects H9c2 cardiomyocytes against oxidative injury by ameliorating imbalanced mitochondrial dynamics and mitochondrial dysfunction. Acta Pharmacol Sin 2020; 41:1314-1327. [PMID: 32203078 PMCID: PMC7608121 DOI: 10.1038/s41401-020-0382-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Gastrodin (GAS) is the main bioactive component of Tianma, a traditional Chinese medicine widely used to treat neurological disorders as well as cardio- and cerebrovascular diseases. In the present study, the protective effects of GAS on H9c2 cells against ischemia-reperfusion (IR)-like injury were found to be related to decreasing of oxidative stress. Furthermore, GAS could protect H9c2 cells against oxidative injury induced by H2O2. Pretreatment of GAS at 20, 50, and 100 μM for 4 h significantly ameliorated the decrease in cell viability and increase in apoptosis of H9c2 cells treated with 400 μM H2O2 for 3 h. Furthermore, we showed that H2O2 treatment induced fragmentation of mitochondria and significant reduction in networks, footprint, and tubular length of mitochondria; H2O2 treatment strongly inhibited mitochondrial respiration; H2O2 treatment induced a decrease in the expression of mitochondrial fusion factors Mfn2 and Opa1, and increase in the expression of mitochondrial fission factor Fis1. All these alterations in H2O2-treated H9c2 cells could be ameliorated by GAS pretreatment. Moreover, we revealed that GAS pretreatment enhanced the nuclear translocation of Nrf2 under H2O2 treatment. Knockdown of Nrf2 expression abolished the protective effects of GAS on H2O2-treated H9c2 cells. Our results suggest that GAS may protect H9c2 cardiomycytes against oxidative injury via increasing the nuclear translocation of Nrf2, regulating mitochondrial dynamics, and maintaining the structure and functions of mitochondria.
Collapse
Affiliation(s)
- Qiao-Qiao Cheng
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Wei Wan
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Meng-Hua Tian
- Zhaotong Institute of Tianma, Zhaotong, 657000, China
| | - Yu-Chuan Wang
- Zhaotong Institute of Tianma, Zhaotong, 657000, China
| | - Hai-Yan He
- Zhaotong Institute of Tianma, Zhaotong, 657000, China
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
39
|
Zeng M, Li M, Chen Y, Zhang J, Cao Y, Zhang B, Feng W, Zheng X, Yu Z. A new bisepoxylignan dendranlignan A isolated from Chrysanthemum Flower inhibits the production of inflammatory mediators via the TLR4 pathway in LPS-induced H9c2 cardiomyocytes. Arch Biochem Biophys 2020; 690:108506. [DOI: 10.1016/j.abb.2020.108506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023]
|
40
|
Xu K, Yu L. Neuroprotective activity of different monosaccharide‐modified gastrodin analogs. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kun‐Lun Xu
- School of PharmacyZunyi Medical University Zunyi China
- Zunyi Blood Center Zunyi China
| | - Lan Yu
- School of PharmacyZunyi Medical University Zunyi China
| |
Collapse
|
41
|
Baradaran Rahim V, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacol Rep 2019; 71:1228-1234. [PMID: 31670059 DOI: 10.1016/j.pharep.2019.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sepsis causes organ dysfunctions via elevation of oxidative stress and inflammation. Lipopolysaccharide (LPS) is the major surface molecule of most gram-negative bacteria and routinely used as a sepsis model in investigation studies. Crocin is an active compound of saffron which has different pharmacological properties such as anti-oxidant and anti-inflammatory. In this research, the protective effect of crocin was evaluated against LPS-induced toxicity in the embryonic cardiomyocyte cell line (H9c2). METHODS The cells were pre-treated with different concentration of crocin (10, 20 and 40 μM) for 24 h, and then LPS was added (10 μg/ml) for another 24 h. Afterward, the percentage of cell viability and the levels of inflammatory cytokines (TNF-α, PGE2, IL-1β, and IL-6), gene expression levels (TNF-α, COX-2, IL-1β, IL-6, and iNOS), and the level of nitric oxide (NO) and thiol were measured. RESULTS Our results showed that LPS reduced cell viability, increased the levels of cytokines, gene-expression, nitric oxide, and thiol. Crocin attenuated the LPS-induced toxicity in H9c2 cells via reducing the levels of inflammatory factors (TNF-α, PGE2, IL-1β, and IL-6, p < 0.001), gene expression (TNF-α, COX-2, IL-1β, IL-6, and iNOS, p < 0.001), and NO (p < 0.001), whereas increased the level of thiol content (p < 0.001). CONCLUSION The observed results revealed that crocin has preventive effects on the LPS induced sepsis and its cardiac toxicity in-vitro model. Probably, these findings are related to anti-inflammatory and anti-oxidant properties of crocin. However, performing further animal studies are necessary to support the therapeutic effects of crocin in septic shock cardiac dysfunction.
Collapse
Affiliation(s)
- Vafa Baradaran Rahim
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Khammar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Xi Z, Qiao Y, Wang J, Su H, Bao Z, Li H, Liao X, Zhong X. Gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103. J Cell Mol Med 2019; 24:1451-1459. [PMID: 31769187 PMCID: PMC6991667 DOI: 10.1111/jcmm.14826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
The beneficial function of gastrodin towards many inflammatory diseases has been identified. This study designed to see the influence of gastrodin in a cell model of chronic obstructive pulmonary disease (COPD). MRC-5 cells were treated by LPS, before which gastrodin was administrated. The effects of gastrodin were evaluated by conducting CCK-8, FITC-PI double staining, Western blot, qRT-PCR and ELISA. Besides this, the downstream effector and signalling were studied to decode how gastrodin exerted its function. And dual-luciferase assay was used to detect the targeting link between miR-103 and lipoprotein receptor-related protein 1 (LRP1). LPS induced apoptosis and the release of MCP-1, IL-6 and TNF-α in MRC-5 cells. Pre-treating MRC-5 cells with gastrodin attenuated LPS-induced cell damage. Meanwhile, p38/JNK and NF-κB pathways induced by LPS were repressed by gastrodin. miR-103 expression was elevated by gastrodin. Further, the protective functions of gastrodin were attenuated by miR-103 silencing. And LRP1 was a target of miR-103 and negatively regulated by miR-103. The in vitro data illustrated the protective function of gastrodin in LPS-injured MRC-5 cells. Gastrodin exerted its function possibly by up-regulating miR-103 and modulating p38/JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Zhuona Xi
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yahong Qiao
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jifang Wang
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hongjian Su
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Zhen Bao
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hongyan Li
- Department of Internal Medicine, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Xiaoming Liao
- Department of Integrated Chinese and Western Internal Medicine, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Xiaolan Zhong
- Department of Quality Control, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
43
|
Wang Q, Li Z, Wang D, Yang S, Feng Y. Myocardial protection properties of parishins from the roots of Gastrodia elata Bl. Biomed Pharmacother 2019; 121:109645. [PMID: 31739164 DOI: 10.1016/j.biopha.2019.109645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023] Open
Abstract
Parishins, important constituents of Gastrodia elata (G. elata), are known to exhibit a number of biological and pharmacological properties. However, their role and mechanisms of action in myocardial ischemia are unknown. The present study investigated the potential protective effects and mechanisms of parishins extracted from G. elata on hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes. The results demonstrated that parishins had significant protective effects on myocardial cells with parishins J and B providing greater cardioprotection through down-regulation of the level of cleaved-caspase-3 and cytochrome c in the cytoplasm and Bax, and up-regulation of cytochrome c in the mitochondria and Bcl-2 than induced by the positive control gastrodin. Additional study of the mechanisms of action indicated that the myocardial protection provided by parishin J was due to inhibition of JNK1 phosphorylation levels, down-regulation of c-jun and ATF-2 phosphorylation levels, a decrease in the phosphorylation of 14-3-3 and an increase in its binding to Bax. Therefore, parishin J was revealed to be a promising candidate as a novel treatment for myocardial protection.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China
| | - Zhifeng Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Dongxu Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China
| | - Shinlin Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| |
Collapse
|
44
|
Zhang HS, Liu MF, Ji XY, Jiang CR, Li ZL, OuYang B. Gastrodin combined with rhynchophylline inhibits cerebral ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p. Life Sci 2019; 239:116935. [PMID: 31610203 DOI: 10.1016/j.lfs.2019.116935] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND The protective effects of gastrodin and rhynchophylline in ischaemic injury have been reported. However, the underlying mechanism and the effect of the combination of these two drugs in ischaemic injury remain unclear. Herein, we aimed to explore the effects of the combination of gastrodin and rhynchophylline on ischaemia-induced inflammasome activation as well as the underlying mechanism. METHODS Middle cerebral artery occlusion (MCAO) mice and oxygen glucose deprivation (OGD)-treated BV2 cells were used as in vivo and in vitro models of ischaemia, respectively. Cerebral injury was determined by TTC staining, H&E staining and neurological deficit scores. The effects of the combination of gastrodin and rhynchophylline on inflammasome activation were measured by the MTT assay, Western blotting and ELISA. The expression of miR-21-5p and miR-331-5p was measured by qRT-PCR. The potential binding between miR-21-5p and TXNIP and between miR-331-5p and TRAF6 was analysed with Targetscan and a luciferase assay. RESULTS MCAO-induced tissue infarction, neurological deficits, inflammasome activation, and downregulation of miR-21-5p and miR-331-5p were all mitigated by the combination of gastrodin and rhynchophylline. In OGD-treated BV2 cells, the combination of gastrodin and rhynchophylline also alleviated inflammasome activation and restored the expression of miR-21-5p and miR-331-5p. TXNIP and TRAF6 were confirmed to be targets of miR-21-5p and miR-331-5p, respectively. Moreover, OGD-induced inflammasome activation was attenuated by the overexpression of either miR-331-5p or miR-21-5p and was further attenuated by the overexpression of both. Finally, we demonstrated that a miR-21-5p inhibitor and/or a miR-331-5p inhibitor counteracted the protective effects of gastrodin and/or rhynchophylline. CONCLUSIONS The combination of gastrodin and rhynchophylline exerts neuroprotective effects by preventing ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p.
Collapse
Affiliation(s)
- Heng-Sheng Zhang
- Department of Traditional Chinese Medicine Rehabilitation, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan Province, PR China
| | - Mei-Fang Liu
- Department of Traditional Chinese Medicine Rehabilitation, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan Province, PR China
| | - Xiong-Ying Ji
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan Province, PR China
| | - Chang-Rong Jiang
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan Province, PR China
| | - Zi-Li Li
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan Province, PR China
| | - Bo OuYang
- Department of Traditional Chinese Medicine Rehabilitation, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, Hunan Province, PR China.
| |
Collapse
|
45
|
Gastrodin ameliorates microvascular reperfusion injury-induced pyroptosis by regulating the NLRP3/caspase-1 pathway. J Physiol Biochem 2019; 75:531-547. [PMID: 31440987 DOI: 10.1007/s13105-019-00702-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Inflammation is a pivotal feature of myocardial reperfusion-induced microvascular injury and dysfunction. However, the molecular mechanisms by which myocardial reperfusion triggered inflammation remain incurable. The NLRP3 inflammasome is a key intracellular sensor that detection of cellular stress to activation of caspase-1, and consequent IL-1β maturation and pyroptotic cell death. Here, we showed that NLRP3 inflammasome played a key role in myocardial reperfusion-induced microvascular injury. We observed NLRP3 inflammasome activation and pyroptosis in both cardiac microvascular endothelial cells and myocardial I/R animal model. Gastrodin, an effective monomeric component extracted from the herb Gastrodia elata BIume, blocked cardiac microvascular endothelial cell pyroptosis via inhibiting NLRP3/caspase-1 pathway. Gastrodin also reduced interleukin-1β (IL-1β) production in vivo and in vitro. Furthermore, gastrodin treatment attenuated infarct size and inflammatory cells infiltration and increased capillary formation. Gastrodin is thus a potential therapeutic for NLRP3-associated inflammatory disease.
Collapse
|
46
|
Sun LJ, Qiao W, Xiao YJ, Cui L, Wang X, Ren WD. Naringin mitigates myocardial strain and the inflammatory response in sepsis-induced myocardial dysfunction through regulation of PI3K/AKT/NF-κB pathway. Int Immunopharmacol 2019; 75:105782. [PMID: 31376623 DOI: 10.1016/j.intimp.2019.105782] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is a manifestation of severe sepsis and is the main cause of increased mortality in sepsis patients. Naringin (Nar) has been reported to possess various biological activities and pharmacological properties. Therefore, the present study was undertaken to evaluate whether Nar can protect rats from the effects of LPS-induced SIMD. SD Rats were pre-treated with Nar (50 and 100 mg/kg) for 7 days before administration of a single dose of LPS (10 mg/kg, i.p.) on the seventh day. We found that Nar treatment markedly improved the global strain and strain rate of longitudinal, circumference, and radial direction (GLS/GLSr, GCS/GCSr, GRS/GRSr) compared to the LPS group. The layer-specific strain decreased gradually from the endocardial layer to epicardial layer, and the most serious damage occurred in the endocardial layer. Moreover, Nar significantly decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and myocardial enzymes (CK, LDH, and AST) induced by LPS and attenuated the inflammation response. Finally, Nar also inhibited NF-κB nuclear translocation and the activity of iNOS in H9c2 cardiomyocytes by activating PI3K/AKT signaling pathway. These results suggest that naringin may possess novel therapeutic potential for protection against LPS-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Li-Juan Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Department of Ultrasound, The First Hospital of Qinhuangdao, Qinhuangdao 066000, PR China
| | - Wei Qiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yang-Jie Xiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Li Cui
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xin Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Wei-Dong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
47
|
Li M, Ye J, Zhao G, Hong G, Hu X, Cao K, Wu Y, Lu Z. Gas6 attenuates lipopolysaccharide‑induced TNF‑α expression and apoptosis in H9C2 cells through NF‑κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Int J Mol Med 2019; 44:982-994. [PMID: 31524235 PMCID: PMC6657963 DOI: 10.3892/ijmm.2019.4275] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/10/2019] [Indexed: 11/06/2022] Open
Abstract
Therapeutic agents used to treat sepsis‑induced cardiac dysfunction are designed to suppress tumor necrosis factor (TNF)‑α release and inhibit cell apoptosis. Exogenous administration of growth arrest‑specific 6 (Gas6) exerts several biological and pharmacological effects; however, the role of Gas6 in sepsis‑induced myocardial dysfunction remains unclear. In this study, H9C2 cardiomyocytes were stimulated with LPS (10 µg/ml) to mimic septic cardiac dysfunction and Gas6 (100 ng/ml) was applied exogenously. Subsequently, mitogen‑activated protein kinase (MAPK) and nuclear factor (NF)‑κB activation, TNF‑α expression, and apoptosis in the presence or absence of TP‑0903 (15 nM) and Wortmannin (3 nM) were evaluated. The morphological alterations of H9C2 cells were visualized by phase‑contrast microscopy. Cell viability was determined using the Cell Counting kit 8 assay and lactate dehydrogenase release, and TNF‑α release was analyzed by ELISA analysis. Cell apoptosis was analyzed by flow cytometry and TUNEL assay. Nuclear morphological alterations were detected by Hoechst staining and caspase‑3 activity was measured using biochemical methods. The expression levels of Bax and Bcl‑2, and the phosphorylation and expression levels of Axl, Akt, IκB‑α, p65, c‑Jun N‑terminal protein kinase (JNK), extracellular signal‑regulated kinase (ERK) and p38 were determined by western blotting. Furthermore, immunofluorescence analysis was performed to visualize translocation of NF‑κB p65. The results demonstrated that Gas6 suppressed TNF‑α release and inhibited cell apoptosis, and attenuated nuclear factor (NF)‑κB and mitogen‑activated protein kinase (MAPK) activation via the Axl/PI3K/Akt pathway. Furthermore, the cardioprotective properties of Gas6 on the suppression of LPS‑induced TNF‑α release and apoptosis were abolished by treatment with TP‑0903 (an Axl inhibitor) and Wortmannin (a PI3K inhibitor). Pretreatment with TP‑0903 and Wortmannin abrogated the effects of Gas6 on phosphorylated‑IκB‑α, IκB‑α, NF‑κB, ERK1/2, JNK and p38 MAPK. These findings suggested that activation of Axl/PI3K/Akt signaling by Gas6 may inhibit LPS‑induced TNF‑α expression and apoptosis, as well as MAPK and NF‑κB activation.
Collapse
Affiliation(s)
- Mengfang Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingjing Ye
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiyi Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kaiqiang Cao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - You Wu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
48
|
Jiao M, Yin K, Zhang T, Wu C, Zhang Y, Zhao X, Wu Q. Effect of the SSeCKS-TRAF6 interaction on gastrodin-mediated protection against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced astrocyte activation and neuronal death. CHEMOSPHERE 2019; 226:678-686. [PMID: 30959452 DOI: 10.1016/j.chemosphere.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The ubiquitous environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to trigger neurotoxicity. In this study, we investigated the protective effects of gastrodin on TCDD-induced neurotoxicity and the underlying molecular mechanisms. The results show that gastrodin decreased cell viability, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release, and inducible nitrix oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) expression in TCDD-treated C6 cells. TCDD stimulated NF-κB signalling activation, demonstrated by increased p-NF-κB expression and translocation of nuclear Factor kappa B (NF-κB) to the nucleus. TCDD did not affect TRAF6 protein expression but enhanced the attenuated the Src-suppressed-C Kinase Substrate (SSeCKS)-tumor necrosis factor receptor-associated factor 6 (TRAF6) interaction, thereby triggering NF-κB signalling activation. Gastrodin inhibited TCDD-induced NF-κB signalling activation by lessening the SSeCKS-TRAF6 interaction in vitro. Gastrodin attenuated SSeCKS-TRAF6 interaction in vivo and protected mice from NF-κB signalling activation following TCDD exposure. Finally, gastrodin blocked the apoptosis of PC12 neuronal cells induced by medium conditioned with TCDD-treated astrocytes. In summary, gastrodin inhibited TCDD-induced NF-κB signalling activation by lessening the SSeCKS-TRAF6 interaction, resulting in attenuated astrocyte activation and subsequent neuronal apoptosis. These findings will contribute to an improved understanding of TCDD-induced neurotoxicity and strategies to antagonise it using gastrodin.
Collapse
Affiliation(s)
- Man Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kaizhi Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Tao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Changyue Wu
- Clinical Medicine, School of Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001, People's Republic of China.
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
49
|
Gastrodin Inhibits Inflammasome Through the STAT3 Signal Pathways in TNA2 Astrocytes and Reactive Astrocytes in Experimentally Induced Cerebral Ischemia in Rats. Neuromolecular Med 2019; 21:275-286. [PMID: 31218587 DOI: 10.1007/s12017-019-08544-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/11/2019] [Indexed: 12/28/2022]
Abstract
This study was aimed to determine Gastrodin (GAS) and its underlying signaling pathway involved in suppression of inflammasome specifically in reactive astrocytes that are featured prominently in different neurological conditions or diseases including cerebral ischemia. For this purpose, TNA2 astrocytes in cultures were exposed to oxygen-glucose-deprivation (OGD) mimicking hypoxic cerebral ischemia. Separately, TNA2 cells were pretreated with GAS prior to OGD exposure. Additionally, Stattic, an inhibitor of STAT3 signaling pathway, was used to ascertain its involvement in regulating inflammasome in astrocytes exposed to OGD. In parallel to the above, adult rats subjected to middle cerebral artery occlusion (MCAO) with or without GAS pretreatment were sacrificed at different time points to determine the effects of GAS on astrocyte inflammasome. TNA2 astrocytes in different treatments as well as reactive astrocytes in MCAO were processed for immunofluorescence labeling and Western blot analysis for various protein markers. In the latter, protein expression levels of p-STAT3, NLRP3, and NLRC4 were markedly increased in TNA2 astrocytes exposed to OGD. Remarkably, the expression levels of these biomarkers were significantly suppressed by GAS. Of note, GAS especially at dose 20 μM inhibited NLRP3 and NLRC4 expression levels most substantially. Moreover, GAS inhibited the downstream proteins caspase-1 and IL-18. Concomitantly, GAS significantly suppressed the expression of STAT3 and NF-κB signaling pathway. It is noteworthy that Stattic at dose 100 μM inhibited STAT3 pathway and NF-κB activation in TNA2 astrocytes, an effect that was shared by GAS. In MCAO, GAS was found to effectively attenuate p-STAT3 immunofluorescence intensity in reactive astrocytes. Arising from the above, it is concluded that GAS is anti-inflammatory as it effectively suppresses inflammasome in OGD-stimulated astrocytes as well as in reactive astrocytes in MCAO via STAT3 and NF-κB signaling expression coupled with decreased expression of caspase-1 and IL-18.
Collapse
|
50
|
Vaspin Prevents Tumor Necrosis Factor-α-Induced Apoptosis in Cardiomyocytes by Promoting Autophagy. J Cardiovasc Pharmacol 2019; 77:257-267. [PMID: 29734265 DOI: 10.1097/fjc.0000000000000562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Visceral adipose tissue-derived serine protease inhibitor (Vaspin) is an adipocytokine that has been shown to exert anti-inflammatory effects and inhibits apoptosis under diabetic conditions. This study was designed to investigate the impact of vaspin on autophagy in tumor necrosis factor (TNF)-α-induced injury in cardiomyocytes and its cardioprotective effects in the pathogenesis of diabetic cardiomyopathy (DCM). H9C2 cells were treated with TNF-α with or without vaspin in vitro. Tumor necrosis factor-α treatment inhibited autophagy and promoted apoptosis in H9C2 cells after stimulating for 24 hours. Pretreatment with vaspin significantly mitigated apoptosis induced by TNF-α partly because of augment effects of vaspin on autophagy as demonstrated by a higher ratio of LC3-II/LC3-I, higher expression of Beclin-1, and increased autophagosomes formation. Furthermore, the AKT agonist IGF-1 significantly reversed the effect of vaspin on autophagy. In vivo DCM model was also developed by treating rats with streptozotocin followed by intraperitoneal injection with vaspin. In DCM rats, upregulation of vaspin reversed cardiac dysfunction, as identified by increased left ventricular ejection fractions and fractional shortening levels, a higher Em/Am ratio, and lower levels of TNF-α, lactate dehydrogenase, creatine kinase, and creatine kinase-myocardial isoenzyme. In conclusion, vaspin attenuated the TNF-α-induced apoptosis by promoting autophagy probably through inhibiting the PI3K/AKT/mTOR pathway and further ameliorated the cardiac dysfunction in DCM rats.
Collapse
|