1
|
Giuffrida E, Platania CBM, Lazzara F, Conti F, Marcantonio N, Drago F, Bucolo C. The Identification of New Pharmacological Targets for the Treatment of Glaucoma: A Network Pharmacology Approach. Pharmaceuticals (Basel) 2024; 17:1333. [PMID: 39458974 PMCID: PMC11509888 DOI: 10.3390/ph17101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration and death of retinal ganglion cells (RGCs), leading to blindness. Current glaucoma interventions reduce intraocular pressure but do not address retinal neurodegeneration. In this effort, to identify new pharmacological targets for glaucoma management, we employed a network pharmacology approach. Methods: We first retrieved transcriptomic data from GEO, an NCBI database, and carried out GEO2R (an interactive web tool aimed at comparing two or more groups of samples in a GEO dataset). The GEO2R statistical analysis aimed at identifying the top differentially expressed genes (DEGs) and used these as input of STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) app within Cytoscape software, which builds networks of proteins starting from input DEGs. Analyses of centrality metrics using Cytoscape were carried out to identify nodes (genes or proteins) involved in network stability. We also employed the web-server software MIRNET 2.0 to build miRNA-target interaction networks for a re-analysis of the GSE105269 dataset, which reports analyses of microRNA expressions. Results: The pharmacological targets, identified in silico through analyses of the centrality metrics carried out with Cytoscape, were rescored based on correlations with entries in the PubMed and clinicaltrials.gov databases. When there was no match (82 out of 135 identified central nodes, in 8 analyzed networks), targets were considered "potential innovative" targets for the treatment of glaucoma, after further validation studies. Conclusions: Several druggable targets, such as GPCRs (e.g., 5-hydroxytryptamine 5A (5-HT5A) and adenosine A2B receptors) and enzymes (e.g., lactate dehydrogenase A or monoamine oxidase B), were found to be rescored as "potential innovative" pharmacological targets for glaucoma treatment.
Collapse
Affiliation(s)
- Erika Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Nicoletta Marcantonio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| |
Collapse
|
2
|
Tan M, Gao S, Ru X, He M, Zhao J, Zheng L. Prediction and Identification of GPCRs Targeting for Drug Repurposing in Osteosarcoma. Front Oncol 2022; 12:828849. [PMID: 35463319 PMCID: PMC9021700 DOI: 10.3389/fonc.2022.828849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Osteosarcoma (OS) is a malignant bone tumor common in children and adolescents. The 5-year survival rate is only 67-69% and there is an urgent need to explore novel drugs effective for the OS. G protein-coupled receptors (GPCRs) are the common drug targets and have been found to be associated with the OS, but have been seldom used in OS. Methods The GPCRs were obtained from GPCRdb, and the GPCRs expression profile of the OS was downloaded from the UCSC Xena platform including clinical data. 10-GPCRs model signatures related to OS risk were identified by risk model analysis with R software. The predictive ability and pathological association of the signatures in OS were explored by bio-informatics analysis. The therapeutic effect of the target was investigated, followed by the investigation of the targeting drug by the colony formation experiment were. Results We screened out 10 representative GPCRs from 50 GPCRs related to OS risk and established a 10-GPCRs prognostic model (with CCR4, HCRTR2, DRD2, HTR1A, GPR158, and GPR3 as protective factors, and HTR1E, OPN3, GRM4, and GPR144 as risk factors). We found that the low-risk group of the model was significantly associated with the higher survival probability, with the area under the curve (AUC) of the ROC greater than 0.9, conforming with the model. Moreover, both risk-score and metastasis were the independent risk factor of the OS, and the risk score was positively associated with the metastatic. Importantly, the CD8 T-cells were more aggregated in the low-risk group, in line with the predict survival rate of the model. Finally, we found that DRD2 was a novel target with approved drugs (cabergoline and bromocriptine), and preliminarily proved the therapeutic effects of the drugs on OS. These novel findings might facilitate the development of OS drugs. Conclusion This study offers a satisfactory 10-GPCRs model signature to predict the OS prognostic, and based on the model signature, candidate targets with approved drugs were provided.
Collapse
Affiliation(s)
- Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shangzhi Gao
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Xiao Ru
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Maolin He
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Jassim AH, Inman DM, Mitchell CH. Crosstalk Between Dysfunctional Mitochondria and Inflammation in Glaucomatous Neurodegeneration. Front Pharmacol 2021; 12:699623. [PMID: 34366851 PMCID: PMC8334009 DOI: 10.3389/fphar.2021.699623] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction and excessive inflammatory responses are both sufficient to induce pathology in age-dependent neurodegenerations. However, emerging evidence indicates crosstalk between damaged mitochondrial and inflammatory signaling can exacerbate issues in chronic neurodegenerations. This review discusses evidence for the interaction between mitochondrial damage and inflammation, with a focus on glaucomatous neurodegeneration, and proposes that positive feedback resulting from this crosstalk drives pathology. Mitochondrial dysfunction exacerbates inflammatory signaling in multiple ways. Damaged mitochondrial DNA is a damage-associated molecular pattern, which activates the NLRP3 inflammasome; priming and activation of the NLRP3 inflammasome, and the resulting liberation of IL-1β and IL-18 via the gasdermin D pore, is a major pathway to enhance inflammatory responses. The rise in reactive oxygen species induced by mitochondrial damage also activates inflammatory pathways, while blockage of Complex enzymes is sufficient to increase inflammatory signaling. Impaired mitophagy contributes to inflammation as the inability to turnover mitochondria in a timely manner increases levels of ROS and damaged mtDNA, with the latter likely to stimulate the cGAS-STING pathway to increase interferon signaling. Mitochondrial associated ER membrane contacts and the mitochondria-associated adaptor molecule MAVS can activate NLRP3 inflammasome signaling. In addition to dysfunctional mitochondria increasing inflammation, the corollary also occurs, with inflammation reducing mitochondrial function and ATP production; the resulting downward spiral accelerates degeneration. Evidence from several preclinical models including the DBA/2J mouse, microbead injection and transient elevation of IOP, in addition to patient data, implicates both mitochondrial damage and inflammation in glaucomatous neurodegeneration. The pressure-dependent hypoxia and the resulting metabolic vulnerability is associated with mitochondrial damage and IL-1β release. Links between mitochondrial dysfunction and inflammation can occur in retinal ganglion cells, microglia cells and astrocytes. In summary, crosstalk between damaged mitochondria and increased inflammatory signaling enhances pathology in glaucomatous neurodegeneration, with implications for other complex age-dependent neurodegenerations like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Assraa Hassan Jassim
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Claire H. Mitchell
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Stark T, Di Bartolomeo M, Di Marco R, Drazanova E, Platania CBM, Iannotti FA, Ruda-Kucerova J, D'Addario C, Kratka L, Pekarik V, Piscitelli F, Babinska Z, Fedotova J, Giurdanella G, Salomone S, Sulcova A, Bucolo C, Wotjak CT, Starcuk Z, Drago F, Mechoulam R, Di Marzo V, Micale V. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem Pharmacol 2020; 177:114004. [PMID: 32360362 DOI: 10.1016/j.bcp.2020.114004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Gestational methylazoxymethanol acetate (MAM) treatment produces offspring with adult phenotype relevant to schizophrenia, including positive- and negative-like symptoms, cognitive deficits, dopaminergic dysfunction, structural and functional abnormalities. Here we show that adult rats prenatally treated with MAM at gestational day 17 display significant increase in dopamine D3 receptor (D3) mRNA expression in prefrontal cortex (PFC), hippocampus and nucleus accumbens, accompanied by increased expression of dopamine D2 receptor (D2) mRNA exclusively in the PFC. Furthermore, a significant change in the blood perfusion at the level of the circle of Willis and hippocampus, paralleled by the enlargement of lateral ventricles, was also detected by magnetic resonance imaging (MRI) techniques. Peripubertal treatment with the non-euphoric phytocannabinoid cannabidiol (30 mg/kg) from postnatal day (PND) 19 to PND 39 was able to reverse in MAM exposed rats: i) the up-regulation of the dopamine D3 receptor mRNA (only partially prevented by haloperidol 0.6 mg/kg/day); and ii) the regional blood flow changes in MAM exposed rats. Molecular modelling predicted that cannabidiol could bind preferentially to dopamine D3 receptor, where it may act as a partial agonist according to conformation of ionic-lock, which is highly conserved in GPCRs. In summary, our results demonstrate that the mRNA expression of both dopamine D2 and D3 receptors is altered in the MAM model; however only the transcript levels of D3 are affected by cannabidiol treatment, likely suggesting that this gene might not only contribute to the schizophrenia symptoms but also represent an unexplored target for the antipsychotic activity of cannabidiol.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Di Marco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladimir Pekarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julia Fedotova
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation; Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology RASci., St. Petersburg, Russian Federation; Lobachevsky State University of Nizhny Novgorod, Institute of Biology and Biomedicine, Nizhny Novgorod, Russian Federation
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alexandra Sulcova
- ICCI - International Cannabis and Cannabinoid Institute, Praha, Czech Republic
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany; Boehringer Ingelheim Pharma GmbH & KO KG, Germany
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval and Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
5
|
Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther 2019; 203:107392. [PMID: 31299315 DOI: 10.1016/j.pharmthera.2019.07.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and DA receptors (DR) have been extensively studied in the central nervous system (CNS), but their role in the periphery is still poorly understood. Here we summarize data on DA and DRs in the eye, cardiovascular system and endocrine pancreas, three districts where DA and DA-related drugs have been studied and the expression of DR documented. In the eye, DA modulates ciliary blood flow and aqueous production, which impacts on intraocular pressure and glaucoma. In the cardiovascular system, DA increases blood pressure and heart activity, mostly through a stimulation of adrenoceptors, and induces vasodilatation in the renal circulation, possibly through D1R stimulation. In pancreatic islets, beta cells store DA and co-release it with insulin. D1R is mainly expressed in beta cells, where it stimulates insulin release, while D2R is expressed in both beta and delta cells (in the latter at higher level), where it inhibits, respectively, insulin and somatostatin release. The formation of D2R-somatostatin receptor 5 heteromers (documented in the CNS), might add complexity to the system. DA may exert both direct autocrine effects on beta cells, and indirect paracrine effects through delta cells and somatostatin. Bromocriptine, an FDA approved drug for diabetes, endowed with both D1R (antagonistic) and D2R (agonistic) actions, may exert complex effects, resulting from the integration of direct effects on beta cells and paracrine effects from delta cells. A full comprehension of peripheral DA signaling deserves further studies that may generate innovative therapeutic drugs to manage conditions such as glaucoma, cardiovascular diseases and diabetes.
Collapse
|
6
|
Wang HY, Tseng PT, Stubbs B, Carvalho AF, Li DJ, Chen TY, Lin PY, Hsueh YT, Chen YZ, Chen YW, Chu CS. The risk of glaucoma and serotonergic antidepressants: A systematic review and meta-analysis. J Affect Disord 2018; 241:63-70. [PMID: 30096594 DOI: 10.1016/j.jad.2018.07.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/26/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of current study was to conduct a systematic review and meta-analysis to explore the relationship between antidepressant use and glaucoma. METHODS Eight major electronic databases were searched from inception until March 19th, 2018 to obtain relevant studies that evaluated associations of antidepressants [including selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs)] treatment and the risk of primary open-angle glaucoma (POAG) or primary angle-closure glaucoma (PACG) as well as intraocular pressure (IOP), and related anterior chamber parameters compared to participants not exposed to antidepressant treatment. A random-effects meta-analysis was conducted. RESULTS Six case-control studies and one cohort study were eligible (N = 801,754). The use of SSRIs was not associated with a higher risk of glaucoma (k = 7, pooled adjusted odds ratio (pAOR) = 0.956, 95% confidence interval (CI) = 0.807 to 1.133, p = 0.604). In addition, IOP was lower in participants exposed to antidepressants (SSRIs and SNRIs) (k = 4, Hedges' g = -0.519, 95% CI = -0.743 to -0.296, p < 0.001). Finally, pupillary diameter was higher in participants exposed to antidepressant treatment (k = 4, Hedges' g = 0.681, 95% CI = 0.462 to 0.900, p < 0.001). LIMITATIONS High heterogeneity of included studies limit the establishment of causal inferences. CONCLUSIONS This meta-analysis indicates that a putative association between the use of SSRIs and a higher risk of glaucoma remains to be proven. However, antidepressant drug treatment may be associated with significantly lower IOP and higher pupillary diameter. The mechanisms underpinning these associations deserve further investigation.
Collapse
Affiliation(s)
- Hung-Yu Wang
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung, Taiwan
| | - Ping-Tao Tseng
- WinShine Clinics in Specialty of Psychiatry, Kaohsiung, Taiwan
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, UK; Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| | - Dian-Jeng Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan; Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, School of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan; Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital
| | - Yu-Te Hsueh
- Min-Eye Ophthalmology Clinics, Kaohsiung, Taiwan
| | - Yu-Zhen Chen
- Min-Eye Ophthalmology Clinics, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res 2018; 65:50-76. [PMID: 29481975 PMCID: PMC6081194 DOI: 10.1016/j.preteyeres.2018.02.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Diseases that affect the eye, including photoreceptor degeneration, diabetic retinopathy, and glaucoma, affect 11.8 million people in the US, resulting in vision loss and blindness. Loss of sight affects patient quality of life and puts an economic burden both on individuals and the greater healthcare system. Despite the urgent need for treatments, few effective options currently exist in the clinic. Here, we review research on promising neuroprotective strategies that promote neuronal survival with the potential to protect against vision loss and retinal cell death. Due to the large number of neuroprotective strategies, we restricted our review to approaches that we had direct experience with in the laboratory. We focus on drugs that target survival pathways, including bile acids like UDCA and TUDCA, steroid hormones like progesterone, therapies that target retinal dopamine, and neurotrophic factors. In addition, we review rehabilitative methods that increase endogenous repair mechanisms, including exercise and electrical stimulation therapies. For each approach, we provide background on the neuroprotective strategy, including history of use in other diseases; describe potential mechanisms of action; review the body of research performed in the retina thus far, both in animals and in humans; and discuss considerations when translating each treatment to the clinic and to the retina, including which therapies show the most promise for each retinal disease. Despite the high incidence of retinal diseases and the complexity of mechanisms involved, several promising neuroprotective treatments provide hope to prevent blindness. We discuss attractive candidates here with the goal of furthering retinal research in critical areas to rapidly translate neuroprotective strategies into the clinic.
Collapse
Affiliation(s)
- Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| |
Collapse
|
8
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
9
|
Bucolo C, Platania CBM, Drago F, Bonfiglio V, Reibaldi M, Avitabile T, Uva M. Novel Therapeutics in Glaucoma Management. Curr Neuropharmacol 2018; 16:978-992. [PMID: 28925883 PMCID: PMC6120119 DOI: 10.2174/1570159x15666170915142727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/26/2017] [Accepted: 09/03/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy characterized by retinal ganglion cell death and alterations of visual field. Elevated intraocular pressure (IOP) is considered the main risk factor of glaucoma, even though other factors cannot be ruled out, such as epigenetic mechanisms. OBJECTIVE An overview of the ultimate promising experimental drugs to manage glaucoma has been provided. RESULTS In particular, we have focused on purinergic ligands, KATP channel activators, gases (nitric oxide, carbon monoxide and hydrogen sulfide), non-glucocorticoid steroidal compounds, neurotrophic factors, PI3K/Akt activators, citicoline, histone deacetylase inhibitors, cannabinoids, dopamine and serotonin receptors ligands, small interference RNA, and Rho kinase inhibitors. CONCLUSIONS The review has been also endowed of a brief chapter on last reports about potential neuroprotective benefits of anti-glaucoma drugs already present in the market.
Collapse
Affiliation(s)
- Claudio Bucolo
- Address correspondence to this author at the Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; Tel: +39 095 4781196;
| | | | | | | | | | | | | |
Collapse
|
10
|
Hugo EA, Cassels BK, Fierro A. Functional roles of T3.37 and S5.46 in the activation mechanism of the dopamine D1 receptor. J Mol Model 2017; 23:142. [PMID: 28361444 DOI: 10.1007/s00894-017-3313-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
Abstract
The activation mechanism of dopamine receptors is unknown. The amino acids S5.42, S5.43, and S5.46 located in helix 5 appear to be crucial, but their specific roles in receptor activation have not been studied. We modeled the D1 dopamine receptor using the crystal structures of the D3 dopamine and β2 adrenergic receptors. Molecular dynamics simulations show that the interaction of dopamine with the D1 receptor leads to the formation of a hydrogen-bond network with its catechol group and helices 3, 5, and 6, including water molecules. The para hydroxyl group of dopamine binds directly to S5.42 and N6.55, the latter also interacting with S5.43. Unexpectedly, S5.46 does not interact directly with the catechol; instead, it interacts through a water molecule with S5.42 and directly with T3.37. The formation of this hydrogen-bond network, part of which was previously observed in docking studies with dopamine agonists, triggers the opening of the E6.30-R3.60 ionic lock associated with the activation of GPCRs. These changes do not occur in the unbonded (apo) receptor or when it is in a complex with the antagonist 3-methoxy-5,6,7,8,9,14-hexahydrodibenz[d,g]azecine. Our results provide valuable insight into the T3.37-S5.46-water-S5.43-ligand interaction, which may be crucial to the activation of the D1 dopamine receptor and should be considered during the design of novel agonists. Graphical Abstract General representation of the relationship between the formation of the HBN and the opening of the R3.50-E6.30 ionic lock.
Collapse
Affiliation(s)
- Estefanía A Hugo
- Department of Chemistry, Faculty of Sciences, University of Chile, Ñuñoa, 7750000, Santiago, Chile.
| | - Bruce K Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Ñuñoa, 7750000, Santiago, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Macul, 7810003, Santiago, Chile.
| |
Collapse
|
11
|
Leggio GM, Bucolo C, Platania CBM, Salomone S, Drago F. Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther 2016; 165:164-77. [DOI: 10.1016/j.pharmthera.2016.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022]
|
12
|
Investigating the structural impact of S311C mutation in DRD2 receptor by molecular dynamics & docking studies. Biochimie 2016; 123:52-64. [DOI: 10.1016/j.biochi.2016.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/16/2016] [Indexed: 01/11/2023]
|
13
|
Overby DR, Clark AF. Animal models of glucocorticoid-induced glaucoma. Exp Eye Res 2015; 141:15-22. [PMID: 26051991 DOI: 10.1016/j.exer.2015.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Glucocorticoid (GC) therapy is widely used to treat a variety of inflammatory diseases and conditions. While unmatched in their anti-inflammatory and immunosuppressive activities, GC therapy is often associated with the significant ocular side effect of GC-induced ocular hypertension (OHT) and iatrogenic open-angle glaucoma. Investigators have generated GC-induced OHT and glaucoma in at least 8 different species besides man. These models mimic many features of this condition in man and provide morphologic and molecular insights into the pathogenesis of GC-OHT. In addition, there are many clinical, morphological, and molecular similarities between GC-induced glaucoma and primary open-angle glaucoma (POAG), making animals models of GC-induced OHT and glaucoma attractive models in which to study specific aspects of POAG.
Collapse
Affiliation(s)
- Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK
| | - Abbot F Clark
- North Texas Eye Research Institute, U. North Texas Health Science Center, Ft. Worth, TX, USA.
| |
Collapse
|
14
|
Khoddami M, Nadri H, Moradi A, Sakhteman A. Homology modeling, molecular dynamic simulation, and docking based binding site analysis of human dopamine (D4) receptor. J Mol Model 2015; 21:36. [DOI: 10.1007/s00894-015-2579-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
|