1
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
2
|
Zhan G, Wei T, Xie H, Xie X, Hu J, Tang H, Cheng Y, Liu H, Li S, Yang G. Autophagy inhibition mediated by trillin promotes apoptosis in hepatocellular carcinoma cells via activation of mTOR/STAT3 signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1575-1587. [PMID: 37676495 DOI: 10.1007/s00210-023-02700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Apoptosis and autophagy have been shown to act cooperatively and antagonistically in self-elimination process. On the one side, apoptosis and autophagy can act as partners to induce cell death in a coordinated or cooperative manner; on the flip side, autophagy acts as an antagonist to block apoptotic cell death by promoting cell survival. Our previous research indicated that trillin could induce apoptosis of PLC/PRF/5 cells, but the effects of trillin on autophagy as well as its functional relationship to apoptosis have not been elucidated. Here, the running study aims to investigate the function and molecular mechanism of trillin on autophagy with hepatocellular carcinoma (HCC) cells. The objective of this study is to investigate the molecular mechanism of trillin on autophagy in HCC cells. Protein levels of autophagy markers beclin1, LC3B, and p62 were detected by western blotting. 6-Hydroxyflavone and stattic were used to test the role of trillin regulation of autophagy via serine threonine kinase (AKT)/extracellular-regulated protein kinases (ERK) 1/2/mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Flow cytometry was used to detect caspase 3 activity and apoptosis in PLC/PRF/5 cells treated with trillin for 24 h with or without rapamycin, stattic, and 6-hydroxyflavone. The protein level of autophagy marker beclin1 was decreased, whilst the protein level of p62 was significantly increased by trillin treatment, indicating trillin treatment led to inhibition of autophagy in HCC cells. Trillin treatment could reduce the protein levels of p-AKT and p-ERK1/2, but enhance the protein levels of mTOR and p-mTOR, suggesting that trillin could inhibit AKT/ERK rather than mTOR. The AKT/ERK activator 6-hydroxyflavone could reverse the loss of AKT and ERK1/2 phosphorylation induced by trillin, implying that trillin impairs autophagy through activated mTOR rather than AKT/ERK. STAT3 and p-STAT3 were significantly upregulated by the trillin treatment with an increase in dose from 0 to 50 μM, suggesting that autophagy inhibition is mediated by trillin via activation of STAT3 signaling. The STAT3 inhibitor stattic significantly reversed the increased STAT3 phosphorylation at tyrosine 705 induced by trillin. The mTOR signaling inhibitor rapamycin reversed the trillin-induced mTOR phosphorylation enhancement but exerted no effects on total mTOR levels, suggesting trillin treatment led to inhibition of autophagy in HCC cells through activating mTOR/STAT3 pathway. Furthermore, caspase 3 activities and the total rate of apoptosis were increased by trillin treatment, which was reversed by rapamycin, stattic, and 6-hydroxyflavone, proving that trillin promotes apoptosis via activation of mTOR/STAT3 signaling. Trillin induced autophagy inhibition and promoted apoptosis in PLC/PRF/5 cells via the activation of mTOR/STAT3 signaling. Trillin has the potential to be a viable therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Guangjie Zhan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, (Hubei Minzu University), Medical School of Hubei MinZu University, Enshi, Hubei, 445000, People's Republic of China
| | - Tiantian Wei
- Suizhou Hospital, Hubei University of Medicine, 441300, Suizhou, Hubei, People's Republic of China
| | - Huichen Xie
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, (Hubei Minzu University), Medical School of Hubei MinZu University, Enshi, Hubei, 445000, People's Republic of China
| | - Xiaoming Xie
- Suizhou Hospital, Hubei University of Medicine, 441300, Suizhou, Hubei, People's Republic of China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Hao Tang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Yating Cheng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Huaifeng Liu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China
| | - Shujing Li
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China.
| | - Guohua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Yan C, Xuan F. Paris saponin VII promotes ferroptosis to inhibit breast cancer via Nrf2/GPX4 axis. Biochem Biophys Res Commun 2024; 697:149524. [PMID: 38252991 DOI: 10.1016/j.bbrc.2024.149524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Breast cancer (BC) is one of the malignancies threatening the woman's health. Our study aims to explore the underlying mechanism behind the anti-tumor function of Paris saponin VII (PS VII) in BC. Xenografting experiment was conducted to monitor the tumor growth. The Ki67 and 4-HNE expression were analyzed via immunohistochemical assay. After different treatments, the cell viability, proliferation, invasion, and migration capacity of BC cells were measured by the CCK-8, colony formation, transwell, and wound healing assays, respectively. The ratio of GSH/GSSG was measured by the GSH/GSSG ratio detection assay kit. The lipid ROS and Fe2+ levels were quantified by flow cytometry analysis. The expressions of TFR1, ACSL4, Nrf2, and GPX4 were measured via western blotting. Compared with the Ctrl group, the tumor volumes, and Ki67 expression were markedly reduced in PS VII groups, and the BC cell viability was decreased by PS VII treatment in a dose-dependent manner. The colony numbers, invasive cells, and migration rates were also significantly decreased by PS VII treatment. Then, the Nrf2 as well as GPX4 expressions were decreased and TFR1 expression was increased by PS VII treatment in vitro and in vivo, while there was no difference in ACSL4 expression between Ctrl and PS VII groups. Moreover, the above effects of PS VII could not be observed in GPX4 knockdown cells. PS VII can promote ferroptosis to inhibit BC via the Nrf2/GPX4 axis, which innovatively suggests the pro-ferroptosis effect and therapeutic potential of PS VII in BC.
Collapse
Affiliation(s)
- Chen Yan
- Anesthesia and Perioperative Medical Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, China.
| | - Fei Xuan
- Anesthesia and Perioperative Medical Center, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, China.
| |
Collapse
|
4
|
Wang J, Ni BY, Wang J, Han L, Ni X, Wang XM, Cao LC, Sun QH, Han XP, Cui HJ. Research progress of Paris polyphylla in the treatment of digestive tract cancers. Discov Oncol 2024; 15:31. [PMID: 38324023 PMCID: PMC10850040 DOI: 10.1007/s12672-024-00882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Cancer has become one of the most important causes of human death. In particular, the 5 year survival rate of patients with digestive tract cancer is low. Although chemotherapy drugs have a certain efficacy, they are highly toxic and prone to chemotherapy resistance. With the advancement of antitumor research, many natural drugs have gradually entered basic clinical research. They have low toxicity, few adverse reactions, and play an important synergistic role in the combined targeted therapy of radiotherapy and chemotherapy. A large number of studies have shown that the active components of Paris polyphylla (PPA), a common natural medicinal plant, can play an antitumor role in a variety of digestive tract cancers. In this paper, the main components of PPA such as polyphyllin, C21 steroids, sterols, and flavonoids, amongst others, are introduced, and the mechanisms of action and research progress of PPA and its active components in the treatment of various digestive tract cancers are reviewed and summarized. The main components of PPA have been thoroughly explored to provide more detailed references and innovative ideas for the further development and utilization of similar natural antitumor drugs.
Collapse
Affiliation(s)
- Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Bao-Yi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Chaoyang, China
| | - Lei Han
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin Ni
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin-Miao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu-Chang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian-Hui Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Pu Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu-Jun Cui
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
5
|
Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, Farzaei MH, Mojarrab M. Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites 2023; 13:metabo13030323. [PMID: 36984763 PMCID: PMC10052344 DOI: 10.3390/metabo13030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Syed Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| |
Collapse
|
6
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
7
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
8
|
Xiang YC, Peng P, Liu XW, Jin X, Shen J, Zhang T, Zhang L, Wan F, Ren YL, Yu QQ, Zhao HZ, Si Y, Liu Y. Paris saponin VII, a Hippo pathway activator, induces autophagy and exhibits therapeutic potential against human breast cancer cells. Acta Pharmacol Sin 2022; 43:1568-1580. [PMID: 34522004 PMCID: PMC9159991 DOI: 10.1038/s41401-021-00755-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of the Hippo signaling pathway seen in many types of cancer is usually associated with a poor prognosis. Paris saponin VII (PSVII) is a steroid saponin isolated from traditional Chinese herbs with therapeutic action against various human cancers. In this study we investigated the effects of PSVII on human breast cancer (BC) cells and its anticancer mechanisms. We showed that PSVII concentration-dependently inhibited the proliferation of MDA-MB-231, MDA-MB-436 and MCF-7 BC cell lines with IC50 values of 3.16, 3.45, and 2.86 μM, respectively, and suppressed their colony formation. PSVII (1.2-1.8 μM) induced caspase-dependent apoptosis in the BC cell lines. PSVII treatment also induced autophagy and promoted autophagic flux in the BC cell lines. PSVII treatment decreased the expression and nuclear translocation of Yes-associated protein (YAP), a downstream transcriptional effector in the Hippo signaling pathway; overexpression of YAP markedly attenuated PSVII-induced autophagy. PSVII-induced, YAP-mediated autophagy was associated with increased active form of LATS1, an upstream effector of YAP. The activation of LATS1 was involved the participation of multiple proteins (including MST2, MOB1, and LATS1 itself) in an MST2-dependent sequential activation cascade. We further revealed that PSVII promoted the binding of LATS1 with MST2 and MOB1, and activated LATS1 in the BC cell lines. Molecular docking showed that PSVII directly bound to the MST2-MOB1-LATS1 ternary complex. Microscale thermophoresis analysis and drug affinity responsive targeting stability assay confirmed the high affinity between PSVII and the MST2-MOB1-LATS1 ternary complex. In mice bearing MDA-MB-231 cell xenograft, administration of PSVII (1.5 mg/kg, ip, 4 times/week, for 4 weeks) significantly suppressed the tumor growth with increased pLATS1, LC3-II and Beclin 1 levels and decreased YAP, p62 and Ki67 levels in the tumor tissue. Overall, this study demonstrates that PSVII is a novel and direct Hippo activator that has great potential in the treatment of BC.
Collapse
Affiliation(s)
- Yu-chen Xiang
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Peng Peng
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Xue-wen Liu
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Xin Jin
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Jie Shen
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Te Zhang
- grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Liang Zhang
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Fang Wan
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Yu-liang Ren
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Qing-qing Yu
- grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Hu-zi Zhao
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Yuan Si
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| | - Ying Liu
- grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000 China ,grid.443573.20000 0004 1799 2448Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000 China
| |
Collapse
|
9
|
Dai W, Liu K, Li R, Cao Y, Shen M, Tao J, Liu H. Trillin inhibits myoblast differentiation via increasing autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153962. [PMID: 35172256 DOI: 10.1016/j.phymed.2022.153962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Trillin, an active ingredient in traditional Chinese medicine Trillium tschonoskii, is a potential small molecule compound candidate that affecting myoblast differentiation, which predicting by AI technology in our previous study. Autophagy modulating myoblast differentiation has also been studied. In addition, Trillin was shown to regulate mTOR signaling pathway, a highly conserved kinase important for autophagy regulation. PURPOSE In this research, we aim to clarify the effect and underlying mechanism of Trillin on myoblast differentiation. STUDY DESIGN AND METHODS Using mice C2C12 cell line to establish a myoblast differentiation model in vitro, treated with different concentration and time of Trillin, to explore the effect and latent mechanism of Trillin on myoblast differentiation by qRT-PCR, Western Blot and other molecular biological technique. RESULTS Results showed that C2C12 differentiation was significantly inhibited by Trillin in a dose-dependent manner. The expression of MyHC, MyOG and MyoD was decreased extremely significant after 10 μM Trillin treatment. Meanwhile, autophagy level was significantly elevated with the supplement of Trillin. And C2C12 differentiation was recovered after ATG7 knockdown. Mechanically, we found that the activity of AKT/mTOR declined during the inhibition of differentiation by Trillin. CONCLUSION Our findings suggested that Trillin attenuated C2C12 differentiation via increasing autophagy through AKT/mTOR signaling pathway. Taken together, we introduce a novel physiological function of Trillin in inhibiting skeletal muscle differentiation.
Collapse
Affiliation(s)
- Weilong Dai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Yang L, Lei JF, Ouyang JY, Li MZ, Zhan Y, Feng XF, Lu Y, Li MC, Wang L, Zou HY, Zhao H. Effect of Neurorepair for Motor Functional Recovery Enhanced by Total Saponins From Trillium tschonoskii Maxim. Treatment in a Rat Model of Focal Ischemia. Front Pharmacol 2021; 12:763181. [PMID: 34955834 PMCID: PMC8703076 DOI: 10.3389/fphar.2021.763181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Trillium tschonoskii Maxim. (TTM), is a perennial herb from Liliaceae, that has been widely used as a traditional Chinese medicine treating cephalgia and traumatic hemorrhage. The present work was designed to investigate whether the total saponins from Trillium tschonoskii Maxim. (TSTT) would promote brain remodeling and improve gait impairment in the chronic phase of ischemic stroke. A focal ischemic model of male Sprague-Dawley (SD) rats was established by permanent middle cerebral artery occlusion (MCAO). Six hours later, rats were intragastrically treated with TSTT (120, 60, and 30 mg/kg) and once daily up to day 30. The gait changes were assessed by the CatWalk-automated gait analysis system. The brain tissues injuries, cerebral perfusion and changes of axonal microstructures were detected by multimodal magnetic resonance imaging (MRI), followed by histological examinations. The axonal regeneration related signaling pathways including phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3 (GSK-3)/collapsin response mediator protein-2 (CRMP-2) were measured by western blotting. TSTT treatment significantly improved gait impairment of rats. MRI analysis revealed that TSTT alleviated tissues injuries, significantly improved cerebral blood flow (CBF), enhanced microstructural integrity of axon and myelin sheath in the ipsilesional sensorimotor cortex and internal capsule. In parallel to MRI findings, TSTT preserved myelinated axons and promoted oligodendrogenesis. Specifically, TSTT interventions markedly up-regulated expression of phosphorylated GSK-3, accompanied by increased expression of phosphorylated PI3K, AKT, but reduced phosphorylated CRMP-2 expression. Taken together, our results suggested that TSTT facilitated brain remodeling. This correlated with improving CBF, encouraging reorganization of axonal microstructure, promoting oligodendrogenesis and activating PI3K/AKT/GSK-3/CRMP-2 signaling, thereby improving poststroke gait impairments.
Collapse
Affiliation(s)
- Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jian-Feng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Jun-Yao Ouyang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
11
|
Yang L, Li CY, Ouyang JY, Li MZ, Zhan Y, Feng XF, Lu Y, Li MC, Lei JF, Zhao T, Wang L, Zou HY, Zhao H. Trillium tschonoskii rhizomes' saponins induces oligodendrogenesis and axonal reorganization for ischemic stroke recovery in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114358. [PMID: 34166736 DOI: 10.1016/j.jep.2021.114358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trillium tschonoskii Maxim. is one of traditional Chinese medical herbs that has been utilized to treat brain damages and cephalalgia. The neuroprotective effect of total saponins from Trillium tschonoskii rhizome (TSTT) has been demonstrated efficacy in rats following ischemia. However, the axonal remodeling effect of TSTT and the detailed mechanisms after ischemic stroke have not been investigated. AIM OF THE STUDY We aimed to estimate therapeutic role of TSTT in axonal remodeling using magnetic resonance imaging (MRI) technique, and explored possible mechanisms underlying this process followed by histological assays in ischemic rats. METHODS Male Sprague-Dawley (SD) rats underwent permanently focal cerebral ischemia induced by occluding right permanent middle cerebral artery. TSTT was intragastrically administrated 6 h after surgery and once daily for consecutive 15 days. Neurological function was assessed by the motor deficit score and beam walking test. T2 relaxation mapping and diffusion tensor imaging (DTI) were applied for detecting cerebral tissues damages and microstructural integrity of axons. Luxol fast blue (LFB) and transmission electron microscope (TEM) were performed to evaluate histopathology in myelinated axons. Double immunofluorescent staining was conducted to assess oligodendrogenesis. Furthermore, the protein expressions regarding to axonal remodeling related signaling pathways were detected by Western blot assays. RESULTS TSTT treatment (65, 33 mg/kg) markedly improved motor function after ischemic stroke. T2 mapping MRI demonstrated that TSTT decreased lesion volumes, and DTI further confirmed that TSTT preserved axonal microstructure of the sensorimotor cortex and internal capsule. Meanwhile, diffusion tensor tractography (DTT) showed that TSTT elevated correspondent density and length of fiber in the internal capsule. These MRI measurements were confirmed by histological examinations. Notably, TSTT significantly increased Ki67/NG2, Ki67/CNPase double-labeled cells along the boundary zone of ischemic cortex and striatum. Meanwhile, TSTT treatment up-regulated the phosphorylation level of Ser 9 in GSK-3β, and down-regulated phosphorylated β-catenin and CRMP-2 expression. CONCLUSION Taken together, our findings indicated that TSTT (65, 33 mg/kg) enhanced post-stroke functional recovery, amplified endogenous oligodendrogenesis and promoted axonal regeneration. The beneficial role of TSTT might be correlated with GSK-3/β-catenin/CRMP-2 modulating axonal reorganization after ischemic stroke.
Collapse
Affiliation(s)
- Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Chang-Yi Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Jun-Yao Ouyang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Jian-Feng Lei
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China.
| | - Ting Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
12
|
Li X, Zhang B, Yu K, Bao Z, Zhang W, Bai Y. Identifying cancer specific signaling pathways based on the dysregulation between genes. Comput Biol Chem 2021; 95:107586. [PMID: 34619555 DOI: 10.1016/j.compbiolchem.2021.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
A large collection of studies has shown that the occurrence of cancer is related to the functional dysfunction of the pathways. Identification of cancer-related pathways could help researchers understand the mechanisms of complex diseases well. Whereas, most current signaling pathway analysis methods take no account of the gene interaction variations within pathways. Furthermore, considering that some pathways have connection with two or more cancer types, while some are likely to be cancer-type specific pathways. Identifying cancer-type specific pathways contributes to interpreting the different mechanisms of different cancer types. In this study, we first proposed a pathway analysis method named Pathway Analysis of Intergenic Regulation (PAIGR) to identify pathways with dysregulation between genes and compared the performance of this method with four existing methods on four colorectal cancer (CRC) datasets. The results showed that PAIGR could find cancer-related pathways more accurately. Moreover, in order to explore the relationship between the identified pathways and the cancer type, we constructed a pathway interaction network, in which nodes and edges represented pathways and interactions between pathways respectively. Highly connected pathways were considered to play a central role in an extensive range of biological processes, while sparsely connected pathways are considered to have certain specificity. Our results showed that pathways identified by PAIGR had a low nodal degree (i.e., a few numbers of interactions), which suggested that most of these pathways were cancer-type specific.
Collapse
Affiliation(s)
- Xiaohan Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Bing Zhang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Kequan Yu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zhenshen Bao
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Weizhong Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
13
|
The Fruits of Paris polyphylla Inhibit Colorectal Cancer Cell Migration Induced by Fusobacterium nucleatum-Derived Extracellular Vesicles. Molecules 2021; 26:molecules26134081. [PMID: 34279421 PMCID: PMC8271733 DOI: 10.3390/molecules26134081] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Gut microbiota are highly associated with CRC, and Fusobacterium nucleatum was found to be enriched in CRC lesions and correlated with CRC carcinogenesis and metastases. Paris polyphylla is a well-known herbal medicine that showed anticancer activity. The present study demonstrates that P. polyphylla inhibited the growth of CRC cells. In addition, treating with active compounds pennogenin 3-O-beta-chacotrioside and polyphyllin VI isolated from P. polyphylla inhibited the growth of F. nucleatum. We also found that extracellular vesicles (EVs) released from F. nucleatum could promote mitochondrial fusion and cell invasion in CRC cells, whereas active components from P. polyphylla could dampen such an impact. The data suggest that P. polyphylla and its active ingredients could be further explored as potential candidates for developing complementary chemotherapy for the treatment of CRC.
Collapse
|
14
|
Zhang X, Sun Y, Cheng Y, Ye WL, Zhang BL, Mei QB, Zhou SY. Biopharmaceutics classification evaluation for paris saponin VII. Chin J Nat Med 2021; 18:714-720. [PMID: 32928515 DOI: 10.1016/s1875-5364(20)60010-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 01/05/2023]
Abstract
To study the biopharmaceutics characteristics of paris saponin VII (PSVII). The solubility of PSVII was evaluated by measurement of the equilibrium solubility in different solvents and media. The permeability of PSVII was evaluated by measuring the oil/water partition coefficient (lgPapp) and determining the apparent permeability coefficient (PCapp) on a mono-layer Caco-2 cell model. The effects of p-glycoprotein and multidrug resistance related protein 2 on PSVII transport in mono-layer Caco-2 cell model were further investigated. Finally, the small intestinal absorption of PSVII was investigated in rat. In solvents of different pH, the equilibrium solubility of PSVII was quite low, and the dose number of PSVII was larger than 1. The lgPapp of PSVII was less than 0. The apparent permeability coefficient [PCapp(AP-BL)] of PSVII in mono-layer Caco-2 cell model was less than 14.96 × 10-6 cm·s-1, and the efflux ratio of PSVII in mono-layer Caco-2 cell model was less than 1. The transport rate of PSVII in mono-layer Caco-2 cell model was not affected by the inhibitors of p-glycoprotein and multidrug resistance related protein 2. After oral administration, PSVII could be detected in rat intestinal contents, but could not be detected in the small intestinal mucosa. PSVII showed low solubility and permeability, which would result in low oral bioavailability in clinic. PSVII belonged to Class IV compound in biopharmaceutics classification system.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
15
|
Guo D, Guo C, Fang L, Sang T, Wang Y, Wu K, Guo C, Wang Y, Pan H, Chen R, Wang X. Qizhen capsule inhibits colorectal cancer by inducing NAG-1/GDF15 expression that mediated via MAPK/ERK activation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113964. [PMID: 33640439 DOI: 10.1016/j.jep.2021.113964] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qizhen capsule (QZC) is a traditional Chinese medicine (TCM) preparation that has been widely used in clinical practice and exerts promising therapeutic effects against breast, lung, and gastric cancers. However, studies have not reported whether QZC inhibits colorectal cancer (CRC) development and progression. Meanwhile, the underlying molecular mechanisms of its anticancer activity have not been studied. AIM OF THE STUDY To investigate the anticancer effects of QZC on CRC and the possible underlying molecular mechanisms of QZC in vitro and in vivo. MATERIALS AND METHODS The MTT assay and flow cytometry were used to determine the viability and apoptosis of HCT116 and HT-29 cancer cells. A xenograft nude mouse model was used to study the antitumor effects of QZC in vivo. Western blotting was performed to determine the expression of key proteins responsible for the molecular mechanisms elicited by QZC. Immunofluorescence staining was performed to detect the expression of nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 or growth differentiation factor-15 (NAG-1/GDF15). Small interfering RNAs (siRNAs) were used to silence NAG-1/GDF15 in cells. RESULTS In this study, QZC significantly reduced the viability of HCT116 and HT-29 cells and induced apoptosis in dose- and time-dependent manners, but displayed much less toxicity toward normal cells. QZC-induced apoptosis in HCT116 cells was accompanied by the deregulation of the expression of the Bcl-2, Bax, PARP, caspase-3, and caspase-9 proteins. Furthermore, QZC induced NAG-1/GDF15 expression in HCT116 cells, while silencing of NAG-1/GDF15 attenuated QZC-induced apoptosis and cell death. Next, QZC increased the phosphorylation of mTOR, AMPK, p38, and MAPK/ERK in HCT116 cells. We then demonstrated that QZC-induced apoptosis and NAG-1/GDF15 upregulation were mediated by MAPK/ERK activation. Moreover, QZC significantly inhibited HCT116 xenograft tumor growth in nude mice, which was accompanied by NAG/GDF15 upregulation and MAPK/ERK activation. QZC also prevented 5-FU-induced weight loss or cachexia in tumor-bearing mice. The expression of Ki67 and PCNA was suppressed, while cleaved caspase-3 level and TUNEL staining were increased in the tumor sections from QZC-treated mice compared to the control. CONCLUSION QZC is a novel anticancer agent for CRC that targets NAG-1/GDF15 via the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Dandan Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Chengjie Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Liu Fang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Tingting Sang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Yujie Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Kaikai Wu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Cuiling Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Ying Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Haitao Pan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Rong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Xingya Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
16
|
Elekofehinti OO, Iwaloye O, Olawale F, Ariyo EO. Saponins in Cancer Treatment: Current Progress and Future Prospects. PATHOPHYSIOLOGY 2021; 28:250-272. [PMID: 35366261 PMCID: PMC8830467 DOI: 10.3390/pathophysiology28020017] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming nature. Different saponins have been characterized and purified and are gaining attention in cancer chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activities. Several studies have reported the role of saponins in cancer and the mechanism of actions, including cell-cycle arrest, antioxidant activity, cellular invasion inhibition, induction of apoptosis and autophagy. Despite the extensive research and significant anticancer effects of saponins, there are currently no known FDA-approved saponin-based anticancer drugs. This can be attributed to a number of limitations, including toxicities and drug-likeness properties. Recent studies have explored options such as combination therapy and drug delivery systems to ensure increased efficacy and decreased toxicity in saponin. This review discusses the current knowledge on different saponins, their anticancer activity and mechanisms of action, as well as promising research within the last two decades and recommendations for future studies.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| | - Femi Olawale
- Nanogene and Drug Delivery Group, Department of Biochemistry, University of Kwa-Zulu Natal, Durban 4000, South Africa;
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos 101017, Nigeria
| | - Esther Opeyemi Ariyo
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, PMB 704, Nigeria; (O.I.); (E.O.A.)
| |
Collapse
|
17
|
Zhang C, Li Q, Qin G, Zhang Y, Li C, Han L, Wang R, Wang S, Chen H, Liu K, He C. Anti-angiogenesis and anti-metastasis effects of Polyphyllin VII on Hepatocellular carcinoma cells in vitro and in vivo. Chin Med 2021; 16:41. [PMID: 34059099 PMCID: PMC8166003 DOI: 10.1186/s13020-021-00447-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Polyphyllin VII (PP7), a steroidal saponin from P. polyphylla has been found to exert strong anticancer activity. Little is known about the anti-angiogenesis and anti-metastasis properties of PP7. In this study, the anti-angiogenic and anti-metastatic effects of PP7 on HCC and the molecular mechanisms were evaluated. Methods Effect of PP7 on angiogenesis was assessed by tube formation assay and applied a transgenic Tg(fli1:EGFP) zebrafish model. Effects of PP7 on tumor metastasis and invasion were examined in cell migration and invasion assay, zebrafish tumor xenograft models and lung metastasis mouse models. The protein levels were examined by Western blotting. Results PP7 significantly decreased the tube formation of human umbilical vein endothelial cells, the number and length of ISVs and SIVs of transgenic zebrafish, and the metastasis and invasion of cancer cells in vitro and in vivo. The anti-angiogenic and anti-metastatic effects of PP7 in HepG2 cells were attributable, at least partially, to downregulated NF-κB/MMP-9/VEGF signaling pathway. Conclusion This study demonstrates that PP7 possesses strong anti-angiogenesis and anti-metastasis activities, suggesting that PP7 could be a potential candidate agent for HCC treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Qingrui Li
- Beijing University of Chinese Medicine, Beijing, 100102, China.,Aerospace Central Hospital, Beijing, 100049, China
| | - Guozheng Qin
- Yunnan Provincial Hospital of Traditional Chinese Medicine/The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650021, China
| | - Yi Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Chaoying Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Liwen Han
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Shudan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| |
Collapse
|
18
|
Meng M, Yue Z, Chang L, Liu Y, Hu J, Song Z, Tang Z, Zhou R, Wang C. Anti-Rheumatoid Arthritic Effects of Paris Saponin VII in Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Adjuvant-Induced Arthritis in Rats. Front Pharmacol 2021; 12:683698. [PMID: 34122110 PMCID: PMC8194347 DOI: 10.3389/fphar.2021.683698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
In the pathogenesis of rheumatoid arthritis (RA), rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) have tumor-like characteristics, mainly manifested by hyperproliferation and resistance to apoptosis and then it will erode the bone and cartilage, eventually leading to joint destruction. Paris saponin VII (PS VII) is an active compound derived from a traditional herbal medicine named Trillium tschonoskii Maxim, which has anti-tumor, analgesic, and immunomodulatory effects. However, its anti-RA effect has not yet been reported. This study was to investigate the effect of PS VII on two rheumatoid arthritis fibroblast-like synoviocytes lines (RA-FLS and MH7A) and adjuvant-induced arthritis (AIA) in rats. In vitro, the effects of PS VII on the proliferation, cell cycle, and apoptosis of RA-FLS and MH7A cells were detected by MTT, flow cytometry, and western blot analysis. In vivo, the effect of PS VII on the weight of the rat, paw swelling, ankle joint diameter, arthritis index, serum inflammatory cytokines (TNF-α, IL-6, and IL-1β), histopathological assessment and apoptosis proteins in the synovial tissues were evaluated in AIA rats. The in vitro studies showed that PS VII inhibited the proliferation of RA-FLS and MH7A cells, induced S phase arrest and triggered cell apoptosis mainly through the mitochondrial apoptotic pathway and the regulation of JNK and p38 MAPK pathways. The in vivo studies revealed that PS VII could improve ameliorate body weight, paw swelling, ankle joint diameter, reduce the spleen and thymus index, suppress the production of TNF-α, IL-6 and IL-1β, improve histopathological changes and regulate the expressions of apoptosis proteins in AIA Rats. In conclusion, PS VII could inhibit the proliferation and trigger apoptosis of RA-FLS and MH7A cells by regulating the mitochondrial apoptosis pathway and the JNK and p38 MAPK pathways, and alleviate the symptoms of RA, signifying it to be one of the potential anti-RA therapeutics.
Collapse
Affiliation(s)
- Mei Meng
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.,Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhenggang Yue
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Chang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.,Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanru Liu
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jinhang Hu
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhongxing Song
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhishu Tang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Rui Zhou
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Changli Wang
- Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
19
|
Xiang YC, Shen J, Si Y, Liu XW, Zhang L, Wen J, Zhang T, Yu QQ, Lu JF, Xiang K, Liu Y. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer. Chin J Nat Med 2021; 19:195-204. [PMID: 33781453 DOI: 10.1016/s1875-5364(21)60021-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 02/02/2023]
Abstract
Paris saponin VII (PSVII), a bioactive constituent extracted from Trillium tschonoskii Maxim., is cytotoxic to several cancer types. This study was designed to explore whether PSVII prevents non-small-cell lung cancer (NSCLC) proliferation and to investigate its molecular target. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. In cultured human NSCLC cell lines, PSVII induces autophagy by activating AMPK and inhibiting mTOR signaling. Furthermore, PSVII-induced autophagy activation was reversed by the AMPK inhibitor compound C. Computational docking analysis showed that PSVII directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. Microscale thermophoresis assay and drug affinity responsive target stability assay further confirmed the high affinity between PSVII and AMPK. In summary, PSVII acts as a direct AMPK activator to induce cell autophagy, which inhibits the growth of NSCLC cells. In the future, PSVII therapy should be applied to treat patients with NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Jie Shen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xue-Wen Liu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Jun Wen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Te Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Qing-Qing Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Jun-Fei Lu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Ke Xiang
- Department of Science and Education, Gucheng People's Hospital, Hubei University of Arts and Science, Xiangyang 441700, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
20
|
Zhan G, Hu J, Xiao B, Wang X, Yang Z, Yang G, Lu L. Trillin prevents proliferation and induces apoptosis through inhibiting STAT3 nuclear translocation in hepatoma carcinoma cells. Med Oncol 2020; 37:44. [PMID: 32270306 DOI: 10.1007/s12032-020-01369-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023]
Abstract
Trillin is a constituent of total Trillium Tschonoskii Maxim (TTM), which is extracted from TTM and displayed anti-tumor effect in many tumor cell lines. However, the anti-tumor mechanism of trillin is still unclear. This study demonstrated that trillin could dramatically inhibit hepatoma carcinoma cell proliferation, induce apoptosis and decrease migration and invasion through suppressing phosphorylated STAT3 translocated to nucleus. Trillin could down-regulate Bcl-2 and Survivin, up-regulate cleaved PRAP, leading to dramatically apoptosis; trillin could also down-regulate MMP1, MMP2, MucI and VEGF, which displayed an inhibition effect on hepatocellular tumor cells invasion and development. The results of this study indicated the potential utility of trillin as a STAT3 inhibitor for the treatment of cancers.
Collapse
Affiliation(s)
- Guangjie Zhan
- Medical School of Hubei MinZu University, Enshi, 445000, Hubei, People's Republic of China
| | - Jun Hu
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Benjian Xiao
- Medical School of Hubei MinZu University, Enshi, 445000, Hubei, People's Republic of China
| | - Xianli Wang
- Science and Technology College of Hubei MinZu University, Enshi, 445000, Hubei, People's Republic of China
| | - Zixian Yang
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Guohua Yang
- Demonstration Center for Experimental Basic Medicine Education of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| | - Lili Lu
- New Medicine Innovation and Development Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Qian S, Tong S, Wu J, Tian L, Qi Z, Chen B, Zhu D, Zhang Y. Paris saponin VII extracted from Trillium tschonoskii induces autophagy and apoptosis in NSCLC cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112304. [PMID: 31626908 DOI: 10.1016/j.jep.2019.112304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trillium tschonoskii Maxim, a perennial herb of the Trilliaceae, has been widely used to treat inflammation, hypertension and cancer. We investigated Paris saponin VII's (PS VII), isolated from Trillium tschonoskii Maxim, function in mediating autophagy and apoptosis in NSCLC cells. MATERIALS AND METHODS We treated various NSCLC cells with different concentrations of PS Ⅶ and then measure the cell apoptosis by using flow cytometry assays and western blot. Autophagy were investigated by using western blot, transmission electron microscopy and immunofluorescence analysis. We also use a xenograft model of nude mice to measure the effect of PS Ⅶ in vivo. RESULTS Treatment with PS Ⅶ significantly inhibit NSCLC cell growth, especially for A549 (IC50 = 1.53 μM). Moreover, PS VII induces caspase-dependent apoptosis and autophagy through AMPK-ULK1 pathway. After blocking autophagy by 3-methyladenine (3-MA), PS VII induced cell death was significantly increased. In vivo, the co-treatment with PS VII and 3-MA dramatically inhibited A549 tumor growth in immune deficient mice and has similar inhibition rates as cisplatin group. CONCLUSION Our results suggest that a combination of PS VII and autophagy inhibitor may be a potential anticancer strategy in the NSCLC therapy.
Collapse
Affiliation(s)
- Shijing Qian
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Shanshan Tong
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Juan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Lulu Tian
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Zhan Qi
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Beilei Chen
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Deqiu Zhu
- Department of oncology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Yan Zhang
- Department of oncology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| |
Collapse
|
22
|
Abstract
A new fatty acid-spirostan steroid glycoside ester, a new cholestane glycoside and a new stilbene trimer, along with three known steroidal saponins, were isolated from the 70% EtOH extract of the roots and rhizomes of Trillium tschonoskii Maxim. The structure of isolated compounds was elucidated by spectroscopic analysis. Compound 1-6 were assessed for their cytotoxicity against cancer cell lines (MCF-7, HCT-116, DU-145, SGC-7901, MCF-7/ADR, K562/ADR), and the result showed that compound 4 was highly toxic to six human tumor cell lines.
Collapse
Affiliation(s)
- Ting Yan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Gaosheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
23
|
Wang S, Zhang X, Wang G, Cao B, Yang H, Jin L, Cui M, Mao Y. Syndecan-1 suppresses cell growth and migration via blocking JAK1/STAT3 and Ras/Raf/MEK/ERK pathways in human colorectal carcinoma cells. BMC Cancer 2019; 19:1160. [PMID: 31783811 PMCID: PMC6884902 DOI: 10.1186/s12885-019-6381-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Syndecan-1 (SDC-1) is a crucial membrane proteoglycan, which is confirmed to participate in several tumor cell biological processes. However, the biological significance of SDC-1 in colorectal carcinoma is not yet clear. An objective of this study was to investigate the role of SDC-1 in colorectal carcinoma cells. METHODS Expression of SDC-1 in colorectal carcinoma tissues was evaluated by Reverse transcription-quantitative real-time PCR (RT-qPCR) and western blot. After transfection with pcDNA3.1 or pc-SDC-1, the transfection efficiency was measured. Next, SW480, SW620 and LOVO cell viability, apoptosis, migration and adhesion were assessed to explore the effects of exogenous overexpressed SDC-1 on colorectal carcinoma. In addition, the influences of aberrant expressed SDC-1 in Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) and rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways were detected by western blot analysis. RESULTS SDC-1 mRNA and protein levels were down-regulated in human colorectal carcinoma tissues. SDC-1 overexpression inhibited cell proliferation via suppressing CyclinD1 and c-Myc expression, meanwhile stimulated cell apoptosis via increasing the expression levels of B-cell lymphoma-2-associated x (Bax) and Cleaved-Caspase-3. Additionally, SDC-1 overexpression restrained cell migration via inhibiting the protein expression of matrix metallopeptidase 9 (MMP-9), and elicited cell adhesion through increasing intercellular cell adhesion molecule-1 (ICAM-1). Furthermore, SDC-1 overexpression suppressed JAK1/STAT3 and Ras/Raf/MEK/ERK-related protein levels. CONCLUSIONS In general, the evidence from this study suggested that SDC-1 suppressed cell growth, migration through blocking JAK1/STAT3 and Ras/Raf/MEK/ERK pathways in human colorectal carcinoma cells.
Collapse
Affiliation(s)
- Shaojun Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaofei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Guimei Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Laoshan District, Qingdao, 266000, Shandong, China
| | - Bin Cao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hong Yang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lipeng Jin
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Mingjuan Cui
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yongjun Mao
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Laoshan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
24
|
Tang GE, Niu YX, Li Y, Wu CY, Wang XY, Zhang J. Paris saponin VII enhanced the sensitivity of HepG2/ADR cells to ADR via modulation of PI3K/AKT/MAPK signaling pathway. Kaohsiung J Med Sci 2019; 36:98-106. [PMID: 31688993 DOI: 10.1002/kjm2.12145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/03/2019] [Indexed: 02/01/2023] Open
Abstract
To find the effect of Paris saponin VII (PS VII)-mediated PI3K/AKT/MAPK signaling pathway on the sensitivity of ADR-resistant HepG2 cell (HepG2/ADR) cells to ADR. The proliferation inhibitory rates were detected by using MTT assay. Flow cytometry was employed to examine the intracellular accumulation of ADR. The expressions of drug-resistant genes (P-gp, MRP and BCRP) were detected by qRT-PCR, cell apoptosis by Annexin-V-FITC/PI staining, and the expressions of drug-resistance-related proteins, apoptosis-related proteins, and PI3K/AKT/MAPK pathway-related proteins were determined by Western blotting. HepG2/ADR and HepG2 cells treated with PS VII (0.88, 1.32, 1.98, and 2.97 μM) for 48 hours showed increased proliferation inhibitory rate in a dose-dependent manner. HepG2/ADR cells treated PS VII (0.88, 1.32, 1.98 μM) for 48 hours showed decreased IC50 of ADR. Compared with HepG2/ADR cells treated with ADR (5 nM), those treated with PS VII (≤1.98 μM) and ADR (5 nM) showed enhanced ADR accumulation, decreased drug-resistant gene expressions, increased cell apoptosis with unregulated Bax and cleaved caspase-3 and downregulated Bcl-2, as well as the inhibition of PI3K/AKT/MAPK pathway. Moreover, the combination of ADR (5 nM), PS VII (1.98 μM), and LY294002 (PI3K/AKT inhibitor, 20 μM)/SB203580 (P38 inhibitor, 20 μM) for 48 hours could further decreased the HepG2/ADR cell viability, but induced cell apoptosis, accompanying with the decreased expressions of drug-resistant genes. PS VII could downregulate the expressions of drug-resistance genes, increase intracellular accumulation of ADR, promote cell apoptosis, and enhance the sensitivity of HepG2/ADR cells to ADR via PI3K/AKT/MAPK.
Collapse
Affiliation(s)
- Gong-En Tang
- Department of Infectious Disease, Linyi Central Hospital, Linyi, China
| | - Yue-Xiang Niu
- Department of Infectious Disease, Linyi Central Hospital, Linyi, China
| | - Yun Li
- Department of Infectious Disease, Linyi Central Hospital, Linyi, China
| | - Chao-Yu Wu
- Department of Infectious Disease, Linyi Central Hospital, Linyi, China
| | - Xiao-Ying Wang
- Department of Infectious Disease, Linyi Central Hospital, Linyi, China
| | - Jian Zhang
- Department of Infectious Disease, Linyi Central Hospital, Linyi, China
| |
Collapse
|
25
|
Teng JF, Qin DL, Mei QB, Qiu WQ, Pan R, Xiong R, Zhao Y, Law BYK, Wong VKW, Tang Y, Yu CL, Zhang F, Wu JM, Wu AG. Polyphyllin VI, a saponin from Trillium tschonoskii Maxim. induces apoptotic and autophagic cell death via the ROS triggered mTOR signaling pathway in non-small cell lung cancer. Pharmacol Res 2019; 147:104396. [PMID: 31404628 DOI: 10.1016/j.phrs.2019.104396] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 01/04/2023]
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in anti-NSCLC are still unknown. In the present experiment, polyphyllin VI (PPVI) was successfully isolated from TTM with guidance of the anti-proliferative effect in A549 cells, and the cell death of PPVI treated A549 and H1299 cells was closely linked with the increased intracellular ROS levels. In addition, PPVI induced apoptosis by promoting the protein expression of Bax/Bcl2, caspase-3 and caspase-9, and activated autophagy by improving LC3 II conversion and GFP-LC3 puncta formation in A549 and H1299 cells. The mechanism study found that the activity of mTOR which regulates cell growth, proliferation and autophagy was significantly suppressed by PPVI. Accordingly, the PI3K/AKT and MEK/ERK pathways positively regulating mTOR were inhibited, and AMPK negatively regulating mTOR was activated. In addition, the downstream of mTOR, ULK1 at Ser 757 which downregulates autophagy was inhibited by PPVI. The apoptotic cell death induced by PPVI was confirmed, and it was significantly suppressed by the overexpression of AKT, ERK and mTOR, and the induced autophagic cell death which was depended on the Atg7 was decreased by the inhibitors, such as LY294002 (LY), Bafilomycin A1 (Baf), Compound C (CC) and SBI-0206965 (SBI). Furthermore, the mTOR signaling pathway was regulated by the increased ROS as the initial signal in A549 and H1299 cells. Finally, the anti-tumor growth activity of PPVI in vivo was validated in A549 bearing athymic nude mice. Taken together, our data have firstly demonstrated that PPVI is the main component in TTM that exerts the anti-proliferative effect by inducing apoptotic and autophagic cell death in NSCLC via the ROS-triggered mTOR signaling pathway, and PPVI may be a promising candidate for the treatment of NSCLC in future.
Collapse
Affiliation(s)
- Jin-Feng Teng
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Da-Lian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Qi-Bing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wen-Qiao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rong Pan
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ya Zhao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Tang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
26
|
Paris Polyphylla Inhibits Colorectal Cancer Cells via Inducing Autophagy and Enhancing the Efficacy of Chemotherapeutic Drug Doxorubicin. Molecules 2019; 24:molecules24112102. [PMID: 31163662 PMCID: PMC6600962 DOI: 10.3390/molecules24112102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/05/2022] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide and chemotherapy is the main approach for the treatment of advanced and recurrent cases. Developing an effective complementary therapy could help to improve tumor suppression efficiency and control adverse effects from chemotherapy. Paris polyphylla is a folk medicine for treating various forms of cancer, but its effect on colorectal cancer is largely unexplored. The aim of the present study is to investigate the tumor suppression efficacy and the mechanism of action of the ethanolic extract from P. polyphylla (EEPP) in DLD-1 human colorectal carcinoma cells and to evaluate its combined effect with chemotherapeutic drug doxorubicin. The data indicated that EEPP induced DLD-1 cell death via the upregulation of the autophagy markers, without triggering p53- and caspase-3-dependent apoptosis. Moreover, EEPP treatment in combination with doxorubicin enhanced cytotoxicity in these tumor cells. Pennogenin 3-O-beta-chacotrioside and polyphyllin VI were isolated from EEPP and identified as the main candidate active components. Our results suggest that EEPP deserves further evaluation for development as complementary chemotherapy for colorectal cancer.
Collapse
|
27
|
Dong J, Liang W, Wang T, Sui J, Wang J, Deng Z, Chen D. Saponins regulate intestinal inflammation in colon cancer and IBD. Pharmacol Res 2019; 144:66-72. [PMID: 30959159 DOI: 10.1016/j.phrs.2019.04.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 01/30/2023]
Abstract
The saponins are natural surface-active glycosides which are the principal components of many popular herbal medicinal plants such as ginseng, astragalus, and bupleurum. Recent studies have suggested that saponins can exert strong anti-inflammatory effects and induce immune homeostasis in many diseases. Intestinal-inflammation-related digestive diseases include inflammatory bowel disease (IBD), irritable bowel syndrome, intestinal ischemia-reperfusion injury, necrotizing enterocolitis and radiation proctitis, as well as intestinal inflammation caused by nonsteroidal anti-inflammatory drugs. The pathogenesis of these diseases is poorly understood, and the patients with these diseases suffer from mental stress and physical pain, while their families (and society) experience heavy economic losses. Results from animal experiments suggest that saponins can suppress intestinal inflammation, promote intestinal barrier repair, maintain the diversity of the intestinal flora, and decrease the incidence rate of colon-inflammation-related colon cancer. In this review, we discuss new findings regarding the effects of saponins on intestinal inflammation and digestive diseases with intestinal inflammation. In addition, we provide a summary of the underlying mechanism for saponins-induced treatment on intestinal-inflammation-related disease.
Collapse
Affiliation(s)
- Jianyi Dong
- Dalian Medical University, Dalian 116044, China
| | - Wei Liang
- Dalian Medical University, Dalian 116044, China
| | | | - Jingru Sui
- Dalian Medical University, Dalian 116044, China
| | - Jingyu Wang
- laboratory Animal Center, Dalian Medical University, China.
| | - Zhaobin Deng
- Dalian University Affiliated Xinhua Hospital, China.
| | - Dapeng Chen
- Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
28
|
Zhang C, Li C, Jia X, Wang K, Tu Y, Wang R, Liu K, Lu T, He C. In Vitro and In Vivo Anti-Inflammatory Effects of Polyphyllin VII through Downregulating MAPK and NF-κB Pathways. Molecules 2019; 24:molecules24050875. [PMID: 30832224 PMCID: PMC6429153 DOI: 10.3390/molecules24050875] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Polyphyllin VII (PP7), a steroidal saponin from Paris polyphylla, has been found to exert strong anticancer activity. Little is known about the anti-inflammatory property of PP7. In this study, the anti-inflammatory activity and its underlying mechanisms of PP7 were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in multiple animal models. Methods: The content of nitric oxide (NO) was determined by spectrophotometry. The levels of prostaglandin E2 (PGE2) and cytokines were measured by enzyme-linked immunosorbent assay (ELISA) assay. The mRNA expression of pro-inflammatory genes was determined by qPCR. The total and phosphorylated protein levels were examined by Western blotting. The in vivo anti-inflammatory activities were evaluated by using mouse and zebrafish models. Results: PP7 reduced the production of NO and PGE2 and the protein and mRNA expressions of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and enzymes (inducible NO synthase [iNOS], cyclooxygenase-2 [COX-2], and Matrix metalloproteinase-9 [MMP-9]) in LPS-induced RAW264.7 cells by suppressing the NF-κB and MAPKs pathways. Notably, PP7 markedly inhibited xylene-induced ear edema and cotton pellet-induced granuloma formation in mice and suppressed LPS and CuSO4-induced inflammation and toxicity in zebrafish embryos. Conclusion: This study demonstrates that PP7 exerts strong anti-inflammatory activities in multiple in vitro and in vivo models and suggests that PP7 is a potential novel therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Chao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chaoying Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xuejing Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Rongchun Wang
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Key Laboratory for Biosensor, Biology Institute of Shandong Academy of Sciences, Jinan 250014, China.
| | - Kechun Liu
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Key Laboratory for Biosensor, Biology Institute of Shandong Academy of Sciences, Jinan 250014, China.
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
29
|
Li X, Qu Z, Jing S, Li X, Zhao C, Man S, Wang Y, Gao W. Dioscin-6'-O-acetate inhibits lung cancer cell proliferation via inducing cell cycle arrest and caspase-dependent apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:124-133. [PMID: 30668391 DOI: 10.1016/j.phymed.2018.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/21/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of global cancer-related mortality. Dioscin-6'-O-acetate (DA), a novel natural steroidal saponin, was firstly isolated from the rhizomes of Dioscorea althaeoides R. Knuth. Until now, there were no studies on its pharmacological activities. PURPOSE Here, we investigated the growth inhibitory effect and explored the underlying molecular mechanisms of DA against lung cancer cells. METHODS/STUDY DESIGNS NSCLC H460, H1299, H520 cells and SCLC H446 cells were treated with DA. To display the cytotoxic effects and possible mechanism of DA on these cells, MTT assay, flow cytometry and western blot analysis were carried out. RESULTS Our results showed that DA exerted strong anti-proliferative activity against lung cancer cells in a concentration- and time-dependent manner. Flow cytometry demonstrated DA induced the cell cycle arrest at S-phase (NCI-H460, NCI-H1299, NCI-H520) or G1-phase (NCI-H446), caused cellular apoptosis, generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential. Western blotting analysis showed DA treatment increased the levels of caspase 3, 8, 9, Bax, p21, p53, phosphorylated JNK and p38 MAPK and markedly decreased the expression of Bcl-2, p-ERK, p-PI3K, p-AKT and NF-κB. Blockade of caspases with Z-VAD-FMK converted apoptosis-related proteins. Suppression of p53 with pifithrin-α (PFT) attenuated cell cycle-related protein. Inhibition of ROS with N-acetyl-cysteine (NAC) adjusted apoptosis-related proteins and phosphorylated MAPK and PI3K, as well as NF-κB. CONCLUSION Overall, our study indicated that DA suppressed lung cancer cells proliferation via inducing cell-cycle arrest and enhancing caspase-dependent apoptosis, at least partly, through ROS-mediated PI3K/AKT, MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xuejiao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Songsong Jing
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chengcheng Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuli Man
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ying Wang
- Tianjin Key Laboratory of Chemistry and Analysis of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
30
|
Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med 2018; 16:732-748. [PMID: 30322607 DOI: 10.1016/s1875-5364(18)30113-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 01/14/2023]
Abstract
The steroidal saponins are one of the saponin types that exist in an unbound state and have various pharmacological activities, such as anticancer, anti-inflammatory, antiviral, antibacterial and nerves-calming properties. Cancer is a growing health problem worldwide. Significant progress has been made to understand the antitumor effects of steroidal saponins in recent years. According to reported findings, steroidal saponins exert various antitumor activities, such as inhibiting proliferation, inducing apoptosis and autophagy, and regulating the tumor microenvironment, through multiple related signaling pathways. This article focuses on the advances in domestic and foreign studies on the antitumor activity and mechanism of actions of steroidal saponins in the last five years to provide a scientific basis and research ideas for further development and clinical application of steroidal saponins.
Collapse
|
31
|
Yuan G, Chen T, Zhang H, Cao Q, Qiu Y, Que B, Peng S, Chen M, Ji W. Comprehensive analysis of differential circular RNA expression in a mouse model of colitis-induced colon carcinoma. Mol Carcinog 2018; 57:1825-1834. [PMID: 30182433 DOI: 10.1002/mc.22900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) have received increasing attention for their involvement in the pathogenesis of cancer; however, the characterization and function of circRNAs in colitis-induced colon carcinoma remains largely unknown. A colitis-induced colon carcinoma model was established in mice treated with azoxymethane-dextran sodium sulfate (AOM-DSS), and the circRNA profile was screened by next generation sequencing. Bioinformatic tools, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and network analysis were used to predict the functions of differentially expressed circRNAs and potentially coexpressed target genes. Among the detected candidate 3069 circRNA genes, 126 circRNAs were upregulated, and 108 circRNAs were down regulated in colon tissues from AOM/DSS mice compared to those from control mice. A total of six of these candidate circRNAs were validated by RT-PCR. GO analysis revealed that numerous target genes including most microRNAs were involved in the Ras-Raf-MAPK pathway, actin cytoskeleton, focal adhesion, and additional biological processes. Our study revealed a comprehensive expression and functional profile for differentially expressed circRNAs in AOM/DSS induced colon carcinogenesis, indicating possible involvement of these dysregulated circRNAs in the development of colitis-induced colon carcinoma. The mmu-circ-001226/mmu-circ-000287-miRNA-mRNA network may provide a potential mechanism for colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingjia Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinghua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Biao Que
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Chen JC, Hsieh MJ, Chen CJ, Lin JT, Lo YS, Chuang YC, Chien SY, Chen MK. Polyphyllin G induce apoptosis and autophagy in human nasopharyngeal cancer cells by modulation of AKT and mitogen-activated protein kinase pathways in vitro and in vivo. Oncotarget 2018; 7:70276-70289. [PMID: 27602962 PMCID: PMC5342552 DOI: 10.18632/oncotarget.11839] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/24/2016] [Indexed: 01/04/2023] Open
Abstract
Polyphyllin G (also call polyphyllin VII), extract from rhizomes of Paris yunnanensis Franch, has been demonstrated to have strong anticancer activities in a wide variety of human cancer cell lines. Previous studies found that Polyphyllin G induced apoptotic cell death in human hepatoblastoma cancer and lung cancer cells. However, the underlying mechanisms of autophagy in human nasopharyngeal carcinoma (NPC) remain unclear. In this study, Polyphyllin G can potently induced apoptosis dependent on the activations of caspase-8, -3, and -9 and the changes of Bcl-2, Bcl-xL and Bax protein expression in different human NPC cell lines (HONE-1 and NPC-039). The amount of both LC3-II and Beclin-1 was intriguingly increased suggest that autophagy was induced in Polyphyllin G-treated NPC cells. To further clarify whether Polyphyllin G-induced apoptosis and autophagy depended on AKT/ERK/JNK/p38 MAPK signaling pathways, cells were combined treated with AKT inhibitor (LY294002), ERK1/2 inhibitor (U0126), p38 MAPK inhibitor (SB203580), or JNK inhibitor (SP600125). These results demonstrated that Polyphyllin G induced apoptosis in NPC cells through activation of ERK, while AKT, p38 MAPK and JNK were responsible for Polyphyllin G-induced autophagy. Finally, an administration of Polyphyllin G effectively suppressed the tumor growth in the NPC carcinoma xenograft model in vivo. In conclusion, our results reveal that Polyphyllin G inhibits cell viability and induces apoptosis and autophagy in NPC cancer cells, suggesting that Polyphyllin G is an attractive candidate for tumor therapies. Polyphyllin G may promise candidate for development of antitumor drugs targeting nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan.,School of Optometry, Chung Shan Medical University, Taichung 40201, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Chih-Jung Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Jen-Tsun Lin
- Hematology & Oncology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Su-Yu Chien
- Department of Pharmacy, Changhua Christian Hospital, Changhua 500, Taiwan.,College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.,Center for General Education, Mingdao University, Changhua 52345, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| |
Collapse
|
33
|
Yan T, Hu G, Wang A, Sun X, Yu X, Jia J. Paris saponin VII induces cell cycle arrest and apoptosis by regulating Akt/MAPK pathway and inhibition of P-glycoprotein in K562/ADR cells. Phytother Res 2018; 32:898-907. [DOI: 10.1002/ptr.6029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/30/2017] [Accepted: 12/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Ting Yan
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Gaosheng Hu
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Anhua Wang
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Xianduo Sun
- School of Traditional Chinese Medicines; Guangdong Pharmaceutical University; Guangzhou 510006 China
| | - Xiangyong Yu
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jingming Jia
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| |
Collapse
|
34
|
Zhang X, Liu G, Ding L, Jiang T, Shao S, Gao Y, Lu Y. HOXA3 promotes tumor growth of human colon cancer through activating EGFR/Ras/Raf/MEK/ERK signaling pathway. J Cell Biochem 2017; 119:2864-2874. [PMID: 29073728 DOI: 10.1002/jcb.26461] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Homeobox A3 (HOXA3), one of HOX transcription factors, regulates gene expression during embryonic development. HOXA3 expression has been reported to be associated with several cancers; however, its role in colon cancer and underlying mechanism are still unclear. The expression of HOXA3 in 232 paired of human colon tumor and adjacent non-tumorous tissues were measured by qPCR. The relationship between HOXA3 expression and clinical outcomes were analyzed by Kaplan-Meier survival curves analysis. Human colon cancer cell lines HT29 and HTC116 were transfected with HOXA3 siRNA, or HOXA3 expressing vector, and then cell proliferation and apoptosis were assessed, respectively. Western blot was performed to detect the activation of EGFR/Ras/Raf/MEK/ERK signaling pathway. Moreover, HOXA3-overexpressing and HOXA3-suppressing HT29 cells were subcutaneous injected into nod mice to confirm the regulation of HOXA3 on EGFR/Ras/Raf/MEK/ERK signaling in regulating tumor growth. HOXA3 was upregulated in colon tumor tissues and cell lines, and upregulated expression of HOXA3 was associated with low survival rate. Knockdown of HOXA3 suppressed cell viability and clone formation, while induced cell apoptosis. HOXA3 knockdown could not induce the increase of cell apoptosis on the condition of EGFR overexpression. In vivo xenograft studies, HOXA3-suppressing cells showed less tumorigenic. Moreover, HOXA3 knockdown suppressed the activation of EGFR/Ras/Raf/MEK/ERK signaling pathway. To conclude, this study indicated that HOXA3 might act as a promoter of human colon cancer formation by regulating EGFR/Ras/Raf/MEK/ERK signaling pathway. HOXA3 might be a potential therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Xianxiang Zhang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangwei Liu
- Department of Outpatient, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Ding
- Office of Medical Safety Management, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shihong Shao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Gao
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yun Lu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Qiumin H, Biao X, Weihong W, Chongyun B, Shaowei H. [Inhibitory effect and underlying mechanism of total saponins from Paris polyphylla var. yunnanensis on the proliferation of salivary adenoid cystic carcinoma ACC-83 cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:317-321. [PMID: 28675019 DOI: 10.7518/hxkq.2017.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect and underlying mechanism of total saponins from Paris polyphylla var. yunnanensis on the proliferation of salivary adenoid cystic carcinoma ACC-83 cells. METHODS In vitro cell culture was performed. The proliferation of ACC-83 cells treated with different concentrations (5, 10, 20, 40, 60, 80, 100 μg·mL⁻¹) of total saponins from Paris polyphylla var. yunnanensis was observed using CCK-8 assay. Meanwhile, the apoptosis of ACC-83 cells treated with different concentrations (25, 50, 100 μg·mL⁻¹) of the total saponins was observed using flow cytometry. The expression levels of macrophage migration inhibitory factor (MIF) and CD74 were measured using Western blot and reverse transcription-polymerase chain reaction. RESULTS The total saponins from Paris polyphylla var. yunnanensis induced apoptosis and expressed dose-effect relationship. ACC-83 cells expressed MIF and CD74, and the total saponins suppressed MIF and CD74 expression in ACC-83 cells. CONCLUSIONS The total saponins from Paris polyphylla var. yunnanensis can significantly inhibit the proliferation, suppress MIF and CD74 expression, and promote apoptosis in ACC-83 cells. This study provides a theoretical basis for the treatment of salivary adenoid cystic carcinoma using Paris polyphylla var. yunnanensis.
.
Collapse
Affiliation(s)
- He Qiumin
- Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China
| | - Xu Biao
- Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China
| | - Wang Weihong
- Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China
| | - Bao Chongyun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hu Shaowei
- Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China
| |
Collapse
|
36
|
Hsieh MJ, Chien SY, Lin JT, Yang SF, Chen MK. Polyphyllin G induces apoptosis and autophagy cell death in human oral cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1545-1554. [PMID: 27823618 DOI: 10.1016/j.phymed.2016.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Polyphyllin G (also called polyphyllin VII), extract from rhizomes of Paris yunnanensis Franch, has been shown to have strong anticancer activities in a wide variety of human cancer cell lines. However, the underlying influences of autophagy in human oral squamous cell carcinoma (OSCC) remain unclear. METHODS In this study, the roles of apoptosis and autophagy in polyphyllin G-induced death in human oral cancer cells were investigated. Moreover, the molecular mechanism of the anticancer effects of polyphyllin G in human oral cancer cells was investigated. RESULTS The results revealed that polyphyllin G significantly inhibited cell proliferation in human oral cancer cells; it dose-dependently induced apoptosis in SAS and OECM-1 cells through caspase-3, -8, and -9 activation and poly (ADP-ribose) polymerase cleavage. In addition, changes were observed in Bcl-2 and proapoptosis-related protein expression in different human oral cancer cell lines. The expression of both LC3-II and beclin-1 was markedly increased, suggesting the induction of autophagy in polyphyllin G-treated oral cells. To further clarify whether polyphyllin G-induced apoptosis and autophagy depended on Akt/extracellular signal-regulated kinases (ERK)/c-Jun N-terminal kinases (JNK)/p38 mitogen-activated protein kinases (MAPK) signaling pathways, the cells were cotreated with inhibitors. The results demonstrated polyphyllin G-induced apoptosis in oral cells through the activation of ERK, Akt, p38 MAPK, and JNK, whereas ERK and JNK accounted for polyphyllin G-induced autophagy. CONCLUSION This study is the first to demonstrate apoptosis and autophagy during polyphyllin G-induced cell death in human oral cancer cell lines. These results suggest that polyphyllin G is a promising candidate for developing antitumor drugs targeting human oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, 50006, Taiwan; School of Optometry, Chung Shan Medical University, Taichung, 40201, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
| | - Su-Yu Chien
- Department of Pharmacy, Changhua Christian Hospital, Changhua, 500, Taiwan; College of Health Sciences, Chang Jung Christian University, Tainan, 71101, Taiwan; Center for General Education, Mingdao University, Changhua, 52345, Taiwan
| | - Jen-Tsun Lin
- Hematology & Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, 500, Taiwan.
| |
Collapse
|
37
|
Jaramillo S, Muriana FJ, Guillen R, Jimenez-Araujo A, Rodriguez-Arcos R, Lopez S. Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
38
|
Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP‑2/9 production via the p38 MAPK signaling pathway. Mol Med Rep 2016; 14:3199-205. [PMID: 27572907 PMCID: PMC5042727 DOI: 10.3892/mmr.2016.5663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 07/19/2016] [Indexed: 01/03/2023] Open
Abstract
Metastasis is the primary cause of mortality in osteosarcoma. Targeting metastasis is a major strategy in osteosarcoma treatment. As a traditional Chinese medicine, Trillium tschonoskii Maxim has been widely used in the therapy of various diseases, including cancer. However, currently there is no evidence regarding the anti‑metastasic effect of Paris saponin VII (PS VII), which is extracted from Trillium tschonoskii Maxim, on osteosarcoma cells and its underling mechanisms. The present study aimed to examine the effect of PS VII on the migration and invasion of osteosarcoma cells. Viability and proliferation of osteosarcoma cells were examined by MTT assay. Migration and invasion of osteosarcoma cells was then detected using scratch wound healing assays and Transwell assays, respectively. Additionally, the expression of matrix metalloproteinase (MMP)‑2 and ‑9 was determined at the mRNA and protein level following treatment with PS VII. Mitogen‑activated protein kinase (MAPK) expression was also detected by western blot analysis. Finally, an inhibitor of p38 MAPK was used to verify the effect of PS VII on the expression of MMP‑2 and ‑9, as well as the migration and invasion osteosarcoma cells. This demonstrated that the proliferation, migration and invasion of the osteosarcoma cells were suppressed following treatment with PS VII. PS VII downregulated the expression of MMP‑2 and ‑9 in a dose‑ and time‑dependent manner. PS VII also exerted its ability to downregulate the phosphorylation of p38 MAPKs. Furthermore, by using a p38 inhibitor, SB203580, the role of PS VII in MMP‑2 and ‑9 expression and osteosarcoma cell invasion was revealed. Taken together, these results demonstrated that PS VII suppresses the migration and invasion of osteosarcoma cells via the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong 264100, P.R. China
| | - Fengguang Gao
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Xiujiang Sun
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong 264100, P.R. China
| | - Haiyong Bi
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong 264100, P.R. China
| | - Yonglin Zhu
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
39
|
Wang CW, Tai CJ, Choong CY, Lin YC, Lee BH, Shi YC, Tai CJ. Aqueous Extract of Paris polyphylla (AEPP) Inhibits Ovarian Cancer via Suppression of Peroxisome Proliferator-Activated Receptor-Gamma Coactivator (PGC)-1alpha. Molecules 2016; 21:molecules21060727. [PMID: 27271583 PMCID: PMC6273164 DOI: 10.3390/molecules21060727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy, a major approach was used in carcinoma treatment, always involves the development of drug resistance as well as side-effects that affect the quality of patients’ lives. An association between epithelial-mesenchymal transition (EMT) and chemotherapy resistance was established recently. We demonstrate in this paper that the aqueous extract of Paris polyphylla (AEPP)—a traditional Chinese medicine—can be used in various cancer types for suppression of carcinogenesis. We evaluated the suppressions of EMT and mitochondrial activity by AEPP treatment in a high-glucose (HG) induced-human ovarian carcinoma cell line (OVCAR-3 cells). The mitochondrial morphology was investigated using MitoTracker Deep Red FM staining. Our results indicated that AEPP reduced the viability of OVCAR-3 cells considerably through induction of apoptosis. However, this inhibitory potential of AEPP was attenuated by HG induction in OVCAR-3 cells. The levels of estrogen-related receptor (ERR)-alpha activator and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha were elevated by HG induction, but were suppressed by AEPP treatment. Down-regulations of cell survival and EMT were oberved in OVCAR-3 cells through suppression of PGC-1alpha by AEPP treatment. These results were confirmed through PGC-1alpha knockdown and overexpression in OVCAR-3 cells. Thus, AEPP can be beneficial for treating ovarian cancer and has potential for development of an integrative cancer therapy against ovarian cancer proliferation, metastasis, and migration.
Collapse
Affiliation(s)
- Chia-Woei Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei 11042, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| | - Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medicine University Hospital, Taipei 11031, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chen-Yen Choong
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| | - Yu-Chun Lin
- Taiwan Indigena Botanica Co., Ltd., Taipei 11031, Taiwan.
| | - Bao-Hong Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medicine University Hospital, Taipei 11031, Taiwan.
| | - Yeu-Ching Shi
- Taiwan Indigena Botanica Co., Ltd., Taipei 11031, Taiwan.
| | - Chen-Jei Tai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
- Department of Chinese Medicine, Taipei University Hospital, Taipei 11042, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11042, Taiwan.
| |
Collapse
|
40
|
Zhu X, Jiang H, Li J, Xu J, Fei Z. Anticancer Effects of Paris Saponins by Apoptosis and PI3K/AKT Pathway in Gefitinib-Resistant Non-Small Cell Lung Cancer. Med Sci Monit 2016; 22:1435-41. [PMID: 27125283 PMCID: PMC4917328 DOI: 10.12659/msm.898558] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Paris saponins have been studied for their anticancer effects in various cancer types, but the mechanisms underlying the cytotoxic effects, especially in EGFR-TKI-resistant cells, are still unclear. We explored the potential mechanism of the antitumor effects of PSI, II, VI, VII in EGFR-TKI-resistant cells and attempted to develop PSI, II, VI, VII as a systemic treatment strategy for EGFR-TKI-resistant lung cancer. Material/Methods Growth inhibition was detected by MTT assay. The apoptosis assay was detected using annexin-V/PI and Hoechst staining. The level of PI3K, pAKT, Bax, Bcl-2, caspase-3, and caspase-9 protein expression were detected using Western blot analysis. Results The results revealed that PSI, II, VI, VII inhibited the proliferation of PC-9-ZD cells. Furthermore, PSI, II, VI, VII induced significant cell apoptosis. The levels of PI3K, pAKT, Bcl-2 protein decreased, while the Bax, caspase-3, and caspase-9 protein was increased by PSI, II, PSVI, PSVII treatment and resulted in increased sensitivity to gefitinib in PC-9-ZD cells. Conclusions The underlying mechanism of Paris saponins may be related to targeting the PI3K/AKT pathways to cause apoptosis. Our results suggest a therapeutic potential of Paris saponins in clinical settings for gefitinib-resistant NSCLC.
Collapse
Affiliation(s)
- XinHai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jinhui Li
- Department of Chinese Medicine and Rehabilitation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Ji Xu
- Department of Surgery, Huashan Luxeme Medical Cosmetology Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Zhenghua Fei
- Department of Oncology, The First Clinical Medical Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
41
|
Zhang C, Jia X, Bao J, Chen S, Wang K, Zhang Y, Li P, Wan JB, Su H, Wang Y, Mei Z, He C. Polyphyllin VII induces apoptosis in HepG2 cells through ROS-mediated mitochondrial dysfunction and MAPK pathways. Altern Ther Health Med 2016; 16:58. [PMID: 26861252 PMCID: PMC4746894 DOI: 10.1186/s12906-016-1036-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
Abstract
Background Paris polyphylla is an oriental folk medicine that has anticancer activities both in vivo and in vitro. Polyphyllin VII (PP7), a pennogenyl saponin from P. polyphylla has been found to exert strong anticancer activity. However, the underlying mechanisms are poorly understood. In the present study, the anticancer effect of polyphyllin VII against human liver cancer cells and the molecular mechanisms were investigated. Methods Cellular viability was measured by MTT assay. Apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential levels were evaluated using the InCell 2000 confocal microscope. The expression levels of apoptotic-related proteins were evaluated by Western blotting. Results PP7 strongly inhibited the cell growth and induced apoptosis and necrosis in hepatocellular carcinoma HepG2 cells. Meanwhile, PP7 up-regulated the levels of Bax/Bcl-2, cytochrome c, the cleaved forms of caspases-3, -8, -9, and poly (ADP-ribose) polymerase in a dose- and time-dependent manner, indicating that PP7 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathways. Moreover, PP7 provoked the production of intracellular ROS and the depolarization of mitochondrial membrane potential. Further analysis showed that PP7 significantly augmented the phosphorylation of JNK, ERK and p38, the major components of mitogen-activated protein kinase (MAPK) pathways, and the expressions of tumor suppressor proteins p53 and PTEN. In addition, PP7-induced apoptosis was remarkably attenuated by MAPK inhibitors and ROS inhibitor. Conclusions These results demonstrated that PP7 induced apoptotic cell death in HepG2 cells through both intrinsic and extrinsic pathways by promoting the generation of mitochondrial-mediated ROS and activating MAPK and PTEN/p53 pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1036-x) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
ZHAO PENGJUN, SONG SHUICHUAN, DU LEIWEN, ZHOU GUOHUA, MA SHENGLIN, LI JINHUI, FENG JIANGUO, ZHU XINHAI, JIANG HAO. Paris Saponins enhance radiosensitivity in a gefitinib-resistant lung adenocarcinoma cell line by inducing apoptosis and G2/M cell cycle phase arrest. Mol Med Rep 2016; 13:2878-84. [DOI: 10.3892/mmr.2016.4865] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/21/2015] [Indexed: 11/06/2022] Open
|
43
|
Polyphyllin VII Induces an Autophagic Cell Death by Activation of the JNK Pathway and Inhibition of PI3K/AKT/mTOR Pathway in HepG2 Cells. PLoS One 2016; 11:e0147405. [PMID: 26808193 PMCID: PMC4726701 DOI: 10.1371/journal.pone.0147405] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022] Open
Abstract
Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.
Collapse
|
44
|
Liu Z, Zheng Q, Chen W, Man S, Teng Y, Meng X, Zhang Y, Yu P, Gao W. Paris saponin I inhibits proliferation and promotes apoptosis through down-regulating AKT activity in human non-small-cell lung cancer cells and inhibiting ERK expression in human small-cell lung cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra13352e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PSI regulated AKT activity in NSCLC and inhibited ERK expression in SCLC.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Qi Zheng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Wenzhu Chen
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Shuli Man
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Yongmin Zhang
- Université Pierre et Marie Curie-Paris 6
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232
- Paris
- France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
45
|
Song X, Zhang D, He H, Li Y, Yang X, Deng C, Tang Z, Cui J, Yue Z. Steroidal glycosides from Reineckia carnea. Fitoterapia 2015; 105:240-5. [DOI: 10.1016/j.fitote.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 01/18/2023]
|
46
|
Li YH, Niu YB, Sun Y, Zhang F, Liu CX, Fan L, Mei QB. Role of phytochemicals in colorectal cancer prevention. World J Gastroenterol 2015; 21:9262-9272. [PMID: 26309353 PMCID: PMC4541379 DOI: 10.3748/wjg.v21.i31.9262] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/09/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
Although the incidence of colorectal cancer (CRC) has been declining in recent decades, it remains a major public health issue as a leading cause of cancer mortality and morbidity worldwide. Prevention is one milestone for this disease. Extensive study has demonstrated that a diet containing fruits, vegetables, and spices has the potential to prevent CRC. The specific constituents in the dietary foods which are responsible for preventing CRC and the possible mechanisms have also been investigated extensively. Various phytochemicals have been identified in fruits, vegetables, and spices which exhibit chemopreventive potential. In this review article, chemopreventive effects of phytochemicals including curcumin, polysaccharides (apple polysaccharides and mushroom glucans), saponins (Paris saponins, ginsenosides and soy saponins), resveratrol, and quercetin on CRC and the mechanisms are discussed. This review proposes the need for more clinical evidence for the effects of phytochemicals against CRC in large trials. The conclusion of the review is that these phytochemicals might be therapeutic candidates in the campaign against CRC.
Collapse
|
47
|
Abstract
Two new furostanol saponins 1–2 and a new spirostanol saponin 3 were isolated together with two known furostanol saponins 4–5 from the roots and rhizomes of Tupistra chinensis. Their structures were characterized as 1β,2β,3β,4β,5β,26-hexahydroxyfurost-20(22),25(27)-dien-5,26-O-β-d-glucopyranoside (1), 1β,2β,3β,4β,5β,6β,7α,23ξ,26-nona-hydroxyfurost-20(22),25(27)-dien-26-O-β-d-glucopyranoside (2), (20S,22R)-spirost-25 (27)-en-1β,3β,5β-trihydroxy-1-O-β-d-xyloside (3), tupisteroide B (4) and 5β-furost-Δ25(27)-en-1β,2β,3β,4β,5β,7α,22ξ,26-octahydroxy-6-one-26-O-β-d-glucopyranoside (5), respectively, by extensive use of spectroscopic techniques and chemical evidence. Additionally, the in vitro cytotoxic activity of 1–4 was evaluated on human A549 and H1299 tumor cell lines, and compound 3 exhibited cytotoxicity against A549 cells (IC50 86.63 ± 2.33 μmol·L−1) and H1299 cells (IC50 88.21 ± 1.34 μmol·L−1).
Collapse
|
48
|
Fan L, Li Y, Sun Y, Han J, Yue Z, Meng J, Zhang X, Zhang F, Mei Q. Paris Saponin VII Inhibits the Migration and Invasion in Human A549 Lung Cancer Cells. Phytother Res 2015; 29:1366-1372. [DOI: 10.1002/ptr.5389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Fan
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Collaborative Innovation Center for Chinese Medicine in Qinba Mountains, Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 Shaanxi PR China
- Department of Pharmacy; No. 210 Hospital of PLA Liaoning 116000 PR China
| | - Yuhua Li
- No. 422 Hospital of PLA; Zhanjiang 524005 Guangdong PR China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Collaborative Innovation Center for Chinese Medicine in Qinba Mountains, Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 Shaanxi PR China
| | - Jing Han
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Collaborative Innovation Center for Chinese Medicine in Qinba Mountains, Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 Shaanxi PR China
| | - Zhenggang Yue
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Collaborative Innovation Center for Chinese Medicine in Qinba Mountains, Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 Shaanxi PR China
| | - Jin Meng
- Department of Pharmacy; No. 309 Hospital of PLA Beijing 100009 PR China
| | - Xutao Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Collaborative Innovation Center for Chinese Medicine in Qinba Mountains, Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 Shaanxi PR China
| | - Feng Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Collaborative Innovation Center for Chinese Medicine in Qinba Mountains, Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 Shaanxi PR China
| | - Qibing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Collaborative Innovation Center for Chinese Medicine in Qinba Mountains, Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 Shaanxi PR China
| |
Collapse
|
49
|
Miura K, Satoh M, Kinouchi M, Yamamoto K, Hasegawa Y, Kakugawa Y, Kawai M, Uchimi K, Aizawa H, Ohnuma S, Kajiwara T, Sakurai H, Fujiya T. The use of natural products in colorectal cancer drug discovery. Expert Opin Drug Discov 2015; 10:411-26. [DOI: 10.1517/17460441.2015.1018174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Koh Miura
- 1Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan ;
| | - Masayuki Satoh
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Makoto Kinouchi
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Kuniharu Yamamoto
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Yasuhiro Hasegawa
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Yoichiro Kakugawa
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Masaaki Kawai
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Kiyoshi Uchimi
- 3Miyagi Cancer Center, Department of Gastroenterology, 47-1 Nodayama, Natori 981-1293, Japan
| | - Hiroki Aizawa
- 3Miyagi Cancer Center, Department of Gastroenterology, 47-1 Nodayama, Natori 981-1293, Japan
| | - Shinobu Ohnuma
- 4Tohoku University Graduate School of Medicine, Department of Surgery, 1-1 Seiryo-machi, Sendai 980-8574, Japan
| | - Taiki Kajiwara
- 4Tohoku University Graduate School of Medicine, Department of Surgery, 1-1 Seiryo-machi, Sendai 980-8574, Japan
| | - Hiroto Sakurai
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Tsuneaki Fujiya
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| |
Collapse
|
50
|
JIANG HAO, ZHAO PENGJUN, SU DAN, FENG JIANGUO, MA SHENGLIN. Paris saponin I induces apoptosis via increasing the Bax/Bcl-2 ratio and caspase-3 expression in gefitinib-resistant non-small cell lung cancer in vitro and in vivo. Mol Med Rep 2014; 9:2265-72. [DOI: 10.3892/mmr.2014.2108] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/07/2014] [Indexed: 11/06/2022] Open
|