1
|
Gadewal N, Natu A, Sen S, Rauniyar S, Bastikar V, Gupta S. Integrative epigenome-transcriptome analysis unravels cancer-specific over-expressed genes potentially regulating immune microenvironment in clear cell renal cell carcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130596. [PMID: 38471632 DOI: 10.1016/j.bbagen.2024.130596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Clear cell Renal Cell Carcinoma (ccRCC) is the frequently diagnosed histological life-threatening tumor subtype in the urinary system. Integrating multi-omics data is emerging as a tool to provide a comprehensive view of biology and disease for better therapeutic interventions. METHOD We have integrated freely available ccRCC data sets of genome-wide DNA methylome, transcriptome, and active histone modification marks, H3K27ac, H3K4me1, and H3K4me3 specific ChIP-seq data to screen genes with higher expression. Further, these genes were filtered based on their effect on survival upon alteration in expression. RESULTS The six multi-omics-based identified genes, RUNX1, MSC, ADA, TREML1, TGFA, and VWF, showed higher expression with enrichment of active histone marks and hypomethylated CpG in ccRCC. In continuation, the identified genes were validated by an independent dataset and showed a correlation with nodal and metastatic status. Furthermore, gene ontology and pathway analysis revealed that immune-related pathways are activated in ccRCC patients. CONCLUSIONS The network analysis of six overexpressed genes suggests their potential role in an immunosuppressive environment, leading to tumor progression and poor prognosis. Our study shows that the multi-omics approach helps unravel complex biology for patient subtyping and proposes combination strategies with epi-drugs for more precise immunotherapy in ccRCC.
Collapse
Affiliation(s)
- Nikhil Gadewal
- Bioinformatics & Computational Biology Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Center for Computational Biology & Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post - Somathne, Panvel, Mumbai, 410206, MH, India
| | - Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, MH, India
| | - Siddhartha Sen
- Bioinformatics & Computational Biology Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India
| | - Sukanya Rauniyar
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, MH, India
| | - Virupaksha Bastikar
- Center for Computational Biology & Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post - Somathne, Panvel, Mumbai, 410206, MH, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, MH, India.
| |
Collapse
|
2
|
Ghosh PK, Ghosh A. Dysregulation of noncoding RNA in chordoma; implications in identifying potential targets for novel therapeutic approaches. Mol Biol Rep 2024; 51:125. [PMID: 38236360 DOI: 10.1007/s11033-023-09017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Chordoma is a rare form of bone cancer develops in the spinal cord and skull. Instead of conventional (radio/chemotherapies) and targeted therapies, the disease is associated with high rate of recurrence and poor patient survival. Thus, for better disease management, the molecular pathogenesis of chordoma should be studied in detail to identify dysregulated biomolecules that can be targeted by novel therapeutics. Recent research showed frequent dysregulation of long noncoding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA) in association with aggressive tumor phenotypes like cell proliferation, migration, invasion, and metastasis in a variety of cancers, including chordoma. Apart from diagnostic and prognostic importance, noncoding RNAs may serve as promising targets for novel therapeutics in cancer. In this review, we summarized a list of miRNAs, lncRNAs, and circRNA found to be dysregulated in chordoma from available data published in relevant databases (PubMed), as such an approach seems to be rare to date. The dysregulated noncoding RNAs were also associated with adverse tumor phenotypes to assess the impact on disease pathogenesis and, associated downstream molecular pathways were focused. Synthetic compounds and natural products that were reported to target the noncoding RNAs in other malignancies were also listed from published literature and proposed as potential therapeutic agents in chordoma. This review will provide information for further research on chordoma focusing on detailed characterization of dysregulated lncRNAs, miRNAs, and circRNA to understand the disease pathogenesis and, exploration of suitable natural and synthetic products targeting dysregulated non-coding RNAs to develop effective therapeutic measures.
Collapse
Affiliation(s)
- Pramit Kumar Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Tan SC, Hushmandi K. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract 2023; 251:154902. [PMID: 37922723 DOI: 10.1016/j.prp.2023.154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
Collapse
Affiliation(s)
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bahonar
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Nakhaee
- Medical School, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Chang YH, Huang YL, Tsai HC, Chang AC, Ko CY, Fong YC, Tang CH. Chemokine Ligand 2 Promotes Migration in Osteosarcoma by Regulating the miR-3659/MMP-3 Axis. Biomedicines 2023; 11:2768. [PMID: 37893141 PMCID: PMC10604484 DOI: 10.3390/biomedicines11102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma is a common malignant tumor in children and adolescents, known for its aggressive invasion and distant metastasis, leading to a poor prognosis. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix and basement membranes through their proteolytic activity, thereby promoting osteosarcoma metastasis. Chemokine ligand 2 (CCL2) is a well-studied chemokine that plays a significant role in the cell motility of many cancers. However, its specific involvement in osteosarcoma metastasis is not fully understood. The aim of this study is to examine the role of miRNAs in CCL2-mediated MMP expression and cell motility in human osteosarcoma. The analysis of immunohistochemistry data and databases associated a positive correlation between CCL2 or MMP-3 levels with the metastasis of osteosarcoma patients. The in vivo lung metastatic osteosarcoma model also demonstrated similar effects, showing higher levels of CCL2 and MMP-3 in lung metastatic osteosarcoma tissues. The stimulation of osteosarcoma cells with CCL2 enhanced migration and invasion abilities through the upregulation of MMP-3 synthesis. Our results also indicate that CCL2 enhances MMP-3-dependent cell motility by inhibiting miR-3659 synthesis. Therefore, CCL2 represents a promising therapeutic target for treating metastasis in osteosarcoma.
Collapse
Affiliation(s)
- Yu-Hsiang Chang
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404328, Taiwan;
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Hsiao-Chi Tsai
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651012, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan;
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan;
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404328, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 651012, Taiwan
| | - Chih-Hsin Tang
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404328, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302056, Taiwan
| |
Collapse
|
5
|
Shahraki K, Pak VI, Najafi A, Shahraki K, Boroumand PG, Sheervalilou R. Non-coding RNA-mediated epigenetic alterations in Grave's ophthalmopathy: A scoping systematic review. Noncoding RNA Res 2023; 8:426-450. [PMID: 37324526 PMCID: PMC10265490 DOI: 10.1016/j.ncrna.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Background It is becoming more and more apparent that Grave's Ophthalmopathy (GO) pathogenesis may be aided by epigenetic processes such as DNA methylation modifications, histone tail covalent modifications, and non-coding RNA (ncRNA)-based epigenetic processes. In the present study, we aimed to focus more on the miRNAs rather than lncRNAs due to lack of investigations on these non-coding RNAs and their role in GO's pathogenesis. Methods A six-stage methodology framework and the PRISMA recommendation were used to conduct this scoping review. A comprehensive search was conducted across seven databases to discover relevant papers published until February 2022. The data extraction separately, and quantitative and qualitative analyses were conducted. Results A total of 20 articles were found to meet inclusion criteria. According to the results, ncRNA were involved in the regulation of inflammation (miR-146a, LPAL2/miR-1287-5p axis, LINC01820:13/hsa miR-27b-3p axis, and ENST00000499452/hsa-miR-27a-3p axis), regulation of T cell functions (miR-146a/miR-183/miR-96), regulation of glycosaminoglycan aggregation and fibrosis (miR-146a/miR-21), glucocorticoid sensitivity (miR-224-5p), lipid accumulation and adipogenesis (miR-27a/miR-27b/miR-130a), oxidative stress and angiogenesis (miR-199a), and orbital fibroblast proliferation (miR-21/miR-146a/miR-155). Eleven miRNAs (miR-146a/miR-224-5p/miR-Let7d-5p/miR-96-5p/miR-301a-3p/miR-21-5p) were also indicated to have the capacity to be used as biomarkers. Conclusions Regardless of the fact that there is significant documentation of ncRNA-mediated epigenetic dysfunction in GO, additional study is needed to thoroughly comprehend the epigenetic connections concerned in disease pathogenesis, paving the way for novel diagnostic and prognostic tools for epigenetic therapies among the patients.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
- Cornea Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
6
|
Zalewski D, Chmiel P, Kołodziej P, Borowski G, Feldo M, Kocki J, Bogucka-Kocka A. Dysregulations of Key Regulators of Angiogenesis and Inflammation in Abdominal Aortic Aneurysm. Int J Mol Sci 2023; 24:12087. [PMID: 37569462 PMCID: PMC10418409 DOI: 10.3390/ijms241512087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular disease caused by localized weakening and broadening of the abdominal aorta. AAA is a clearly underdiagnosed disease and is burdened with a high mortality rate (65-85%) from AAA rupture. Studies indicate that abnormal regulation of angiogenesis and inflammation contributes to progression and onset of this disease; however, dysregulations in the molecular pathways associated with this disease are not yet fully explained. Therefore, in our study, we aimed to identify dysregulations in the key regulators of angiogenesis and inflammation in patients with AAA in peripheral blood mononuclear cells (using qPCR) and plasma samples (using ELISA). Expression levels of ANGPT1, CXCL8, PDGFA, TGFB1, VEGFB, and VEGFC and plasma levels of TGF-alpha, TGF-beta 1, VEGF-A, and VEGF-C were found to be significantly altered in the AAA group compared to the control subjects without AAA. Associations between analyzed factors and risk factors or biochemical parameters were also explored. Any of the analyzed factors was associated with the size of the aneurysm. The presented study identified dysregulations in key angiogenesis- and inflammation-related factors potentially involved in AAA formation, giving new insight into the molecular pathways involved in the development of this disease and providing candidates for biomarkers that could serve as diagnostic or therapeutic targets.
Collapse
Affiliation(s)
- Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Grzegorz Borowski
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (G.B.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (G.B.); (M.F.)
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| |
Collapse
|
7
|
MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 2022; 201:115094. [PMID: 35588853 DOI: 10.1016/j.bcp.2022.115094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the third most common cancer in young adults after lymphoma and brain cancer. Metastasis, like other cellular events, is dependent on signaling pathways; a series of changes in some proteins and signaling pathways pave the way for OS cells to invade and migrate. Ezrin, TGF-β, Notch, RUNX2, matrix metalloproteinases (MMPs), Wnt/β-catenin, and phosphoinositide 3-kinase (PI3K)/AKT are among the most important of these proteins and signaling pathways. Despite the improvements in treating OS, the overall survival of patients suffering from the metastatic disease has not experienced any significant change after surgical treatments and chemotherapy and 5-years overall survival in patients with metastatic OS is about 20%. Studies have shown that overexpression or inhibition of some microRNAs (miRNAs) has significant effects in limiting the invasion and migration of OS cells. The results of these studies highlight the potential of the clinical application of some miRNA mimics and miRNA inhibitors (antagomiRs) to inhibit OS metastasis in the future. In addition, some studies have shown that miRNAs are associated with the most important drug resistance mechanisms in OS, and some miRNAs are highly effective targets to increase chemosensitivity. The results of these studies suggest that miRNA mimics and antagomiRs may be helpful to increase the efficacy of conventional chemotherapy drugs in the treatment of metastatic OS. In this article, we discussed the role of various signaling pathways and the involved miRNAs in the metastasis of OS, attempting to provide a comprehensive review of the literature on OS metastasis and chemosensitivity.
Collapse
|
8
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Kaushik P, Kumar A. Emerging role and function of miR-198 in human health and diseases. Pathol Res Pract 2021; 229:153741. [PMID: 34952425 DOI: 10.1016/j.prp.2021.153741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Ever since their discovery, microRNAs (miRNAs/miRs) have astonished us by the plethora of processes they regulate, and thus adding another dimension to the gene regulation. They have been implicated in several diseases affecting cardiovascular, neurodegenerative, hepatic, autoimmune and inflammatory functions. A primate specific exonic miRNA, miR-198 has been vastly studied during the past decade, and shown to have a critical role in wound healing. The aberrant expression of miR-198 was first reported in schizophrenia, linking it to neural development. Later, its dysregulation and tumor suppressive role was reported in hepatocellular carcinoma. However, this was just a beginning, and after which there was an explosion of reports linking miR-198 deregulation to cancers and other ailments. The first target to be identified for miR-198 was Cyclin T1 in monocytes affecting HIV1 replication. Depending on the type of cancer, miR-198 has been shown to function either as a tumor suppressor or an oncomir. Interestingly, miR-198 is not only known to regulate multiple targets and pathways, but also is itself regulated by several circular RNAs and long-non-coding RNAs, highlighting a complex regulatory network. This review highlights the currently understood mechanism and regulation of miR-198 in different diseases, and its possible diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Pankhuri Kaushik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Rabelo ACS, Borghesi J, Noratto GD. The role of dietary polyphenols in osteosarcoma: A possible clue about the molecular mechanisms involved in a process that is just in its infancy. J Food Biochem 2021; 46:e14026. [PMID: 34873724 DOI: 10.1111/jfbc.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor mainly affecting children, teenagers and young adults, being associated with early metastasis and poor prognosis. The beneficial effects of polyphenols have been investigated in different areas, including their potential to fight OS. Polyphenols are believed to reduce morbidity and/or slow down the development of cancer. This review aimed to assess the effect of polyphenols in OS and investigate their molecular mechanisms. It was observed that the broad spectrum of health-promoting properties of plant polyphenols in OS occurs mainly due to modulation of reactive oxygen species, anti-inflammatory activity, anti-angiogenesis, apoptosis inducer, inhibition of invasion and metastasis. However, it is worth mentioning that although the promising effects of polyphenols in the fight against OS, most of the studies have been performed using in vitro and in vivo animal models. Therefore, studies in humans are needed to validate the effectiveness of polyphenols in OS treatment. PRACTICAL APPLICATIONS: Polyphenols are widely used for various diseases, however, until now, their real role in the treatment of osteosarcoma remains unknown. This review provides a broad spectrum of research conducted with polyphenols and their potential as adjuvant therapy in the treatment of osteosarcoma. However, prior to their clinical application for osteosarcoma treatment, there is a need to isolate and identify specific polyphenolic compounds with high antitumor activity, increase their oral bioavailability, and to investigate their interactions with chemotherapeutic drugs being used in clinical practice.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Department of Food and Experimental Nutrition, Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Jéssica Borghesi
- Department of Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Giuliana D Noratto
- Departament of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Wang N, Hou SY, Qi X, Deng M, Cao JM, Tong BD, Xiong W. LncRNA LPAL2/miR-1287-5p/EGFR Axis Modulates TED-Derived Orbital Fibroblast Activation Through Cell Adhesion Factors. J Clin Endocrinol Metab 2021; 106:e2866-e2886. [PMID: 33877318 DOI: 10.1210/clinem/dgab256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/19/2022]
Abstract
CONTEXT The activation of orbital fibroblasts, the prime targets in thyroid eye disease (TED), is central to its underlying pathogenesis. OBJECTIVE We aimed to investigate the mechanism of TED orbital fibroblast activation from the perspective of noncoding RNA regulation. METHODS Immunofluorescence (IF) staining was applied to evaluate the fibrotic changes in target cells. Cell proliferation was evaluated by 5-ethoxy 2-deoxyuridine and colony-formation assays. Collagen I concentration was determined by enzyme-linked immunosorbent assay. Human microarray analysis was performed on 3 TED and 3 healthy control orbital tissue samples. RESULTS Bioinformatics analysis showed that cell adhesion signaling factors were differentially expressed in TED tissues, including intercellular adhesion molecule (ICAM)-1, ICAM-4, vascular cell adhesion molecule, and CD44, which were all upregulated in diseased orbital tissues. Long noncoding RNA LPAL2 level was also upregulated in orbital tissues and positively correlated with ICAM-1 and ICAM-4 expression. Stimulation of the TED orbital fibroblasts by transforming growth factor-β1 (TGF-β1) significantly increased the expression of ICAM-1, ICAM-4, and LPAL2. Knockdown of LPAL2 in orbital fibroblasts inhibited TGF-β1-induced increases in cell adhesion factor levels and orbital fibroblast activation. Microarray profiling was performed on TED and normal orbital tissues to identify differentially expressed microRNAs, and miR-1287-5p was remarkably reduced within diseased orbital samples. miR-1287-5p was directly bound to the epidermal growth factor receptor (EGFR) 3' untranslated region and LPAL2, and LPAL2 modulated EGFR/protein kinase B (AKT) signaling through targeting miR-1287-5p. CONCLUSION The LPAL2/miR-1287-5p axis modulated TGF-β1-induced increases in cell adhesion factor levels and TED orbital fibroblast activation through EGFR/AKT signaling.
Collapse
Affiliation(s)
- Nuo Wang
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan,China
| | - Shi-Ying Hou
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan,China
| | - Xin Qi
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan,China
| | - Mi Deng
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan,China
| | - Jia-Min Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan,China
| | - Bo-Ding Tong
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan,China
| | - Wei Xiong
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan,China
| |
Collapse
|
12
|
Şener BB, Yiğit D, Bayraç AT, Bayraç C. Inhibition of cell migration and invasion by ICAM-1 binding DNA aptamers. Anal Biochem 2021; 628:114262. [PMID: 34038704 DOI: 10.1016/j.ab.2021.114262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Cancer is the second leading cause of death worldwide and most of the cancer-related deaths result from metastasis. As expressed on the surface of various cancer cell types, intercellular adhesion molecule-1 (ICAM-1) has been shown to play a role in the attachment, invasion and migration of tumor cells. In this study, DNA aptamers were generated against ICAM-1 by cell-SELEX and protein SELEX method using ICAM-1(+) CHO-ICAM-1 cells and ICAM-1 protein, respectively. The pools obtained at the end of the 10th round of both SELEX were sequenced and the most enriched sequences were characterized for their binding behaviors and affinities to ICAM-1(+) CHO-ICAM-1 and ICAM-1(-) MIA PaCa-2 cells. Moreover, the inhibition abilities of sequences on migration and invasion were measured. The seven aptamer sequences were obtained selectively binding to CHO-ICAM-1 cells with Kd values in the ranging from 13.8 to 47.1 nM. Four of these aptamers showed inhibition in both migration and invasion of CHO-ICAM-1 cells at least 61%. All these results suggested that these aptamers have potential to detect specifically ICAM-1 expressing tumor cells and inhibit migration and invasion by blocking ICAM-1 related interactions of circulating tumor cells.
Collapse
Affiliation(s)
- Berke Bilgenur Şener
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| | - Deniz Yiğit
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | | | - Ceren Bayraç
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
13
|
Wang S, Wei H, Huang Z, Wang X, Shen R, Wu Z, Lin J. Epidermal growth factor receptor promotes tumor progression and contributes to gemcitabine resistance in osteosarcoma. Acta Biochim Biophys Sin (Shanghai) 2021; 53:317-324. [PMID: 33432347 DOI: 10.1093/abbs/gmaa177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of primary malignant tumors that originate in the bone. Resistance to chemotherapy confers a poor prognosis on OS patients. Dysregulation of the epidermal growth factor receptor (EGFR) signaling has been reported in sarcomas. However, the functional contribution of EGFR hyperactivation to the tumor biology and chemoresistance remains largely unexplored in OS. In this study, we aimed to investigate the role of EGFR in OS progression and in the response of OS to gemcitabine treatment. The EGFR expression was found to be upregulated in fibroblastic OS cell lines. EGFR knockdown suppressed OS cell proliferation, migration, and invasion in vitro and tumor formation in vivo. Conversely, EGFR overexpression promoted the growth and motility of OS cells. In terms of mechanism, the levels of phospho-Akt and phospho-ERK were decreased upon EGFR knockdown but increased as a result of EGFR overexpression, implying a possible involvement of PI3K/Akt and ERK pathways in mediating the effects of EGFR on OS cells. Moreover, the level of phospho-EGFR was increased in OS cells when exposed to gemcitabine treatment. A more profound proliferative inhibition and a higher rate of apoptosis were obtained in OS cells via inducing cell cycle arrest at G1 phase upon gemcitabine treatment combined with EGFR knockdown, as compared to gemcitabine alone. On the contrary, EGFR overexpression counteracted the growth-inhibiting and pro-apoptotic effects of gemcitabine in OS cells. The present study suggests that EGFR promotes tumor progression and contributes to gemcitabine resistance in OS.
Collapse
Affiliation(s)
- Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hongxiang Wei
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhen Huang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xinwen Wang
- Department of Orthopedics, The People’s Hospital of Jiangmen City, Jiangmen 529051, China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhaoyang Wu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
14
|
Zhong H, Lin H, Pang Q, Zhuang J, Liu X, Li X, Liu J, Tang J. Macrophage ICAM-1 functions as a regulator of phagocytosis in LPS induced endotoxemia. Inflamm Res 2021; 70:193-203. [PMID: 33474594 PMCID: PMC7817350 DOI: 10.1007/s00011-021-01437-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Intracellular adhesion molecule-1 (ICAM-1), a transmembrane glycoprotein belonging to the immunoglobulin superfamily, plays a critical role in mediating cell-cell interaction and outside-in cell signaling during the immune response. ICAM-1 is expressed on the cell surface of several cell types including endothelial cells, epithelial cells, leucocytes, fibroblasts, and neutrophils. Despite ICAM-1 has been detected on macrophage, little is known about the function and mechanism of macrophage ICAM-1. METHODS To investigate the role of lipopolysaccharide (LPS) in ICAM-1 regulation, both the protein and cell surface expression of ICAM-1 were measured. The phagocytosis of macrophage was evaluated by flow cytometry and Confocal microscopy. Small interfering RNA and neutralizing antibody of ICAM-1 were used to assess the effect of ICAM-1 on macrophage phagocytosis. TLR4 gene knockout mouse and cytoplasmic and mitochondrial ROS scavenger were used for the regulation of ICAM-1 expression. ROS was determined using flow cytometry. RESULTS In this study, we reported that macrophage can be stimulated to increase both the protein and cell surface expression of ICAM-1 by LPS. Macrophage ICAM-1 expression was correlated with enhanced macrophage phagocytosis. We found that using ICAM-1 neutralizing antibody or ICAM-1 silencing to attenuate the function or expression of ICAM-1 could decrease LPS-induced macrophage phagocytosis. Furthermore, we found that knocking out of TLR4 led to inhibited cytoplasmic and mitochondrial ROS production, which in turn, attenuated ICAM-1 expression at both the protein and cell surface levels. CONCLUSION This study demonstrates that the mechanism of ICAM-1-mediated macrophage phagocytosis is depending on TLR4-mediated ROS production and provides significant light on macrophage ICAM-1 in endotoxemia.
Collapse
Affiliation(s)
- Hanhui Zhong
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Lin
- Health Management Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Qiongni Pang
- The Department of Anesthesiology, Nanfang Hospital, SouthernMedicalUniversity, Guangzhou, 510515, Guangdong, China
| | - Jinling Zhuang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
- The Department of Anesthesiology, Nanfang Hospital, SouthernMedicalUniversity, Guangzhou, 510515, Guangdong, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Xiaolian Li
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Tang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
15
|
Peng D, Lin B, Xie M, Zhang P, Guo Q, Li Q, Gu Q, Yang S, Sen L. Histone demethylase KDM5A promotes tumorigenesis of osteosarcoma tumor. Cell Death Discov 2021; 7:9. [PMID: 33436536 PMCID: PMC7803953 DOI: 10.1038/s41420-020-00396-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a primary bone malignancy with a high rate of recurrence and poorer prognosis. Therefore, it is of vital importance to explore novel prognostic molecular biomarkers and targets for more effective therapeutic approaches. Previous studies showed that histone demethylase KDM5A can increase the proliferation and metastasis of several cancers. However, the function of KDM5A in the carcinogenesis of osteosarcoma is not clear. In the current study, KDM5A was highly expressed in osteosarcoma than adjacent normal tissue. Knockdown of KDM5A suppressed osteosarcoma cell proliferation and induced apoptosis. Moreover, knockdown of KDM5A could increase the expression level of P27 (cell-cycle inhibitor) and decrease the expression of Cyclin D1. Furthermore, after knockout of KDM5A in osteosarcoma cells by CRISPR/Cas9 system, the tumor size and growth speed were inhibited in tumor-bearing nude mice. RNA-Seq of KDM5A-KO cells indicated that interferon, epithelial–mesenchymal transition (EMT), IL6/JAK/STAT3, and TNF-α/NF-κB pathway were likely involved in the regulation of osteosarcoma cell viability. Taken together, our research established a role of KDM5A in osteosarcoma tumorigenesis and progression.
Collapse
Affiliation(s)
- Daohu Peng
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Birong Lin
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Mingzhong Xie
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Ping Zhang
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - QingXi Guo
- The affiliated hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, 646015, Luzhou City, Sichuan, P. R. China
| | - Qian Li
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Qinwen Gu
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Sijin Yang
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China.
| | - Li Sen
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China.
| |
Collapse
|
16
|
Adipose-Derived Mesenchymal Stem Cells do not Affect the Invasion and Migration Potential of Oral Squamous Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21186455. [PMID: 32899628 PMCID: PMC7555061 DOI: 10.3390/ijms21186455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are commonly isolated from bone marrow and adipose tissue. Depending on the tissue of origin, MSCs have different characteristics and physiological effects. In various cancer studies, MSCs have been found to have either tumor-promoting or tumor-inhibiting action. This study investigated the effect of adipose tissue-MSCs (AT-MSCs) and bone marrow-MSCs (BM-MSCs) on global long interspersed nuclear element-1 (LINE-1) methylation, the expression level of microenvironment remodeling genes and cell proliferation, migration and invasion of oral tongue squamous cell carcinoma (OTSCC). Additionally, we studied the effect of human tongue squamous carcinoma (HSC-3)-conditioned media on LINE-1 methylation and the expression of microenvironment remodeling genes in AT-MSCs and BM-MSCs. Conditioned media from HSC-3 or MSCs did not affect LINE-1 methylation level in either cancer cells or MSCs, respectively. In HSC-3 cells, no effect of MSCs-conditioned media was detected on the expression of ICAM1, ITGA3 or MMP1. On the other hand, HSC-3-conditioned media upregulated ICAM1 and MMP1 expression in both types of MSCs. Co-cultures of AT-MSCs with HSC-3 did not induce proliferation, migration or invasion of the cancer cells. In conclusion, AT-MSCs, unlike BM-MSCs, seem not to participate in oral cancer progression.
Collapse
|
17
|
Wang J, Han Y, Wang M, Zhao Q, Chen X, Liu X. Natural triterpenoid saponin Momordin Ic suppresses HepG2 cell invasion via COX-2 inhibition and PPARγ activation. Toxicol In Vitro 2020; 65:104784. [DOI: 10.1016/j.tiv.2020.104784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
|
18
|
Zhang Y, Weng Q, Han J, Chen J. Alantolactone suppresses human osteosarcoma through the PI3K/AKT signaling pathway. Mol Med Rep 2019; 21:675-684. [PMID: 31974628 PMCID: PMC6947914 DOI: 10.3892/mmr.2019.10882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is the most common type of malignant bone cancer and results in cancer-related deaths among adolescents. Alantolactone (ALT) demonstrates antitumor properties in various diseases; however, its potential role in osteosarcoma is relatively unclear. The aim of the present study was to evaluate the effect of ALT on osteosarcoma. ALT significantly decreased the viability of U2OS and HOS osteosarcoma cell lines. Cells flow cytometry assay and Hoechst 33258 staining assay revealed that ALT significantly increased the proportion of apoptotic U2OS cells. In addition, wound healing and Transwell invasion assays demonstrated that the invasion and migration of osteosarcoma were markedly reduced upon ALT treatment. It was hypothesized that the antitumor functions of ALT are mediated through inhibition of the PI3K/AKT signaling pathway. In conclusion, the results of the present study confirmed the inhibition of ALT on osteosarcoma cells via downregulation of PI3K/AKT signaling pathways, suggesting ALT as a potential therapeutic candidate for osteosarcoma.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Qiuyan Weng
- Department of Neurology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Jinming Han
- Department of Spinal Surgery, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jianming Chen
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
19
|
Wu Z, Sun Z, Huang R, Zang D, Wang C, Yan X, Yan W. Silencing of synaptotagmin 7 regulates osteosarcoma cell proliferation, apoptosis, and migration. Histol Histopathol 2019; 35:303-312. [PMID: 31631310 DOI: 10.14670/hh-18-174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Synaptotagmin 7 (SYT7) is a component of the synaptotagmin family, which is essential in many physiological and pathological processes. In this study, we aimed to investigate the role of SYT7 in osteosarcoma. METHODS We defined the expression levels of SYT7 in osteosarcoma tissues and para-sarcoma tissues by immunohistochemistry and analyzed the possible correlation between SYT7 expression and pathological characteristics via Mann-Whitney U analysis and Spearman correlation analysis. The effects of SYT7 silencing in vitro cell growth were assessed by MTT assay. Cell cycle and cell apoptosis were assessed by flow cytometry analysis. Wound healing assay and transwell assay were applied to assess the migration and invasion capacity. RESULTS The results showed that the expression levels of SYT7 were upregulated in osteosarcoma tissues compared with para-sarcoma tissues and positively correlated with the pathological characteristics of osteosarcoma. Functional experiments demonstrated that SYT7 silencing significantly inhibited cell proliferation and colony formation capacity (P<0.001), induced cell cycle arrest which increased the proportion of G2 phase and decreased the proportion of S phase, enhanced cell apoptosis (P<0.01), and limited the capacity of migration and invasion (P<0.01), compared with shCtrl group. CONCLUSION The results indicated that SYT7 plays a crucial role in the development of osteosarcoma. SYT7 can be applied as a new diagnostic and therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Zhengwang Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Rui Huang
- Department of General Surgery, PLA 455 hospital, Changning District, Shanghai, China
| | - Ding Zang
- Department of Clinical Laboratory, PLA 455 hospital, Changning District, Shanghai, China
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Xu Yan
- Department of Orthopedics, PLA 455 hospital, Changning District, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.
| |
Collapse
|
20
|
Zhang X, Qu P, Zhao H, Zhao T, Cao N. COX‑2 promotes epithelial‑mesenchymal transition and migration in osteosarcoma MG‑63 cells via PI3K/AKT/NF‑κB signaling. Mol Med Rep 2019; 20:3811-3819. [PMID: 31485669 PMCID: PMC6755176 DOI: 10.3892/mmr.2019.10598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to investigate the mechanism by which cyclooxygenase-2 (COX-2) promotes the metastasis of MG-63 osteosarcoma cells through the PI3K/AKT/NF-κB pathway. To achieve this, a recombinant lentivirus containing the COX-2 gene was constructed in order to overexpress COX-2; a recombinant lentivirus containing a control sequence was also constructed. A Transwell chamber migration assay was performed to quantify the migration of the COX-2-transduced cells, and of cells treated with a COX-2 inhibitor (NS398) or a PI3K inhibitor (LY294002). Immunofluorescence assays were performed to determine changes in E-cadherin, vimentin and NF-κB expression levels. ELISAs were performed to quantify the levels of matrix metallopeptidase (MMP)-2, MMP-9 and vascular endothelial growth factor (VEGF) in the culture medium. Western blot analysis was conducted to measure the protein expression levels of MMP-2, MMP-9, PI3K, phosphorylated (p-) PI3K, AKT, p-AKT, inhibitor of NF-κΒ kinase (IKK) and p-IKK. The results demonstrated that the migration ability of the COX-2-overexpressing MG-63 cells was significantly increased compared with the control cells. The migration ability of cells treated with NS398 or LY294002 was significantly decreased. Compared with the control cells, E-cadherin expression was significantly decreased in COX-2-overexpressing cells, while the expression levels of vimentin, MMP-2, MMP-9, VEGF, p-PI3K, p-AKT and p-IKK were significantly increased. Compared with the control cells, E-cadherin expression was significantly increased in cells treated with NS398 or LY294002, while the expression levels of vimentin, MMP-2, MMP-9, VEGF, p-PI3K, p-AKT, and p-IKK were significantly decreased. The total protein levels of PI3K, AKT and IKK were not changed among the treatment groups. In summary, COX-2 overexpression decreased the expression levels of the epithelial protein E-cadherin and increased the expression levels of the mesenchymal proteins vimentin, MMP-2 and MMP-9, as well as promoted cell migration, by activating the PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xueliang Zhang
- Department of Osteology, The Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Peng Qu
- Department of Osteology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hui Zhao
- Department of Osteology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Tong Zhao
- Department of Osteology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Nong Cao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
21
|
Tuysuz EC, Gulluoglu S, Yaltirik CK, Ozbey U, Kuskucu A, Çoban EA, Sahin F, Türe U, Bayrak OF. Distinctive role of dysregulated miRNAs in chordoma cancer stem-like cell maintenance. Exp Cell Res 2019; 380:9-19. [DOI: 10.1016/j.yexcr.2019.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/08/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
|
22
|
Wu S, Li H, Lu C, Zhang F, Wang H, Lu X, Zhang G. Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis. Biol Chem 2019; 399:1457-1467. [PMID: 30138108 DOI: 10.1515/hsz-2018-0303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
As the most common histological subtype of lung cancer, lung adenocarcinoma remains a tremendous risk to public health, which requires ceaseless efforts to elucidate the potential diagnostic and therapeutic strategies. Circular RNAs (circRNAs) have been identified with emerging roles in tumorigenesis and development. Our preliminary work noticed that hsa_circ_0025036 was significantly upregulated in lung adenocarcinoma tissues. However, its specific roles in lung adenocarcinoma remain unclear. The results in this study revealed that hsa_circ_0025036 existed as a circular form and was aberrantly upregulated in lung adenocarcinoma tissues via quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Its expression level exhibited a close link with aggressive clinicopathological parameters including cancer differentiation, TNM stage and lymph node metastasis. hsa_circ_0025036 knockdown significantly suppressed cell proliferation and promoted cell apoptosis in A549 and Calu-3 cells. Moreover, hsa_circ_0025036/miR-198/SHMT1&TGF-α axis was identified via bioinformatics analysis and Dual-Luciferase Reporter assays. miR-198 inhibitors reversed the function of hsa_circ_0025036 knockdown. hsa_circ_0025036 knockdown exerted similar effects with miR-198 upregulation on cell proliferation and apoptosis. In conclusion, we demonstrate that hsa_circ_0025036 regulates cell proliferation and apoptosis in lung adenocarcinoma cells probably via hsa_circ_0025036/miR-198/SHMT1&TGF-α axis. hsa_circ_0025036 may serve as a potential prognostic biomarker and a therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shujun Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Hui Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Chunya Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Furui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Xinhua Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
23
|
Zhang Y, Zhao H, Xu W, Jiang D, Huang L, Li L. High Expression of PQBP1 and Low Expression of PCK2 are Associated with Metastasis and Recurrence of Osteosarcoma and Unfavorable Survival Outcomes of the Patients. J Cancer 2019; 10:2091-2101. [PMID: 31205570 PMCID: PMC6548156 DOI: 10.7150/jca.28480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/23/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy, predominately affecting children and adolescents. Due to the introduction of chemotherapy, the 5-year survival rate of OS patients has dramatically improved to 60-70%. Unfortunately, OS patients with recurrence or metastatic disease have less than a 20% chance of long-term survival, despite aggressive therapies. In this study, we aimed to identify gene expression patterns associated with metastasis and recurrence in order to identify potential biomarkers with prognostic power. We found that high expression of polyglutamine tract-binding protein 1 (PQBP1) and low expression of phosphoenolpyruvate carboxykinase 2 (PCK2) were related to a high probability of recurrence and metastasis in OS patients and also predicted shorter recurrence-free survival (RFS) and metastasis-free survival (MFS) after adjustment for other clinical variables. Prediction models based on the combination of PQBP1 and PCK2 expression had good and robust predictive power for recurrence and metastasis. A PQBP1 and PCK2-centered protein interaction network was built, and the hypothetical regulatory path between them was identified and termed the PQBP1-SF3A2-UBA52-PCK2 axis. Gene enrichment analysis indicated that aberrations of metabolism might play an important role in recurrence and metastasis in OS patients. Accordingly, PQBP1 and PCK2 are crucial for recurrence and metastasis in OS, and these findings provide a molecular basis for the exploitation of diagnostic and therapeutic strategies for overcoming recurrence and metastasis in OS.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Haiyue Zhao
- Center of Reproduction and Genetics, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou, Jiangsu 215002, China
| | - Wu Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Dinghua Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Lixin Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Lisong Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| |
Collapse
|
24
|
Yuan Y, Wang Y, Liu Z, Sun Y, Yao Y, Yu W, Shen Z. MAT2B promotes proliferation and inhibits apoptosis in osteosarcoma by targeting epidermal growth factor receptor and proliferating cell nuclear antigen. Int J Oncol 2019; 54:2019-2029. [PMID: 30942439 PMCID: PMC6521932 DOI: 10.3892/ijo.2019.4764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed bone tumor in young people with poor prognosis. At present, the mechanisms underlying tumorigenesis in OS are not well understood. The methionine adnosyltransferase 2B (MAT2B) gene encodes the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies demonstrated that it is highly expressed in a number of human malignancies; however, is undefined in OS. In the present study, MAT2B expression was investigated in tumor samples and cell lines. In vivo and in vitro, lentivirus‑mediated small hairpin RNA was constructed to target the MAT2B gene and examine the role of MAT2B in OS proliferation. Microarray analysis was performed to examine the possible downstream molecular target of MAT2B in OS. MAT2B was markedly increased in OS specimens compared with the normal bone tissues, and it was additionally abundantly expressed in OS cell lines. Inhibition of MAT2B expression caused a marked decrease in proliferation and significant increase in apoptosis. In vivo, MAT2B silencing significantly inhibited OS cell growth. Microarray analysis suggested that epidermal growth factor receptor (EGFR) and proliferating cell nuclear antigen (PCNA) may function as downstream targets of MAT2B in OS, as confirmed by reverse transcription‑quantitative polymerase chain reaction assays and western blotting. Collectively, these results suggested that MAT2B serves a critical role in the proliferation of OS by regulating EGFR and PCNA and that it may be a potential therapeutic target and prognostic factor of OS.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zimei Liu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yong Sun
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yang Yao
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wenxi Yu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zan Shen
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
25
|
Blockage of TGF- α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8231267. [PMID: 30906781 PMCID: PMC6398060 DOI: 10.1155/2019/8231267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Background. Xuanwei City in Yunnan province has been one of the towns with highest lung cancer mortality in China. The high content of amorphous silica in the bituminous coal from Xuanwei of Yunnan is mainly present as irregular and spherical silica nanoparticles (SiNPs). It has been reported that silica nanoparticles in bituminous coal correlated with the high incidence of lung cancer in Xuanwei. To explore the role and mechanism of SiNPs in the tumorigenesis of lung cancer in Xuanwei, human mononuclear cells (THP-1) and human bronchial epithelial cells (BEAS-2B) were cocultured in a transwell chamber. Combined with Benzo[a]pyrene-7, 8-dihydrodiol-9, and 10-epoxide (BPDE), SiNPs could significantly promote the proliferation and Epithelial-Mesenchymal Transition (EMT) and inhibit apoptosis of BEAS-2B cells and induce the release of TGF-α from THP-1 cells. After neutralizing TGF-α with antibody, the proliferation and EMT were decreased and enhanced apoptosis of BEAS-2B cells. Furthermore, the results showed that TGF-α in the sera of patients with lung adenocarcinoma in Xuanwei were significantly higher than in patients with benign pulmonary lesions in Xuanwei and those with lung adenocarcinoma in outside of Xuanwei of Yunnan. Taken together, our study found that SiNPs promoted the proliferation and EMT of BEAS-2B cells by inducing the release of TGF-α from THP-1 cells.
Collapse
|
26
|
Sökeland G, Schumacher U. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer 2019; 18:12. [PMID: 30657059 PMCID: PMC6337777 DOI: 10.1186/s12943-018-0937-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Formation of distant metastases is by far the most common cause of cancer-related deaths. The process of metastasis formation is complex, and within this complex process the formation of migratory cells, the so called epithelial mesenchymal transition (EMT), which enables cancer cells to break loose from the primary tumor mass and to enter the bloodstream, is of particular importance. To break loose from the primary cancer, cancer cells have to down-regulate the cell-to-cell adhesion molecuIes (CAMs) which keep them attached to neighboring cancer cells. In contrast to this downregulation of CAMS in the primary tumor, cancer cells up-regulate other types of CAMs, that enable them to attach to the endothelium in the organ of the future metastasis. During EMT, the expression of cell-to-cell and cell-to-matrix adhesion molecules and their down- and upregulation is therefore critical for metastasis formation. Tumor cells mimic leukocytes to enable transmigration of the endothelial barrier at the metastatic site. The attachment of leukocytes/cancer cells to the endothelium are mediated by several CAMs different from those at the site of the primary tumor. These CAMs and their ligands are organized in a sequential row, the leukocyte adhesion cascade. In this adhesion process, integrins and their ligands are centrally involved in the molecular interactions governing the transmigration. This review discusses the integrin expression patterns found on primary tumor cells and studies whether their expression correlates with tumor progression, metastatic capacity and prognosis. Simultaneously, further possible, but so far unclearly characterized, alternative adhesion molecules and/or ligands, will be considered and emerging therapeutic possibilities reviewed.
Collapse
Affiliation(s)
- Greta Sökeland
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
27
|
Liu Y, Wei W, Hong C, Wang Y, Sun X, Ma J, Zheng F. Calreticulin induced endothelial ICAM-1 up-regulation associated with tristetraprolin expression alteration through PI3K/Akt/eNOS/p38 MAPK signaling pathway in rheumatoid arthritis. Mol Immunol 2019; 107:10-20. [PMID: 30639474 DOI: 10.1016/j.molimm.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Abstract
The present study was undertaken to determine whether extracellular calreticulin (CRT) participates in the regulation of ICAM-1in rheumatoid arthritis (RA) and further explore the potential mechanism. Our results showed that ICAM-1 and VCAM-1 levels were positively correlated with CRT levels in RA serum and synovial fluid, respectively. In RA synovial tissue, increased co-expressions of CRT and ICAM-1 in vascular endothelium and perivascular areas and elevated co-location of CRT and VCAM-1 localized predominantly to lining layer were observed compared to those in OA. In in vitro HUVECs model, enhanced ICAM-1expression and increased phosphorylation levels of Akt and eNOS were detected in the presence of CRT. Increased phosphorylated eNOS was significantly inhibited by a PI3K inhibitor LY294002 and elevated ICAM-1expression was partially blocked by the inhibitors of both PI3K and eNOS (L-NAME). It has been certified that the RNA-binding protein TTP targets AU-rich elements in the ICAM-1 3'-UTR and suppresses ICAM-1 expression. Knocking down TTP in HUVECs led to an increased induction of ICAM-1 by CRT. We have currently known that activation of p38 downstream kinase MK-2 leads to phosphorylation and inactivation of human TTP. The block of p38 MAPK/MK-2 signaling led to decreased protein expression and mRNA stability of TTP and ICAM-1. Furthermore, L-NAME and/or LY294002 pre-treated HUVECs manifested decreased p38 and MK-2 phosphorylation, which was accompanied by reduced TTP and ICAM-1 protein expression as well as decreased mRNA stability. Our results suggested that CRT could promote ICAM-1 expression in endothelial cells through PI3K/Akt/eNOS/p38 MAPK signaling mediated TTP accumulation, probably in an inactive form, which may provide a possible proinflammatory mechanism of CRT in RA.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Wei Wei
- Department of Rheumatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Chengcheng Hong
- Department of Laboratory Medicine, Children's Hospital of Tianjin, Tianjin 300203, China
| | - Yang Wang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Xuguo Sun
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Jun Ma
- Department of Health Statistics, College of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Fang Zheng
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
28
|
Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol 2019; 12:2. [PMID: 30621731 PMCID: PMC6325886 DOI: 10.1186/s13045-018-0689-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell malignancy associated with osteolytic bone disease. Recently, the role of MM-derived exosomes in the osteoclastogenesis has been demonstrated although the underlying mechanism is still unknown. Since exosomes-derived epidermal growth factor receptor ligands (EGFR) are involved in tumor-associated osteolysis, we hypothesize that the EGFR ligand amphiregulin (AREG) can be delivered by MM-derived exosomes and participate in MM-induced osteoclastogenesis. Methods Exosomes were isolated from the conditioned medium of MM1.S cell line and from bone marrow (BM) plasma samples of MM patients. The murine cell line RAW264.7 and primary human CD14+ cells were used as osteoclast (OC) sources. Results We found that AREG was specifically enriched in exosomes from MM samples and that exosomes-derived AREG led to the activation of EGFR in pre-OC, as showed by the increase of mRNA expression of its downstream SNAIL in both RAW264.7 and CD14+ cells. The presence of neutralizing anti-AREG monoclonal antibody (mAb) reverted this effect. Consequently, we showed that the effect of MM-derived exosomes on osteoclast differentiation was inhibited by the pre-treatment of exosomes with anti-AREG mAb. In addition, we demonstrated the ability of MM-derived AREG-enriched exosomes to be internalized into human mesenchymal stromal cells (MSCs) blocking osteoblast (OB) differentiation, increasing MM cell adhesion and the release of the pro-osteoclastogenic cytokine interleukin-8 (IL8). Accordingly, anti-AREG mAb inhibited the release of IL8 by MSCs suggesting that both direct and indirect effects are responsible for AREG-enriched exosomes involvement on MM-induced osteoclastogenesis. Conclusions In conclusion, our data indicate that AREG is packed into MM-derived exosomes and implicated in OC differentiation through an indirect mechanism mediated by OBs. Electronic supplementary material The online version of this article (10.1186/s13045-018-0689-y) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Yan J, Huang W, Huang X, Xiang W, Ye C, Liu J. A negative feedback loop between long noncoding RNA NBAT1 and Sox9 inhibits the malignant progression of gastric cancer cells. Biosci Rep 2018; 38:BSR20180882. [PMID: 30287498 PMCID: PMC6240717 DOI: 10.1042/bsr20180882] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in carcinogenesis and progression, and act as important gene expression modulators. Recent evidence indicates that lncRNA neuroblastoma associated transcript 1 (NBAT1) functions as a tumor suppressor in some types of human cancers. However, its functional role in the development of gastric cancer (GC) remains unknown. The aim of this research was to investigate the clinical significance and biological functions of NBAT1 in GC. NBAT1 was found to be significantly down-regulated in GC tissue. Decreased NBAT1 expression was correlated with poor differentiation, higher tumor stage and lymph node metastasis, and poor prognosis. Functional assays showed that NBAT1 inhibited GC proliferation, migration, and invasion. NBAT1 also suppressed proliferation, migration, and capillary tube formation of human umbilical vein endothelial cells (HUVECs). Mechanistically, NBAT1 interacted with Sox9, and reduced its protein stability by promoting it from polyubiquitination and proteasome-dependent degradation. Moreover, we revealed that Sox9 could occupy the NBAT1 promoter to inactivate its transcription. The negative feedback loop of NBAT1 and Sox9 continuously enhanced the suppressive effects. In conclusion, these findings suggest that feedback regulation of NBAT1 and Sox9 served as a critical effector in GC progression.
Collapse
Affiliation(s)
- Jijun Yan
- Department of General Surgery, Hanchuan People's Hospital, Hubei Province, China
| | - Wenwei Huang
- Department of General Surgery, Hanchuan People's Hospital, Hubei Province, China
| | - Xiufang Huang
- Department of General Surgery, Hanchuan People's Hospital, Hubei Province, China
| | - Wencai Xiang
- Department of General Surgery, Hanchuan People's Hospital, Hubei Province, China
| | - Chao Ye
- Department of General Surgery, Hanchuan People's Hospital, Hubei Province, China
| | - Juntao Liu
- Department of General Surgery, Hanchuan People's Hospital, Hubei Province, China
| |
Collapse
|
30
|
Expression of miR‑542‑3p in osteosarcoma with miRNA microarray data, and its potential signaling pathways. Mol Med Rep 2018; 19:974-983. [PMID: 30569116 PMCID: PMC6323234 DOI: 10.3892/mmr.2018.9761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common pediatric primary bone tumor, with high malignancy rates and a poor prognosis following metastasis. At present, the role of microRNA (miR)-542-3p in OS remains to be elucidated. The purpose of the present study was to investigate the expression level of miR-542-3p in OS, and its potential molecular mechanisms, via a bioinformatics analysis. First, the expression of miR-542-3p in OS based on the continuous variables of the Gene Expression Omnibus database and PubMed was studied. Subsequently, the potential target genes of miR-542-3p were predicted using gene expression profiles and bioinformatics software. On the basis of the Database for Annotation, Visualization and Integrated Discovery, version 6.8, a study of gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway knowledge base was conducted to explore the biological value of miR-542-3p in OS. Finally, the protein-protein interaction (PPI) network was completed using the STRING database. The expression of miR-542-3p in OS was revealed to be significantly higher compared with that in normal tissue. In total, 1,036 target genes of miR-542-3p were obtained. The results of the GO enrichment analysis revealed that the significant terms were ‘bone development’, ‘cell cycle arrest’ and ‘intracellular signal transduction’. The results of the KEGG analysis revealed the highlighted pathways that were targeted to miR-542-3p, including the sphingolipid signaling pathway (P=3.91×10−5), the phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase (AKT) signaling pathway (P=3.17×10−5) and the insulin signaling pathway (P=1.04×10−5). The PPI network revealed eight hub genes: Ubiquitin-60S ribosomal protein L40, Ras-related C3 botulinum toxin substrate, mitogen-activated protein kinase 1, epidermal growth factor receptor, cystic fibrosis transmembrane conductance regulator, PI3K regulatory subunit 1, AKT1, and actin-related protein 2/3 complex subunit 1A, which may be the key target genes of miR-542-3p in OS. Taken together, these results have demonstrated that miR-542-3p was overexpressed in OS. The potential target genes and biological functions of miR-542-3p may provide novel insights into the differentially expressed genes that are involved in OS.
Collapse
|
31
|
Yu CY, Chang WC, Zheng JH, Hung WH, Cho EC. Transforming growth factor alpha promotes tumorigenesis and regulates epithelial-mesenchymal transition modulation in colon cancer. Biochem Biophys Res Commun 2018; 506:901-906. [DOI: 10.1016/j.bbrc.2018.10.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023]
|
32
|
Liu Y, Sun W, Ma X, Hao Y, Liu G, Hu X, Shang H, Wu P, Zhao Z, Liu W. Logistic regression analysis for the identification of the metastasis-associated signaling pathways of osteosarcoma. Int J Mol Med 2018; 41:1233-1244. [PMID: 29328361 PMCID: PMC5819903 DOI: 10.3892/ijmm.2018.3360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common histological type of primary bone cancer. The present study was designed to identify the key genes and signaling pathways involved in the metastasis of OS. Microarray data of GSE39055 were downloaded from the Gene Expression Omnibus database, which included 19 OS biopsy specimens before metastasis (control group) and 18 OS biopsy specimens after metastasis (case group). After the differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Analysis package, hierarchical clustering analysis and unsupervised clustering analysis were performed separately, using orange software and the self-organization map method. Based upon the Database for Annotation, Visualization and Integrated Discovery tool and Cytoscape software, enrichment analysis and protein-protein interaction (PPI) network analysis were conducted, respectively. After function deviation scores were calculated for the significantly enriched terms, hierarchical clustering analysis was performed using Cluster 3.0 software. Furthermore, logistic regression analysis was used to identify the terms that were significantly different. Those terms that were significantly different were validated using other independent datasets. There were 840 DEGs in the case group. There were various interactions in the PPI network [including intercellular adhesion molecule-1 (ICAM1), transforming growth factor β1 (TGFB1), TGFB1-platelet-derived growth factor subunit B (PDGFB) and PDGFB-platelet-derived growth factor receptor-β (PDGFRB)]. Regulation of cell migration, nucleotide excision repair, the Wnt signaling pathway and cell migration were identified as the terms that were significantly different. ICAM1, PDGFB, PDGFRB and TGFB1 were identified to be enriched in cell migration and regulation of cell migration. Nucleotide excision repair and the Wnt signaling pathway were the metastasis-associated pathways of OS. In addition, ICAM1, PDGFB, PDGFRB and TGFB1, which were involved in cell migration and regulation of cell migration may affect the metastasis of OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xiaojun Ma
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yuedong Hao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Gang Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaohui Hu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Houlai Shang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Pengfei Wu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zexue Zhao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Weidong Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
33
|
Zhao Y, Wei L, Shao M, Huang X, Chang J, Zheng J, Chu J, Cui Q, Peng L, Luo Y, Tan W, Tan W, Lin D, Wu C. BRCA1-Associated Protein Increases Invasiveness of Esophageal Squamous Cell Carcinoma. Gastroenterology 2017; 153:1304-1319.e5. [PMID: 28780075 DOI: 10.1053/j.gastro.2017.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS We performed a screen for genes whose expression correlates with invasiveness of esophageal squamous cell carcinoma (ESCC) cells. We studied the effects of overexpression and knockdown of these genes in cell lines and expression levels in patient samples. METHODS We selected genes for analysis from 11 loci associated with risk of ESCC. We analyzed the effects of knocking down expression of 47 of these genes using RNA interference on-chip analysis in ESCC cells and HeLa cells. Cells with gene overexpression and knockdown were analyzed in migration and invasion assays or injected into nude mice and metastasis of xenograft tumors was quantified. We collected ESCC and non-tumor esophageal tissues from 94 individuals who underwent surgery in China from 2010 and 2014; clinical information was collected and survival time was measured from the date of diagnosis to the date of last follow-up or death. Levels of messenger RNAs (mRNAs) were quantified by RNA sequencing, and levels of proteins were determined from immunoblot analyses. Patient survival was compared with mRNA levels using Kaplan-Meier methods and hazard ratios were calculated by Cox models. RESULTS We identified 8 genes whose disruption increased migration and 10 genes whose disruption reduced migration. Knockdown of BRCA1-associated protein gene (BRAP) significantly reduced migration of KYSE30, KYSE150, and HeLa cells. In patient tumors, 90% of ESCCs examined had higher levels of BRAP protein than paired non-tumor tissues, and 63.8% had gains in BRAP DNA copy number. Levels of BRAP mRNA in ESCC tissues correlated with patient survival time, and high expression increased risk of death 2.4-fold compared with low expression. ESCCs that had metastasized to lymph node had significantly higher levels of BRAP mRNA than tumors without metastases. Knockdown of BRAP in ESCC and HeLa cell lines significantly reduced migration and invasiveness; these cell lines formed less metastases in mice than control cells. Nuclear translocation of the nuclear factor-κB (NF-κB) P65 subunit and phosphorylation of inhibitor of NF-κB kinase subunit β (IKBKB or IKKβ) increased in cells that overexpressed BRAP and decreased in cells with BRAP knockdown. In immunoprecipitation assays, BRAP interacted directly with IKKβ. Expression of matrix metalloproteinase 9 and vascular epithelial growth factor C, which are regulated by NF-κB, was significantly reduced in cells with knockdown of BRAP and significantly increased in cells that overexpressed BRAP. CONCLUSIONS Expression of BRAP is increased in ESCC samples compared with non-tumor esophageal tissues; increased expression correlates with reduced patient survival time and promotes metastasis of xenograft tumors in mice. BRAP overexpression leads to increased activity of NF-κB and expression of matrix metalloproteinase 9 and vascular epithelial growth factor C.
Collapse
Affiliation(s)
- Yanjie Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixuan Wei
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingming Shao
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xudong Huang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Chang
- Key Laboratory for Environment and Health, Ministry of Education, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jiahui Chu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qionghua Cui
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linna Peng
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Luo
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenle Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
34
|
He Y, Ma J, Ye X. A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy. Int J Mol Med 2017; 40:1357-1364. [PMID: 28901446 PMCID: PMC5627885 DOI: 10.3892/ijmm.2017.3126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/29/2017] [Indexed: 12/02/2022] Open
Abstract
In this study, gene expression profiles of osteosarcoma (OS) were analyzed to identify critical genes associated with metastasis. Five gene expression datasets were screened and downloaded from Gene Expression Omnibus (GEO). Following assessment by MetaQC, the dataset GSE9508 was excluded for poor quality. Subsequently, differentially expressed genes (DEGs) between metastatic and non-metastatic OS were identified using meta-analysis. A protein-protein interaction (PPI) network was constructed with information from Human Protein Reference Database (HPRD) for the DEGs. Betweenness centrality (BC) was calculated for each node in the network and top featured genes ranked by BC were selected out to construct support vector machine (SVM) classifier using the training set GSE21257, which was then validated using the other three independent datasets. Pathway enrichment analysis was performed for the featured genes using Fisher's exact test. A total of 353 DEGs were identified and a PPI network including 164 nodes and 272 edges was then constructed. The top 64 featured genes ranked by BC were included in the SVM classifier. The SVM classifier exhibited high prediction accuracies in all of the 4 datasets, with accuracies of 100, 100, 92.6 and 100%, respectively. Further analysis of the featured genes revealed that 11 Gene Ontology (GO) biological pathways and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly over-represented, including the regulation of cell proliferation, regulation of apoptosis, pathways in cancer, regulation of actin cytoskeleton and the TGF-β signaling pathway. On the whole, an SVM classifier with high prediction accuracy was constructed and validated, in which key genes associated with metastasis in OS were also revealed. These findings may promote the development of genetic diagnostic methods and may enhance our understanding of the molecular mechanisms underlying the metastasis of OS.
Collapse
Affiliation(s)
- Yunfei He
- Department of Orthopaedics, Changzheng Hospital Αffiliated to Second Military Medical University, Shanghai 200003, P.R. China
| | - Jun Ma
- Department of Orthopaedics, Changzheng Hospital Αffiliated to Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital Αffiliated to Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
35
|
Chan XY, Singh A, Osman N, Piva TJ. Role Played by Signalling Pathways in Overcoming BRAF Inhibitor Resistance in Melanoma. Int J Mol Sci 2017; 18:ijms18071527. [PMID: 28708099 PMCID: PMC5536016 DOI: 10.3390/ijms18071527] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of the BRAFV600E mutation led to the development of vemurafenib (PLX4032), a selective BRAF inhibitor specific to the kinase, for the treatment of metastatic melanomas. However, initial success of the drug was dampened by the development of acquired resistance. Melanoma was shown to relapse in patients following treatment with vemurafenib which eventually led to patients' deaths. It has been proposed that mechanisms of resistance can be due to (1) reactivation of the mitogen-activated protein kinase (MAPK) signalling pathway via secondary mutations, amplification or activation of target kinase(s), (2) the bypass of oncogenic pathway via activation of alternative signalling pathways, (3) other uncharacterized mechanisms. Studies showed that receptor tyrosine kinases (RTK) such as PDGFRβ, IGF1R, EGFR and c-Met were overexpressed in melanoma cells. Along with increased secretion of growth factors such as HGF and TGF-α, this will trigger intracellular signalling cascades. This review discusses the role MAPK and Phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K-AKT-mTOR) pathways play in the mechanism of resistance of melanomas.
Collapse
Affiliation(s)
- Xian Yang Chan
- School of Health & Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Alamdeep Singh
- School of Health & Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Narin Osman
- School of Health & Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
- Department of Immunology, Monash University, Melbourne 3004, Victoria, Australia.
- Department of Pharmacy, University of Queensland, Woolloongabba 4102, Queensland, Australia.
| | - Terrence J Piva
- School of Health & Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| |
Collapse
|
36
|
Chen Y, Zhang K, Li Y, He Q. Estrogen-related receptor α participates transforming growth factor-β (TGF-β) induced epithelial-mesenchymal transition of osteosarcoma cells. Cell Adh Migr 2017; 11:338-346. [PMID: 27532429 PMCID: PMC5569972 DOI: 10.1080/19336918.2016.1221567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/31/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma patients often exhibit pulmonary metastasis, which results in high patient mortality. Understanding the mechanisms of advanced metastasis in osteosarcoma cell is important for the targeted treatment and drug development. Our present study revealed that transforming growth factor-β (TGF-β) treatment can significantly promote the in vitro migration and invasion of human osteosarcoma MG-63 and HOS cells. The loss of epithelial characteristics E-cadherin (E-Cad) and up regulation of mesenchymal markers Vimentin (Vim) suggested TGF-β induced epithelial-mesenchymal transition (EMT) of osteosarcoma cells. TGF-β treatment obviously increased the expression of Snail, a key EMT-related transcription factor, in both MG-63 and HOS cells. Silencing of Snail markedly attenuated TGF-β induced down regulation of E-cad and up regulation of Vim. TGF-β treatment also significantly increased the expression and nuclear translocation of estrogen-related receptors α (ERRα), while had no obvious effect on the expression of ERα, ERβ, or ERRγ. Knock down of ERRα or its inhibitor XCT-790 significantly attenuated TFG-β induced EMT and transcription of Snail in osteosarcoma cells. Collectively, our present study revealed that TGF-β treatment can trigger the EMT of osteosarcoma cells via ERRα/Snail pathways. Our data suggested that ERRα/Snail pathways might be potential therapeutic targets of metastasis of osteosarcoma cells.
Collapse
Affiliation(s)
- Yantao Chen
- Orthopaedics Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen Unviersity, Yuexiu District, Guangzhou, China
| | - Kunshui Zhang
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen Unviersity, Yuexiu District, Guangzhou, China
| | - Yang Li
- Pediatric Hematology & Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qing He
- SICU Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen Unviersity, Yuexiu District, Guangzhou, China
| |
Collapse
|
37
|
Sun KX, Chen Y, Chen S, Liu BL, Feng MX, Zong ZH, Zhao Y. The correlation between microRNA490-3p and TGFα in endometrial carcinoma tumorigenesis and progression. Oncotarget 2016; 7:9236-49. [PMID: 26843615 PMCID: PMC4891037 DOI: 10.18632/oncotarget.7061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′ UTR). MiR-490-3p has been reported to be a suppressor in various human cancers; however, little is known about the biological functions of miR-490-3p in endometrial cancer (EC). In our study, we found that MiR-490-3p mRNA expression was significantly lower in ECs than in normal endometrial tissues. MiR-490-3p mRNA expression was also negatively associated with depth of invasion (mucosa vs. muscular and serosa) and lymph node metastasis (negative vs. positive) in EC. MiR-490-3p overexpression reduced proliferation; promoted G1 arrest and apoptosis; suppressed migration and invasion; and reduced TGFα, NF-kB, cyclin D1, survivin, matrix metalloproteinase 2 (MMP2) mRNA and protein expression, and improved Bax mRNA and protein expression. The dual-luciferase reporter assay indicated that miR-490-3p directly targeted TGFα by binding its 3′ untranslated region. MiR-490-3P transfection also suppressed tumor development and TGFα expression (as determined by immunohistochemistry and western blotting) in vivo in the xenograft mouse model. This is the first demonstration that miR-490-3P might act as a suppressor in EC tumorigenesis and progression by targeting TGFα. Our results provide a theoretical basis for the further study on the molecular target for endometrial cancer.
Collapse
Affiliation(s)
- Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Ying Chen
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Miao-Xiao Feng
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, P.R. China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
38
|
Cortini M, Massa A, Avnet S, Bonuccelli G, Baldini N. Tumor-Activated Mesenchymal Stromal Cells Promote Osteosarcoma Stemness and Migratory Potential via IL-6 Secretion. PLoS One 2016; 11:e0166500. [PMID: 27851822 PMCID: PMC5112800 DOI: 10.1371/journal.pone.0166500] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive bone malignancy with a high relapse rate despite combined treatment with surgery and multiagent chemotherapy. As for other cancers, OS-associated microenvironment may contribute to tumor initiation, growth, and metastasis. We consider mesenchymal stromal cells (MSC) as a relevant cellular component of OS microenvironment, and have previously found that the interaction between MSC and tumor cells is bidirectional: tumor cells can modulate their peripheral environment that in turn becomes more favorable to tumor growth through metabolic reprogramming. Here, we determined the effects of MSC on OS stemness and migration, two major features associated with recurrence and chemoresistance. The presence of stromal cells enhanced the number of floating spheres enriched in cancer stem cells (CSC) of the OS cell population. Furthermore, the co-culturing with MSC stimulated the migratory capacity of OS via TGFβ1 and IL-6 secretion, and the neutralizing antibody anti-IL-6 impaired this effect. Thus, stromal cells in combination with OS spheres exploit a vicious cycle where the presence of CSC stimulates mesenchymal cytokine secretion, which in turn increases stemness, proliferation, migration, and metastatic potential of CSC, also through the increase of expression of adhesion molecules like ICAM-1. Altogether, our data corroborate the concept that a comprehensive knowledge of the interplay between tumor and stroma that also includes the stem-like fraction of tumor cells is needed to develop novel and effective anti-cancer therapies.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Annamaria Massa
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Gloria Bonuccelli
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- * E-mail:
| |
Collapse
|
39
|
Amphiregulin enhances intercellular adhesion molecule-1 expression and promotes tumor metastasis in human osteosarcoma. Oncotarget 2016; 6:40880-95. [PMID: 26503469 PMCID: PMC4747375 DOI: 10.18632/oncotarget.5679] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/13/2015] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is a common, high malignant, and metastatic bone cancer. Amphiregulin (AREG) has been associated with cancer cellular activities. However, the effect of AREG on metastasis activity in human osteosarcoma cells has yet to be determined. We determined that AREG increases the expression of intercellular adhesion molecule-1 (ICAM-1) through PI3K/Akt signaling pathway via its interaction with the epidermal growth factor receptor, thus resulting in the enhanced cell migration of osteosarcoma. Furthermore, AREG stimulation increased the association of NF-κB to ICAM-1 promoter which then up-regulated ICAM-1 expression. Finally, we observed that shRNA silencing of AREG decreased osteosarcoma metastasis in vivo. Our findings revealed a relationship between osteosarcoma metastatic potential and AREG expression and the modulating effect of AREG on ICAM-1 expression.
Collapse
|
40
|
Yu X, Wang Q, Zhou X, Fu C, Cheng M, Guo R, Liu H, Zhang B, Dai M. Celastrol negatively regulates cell invasion and migration ability of human osteosarcoma via downregulation of the PI3K/Akt/NF-κB signaling pathway in vitro. Oncol Lett 2016; 12:3423-3428. [PMID: 27900015 DOI: 10.3892/ol.2016.5049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/27/2016] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of the bone, with a tendency to metastasize early. Despite the advances in treatment options, more than 30% of patients develop distant metastases, and the prognosis of these patients with metastases is extremely poor. Celastrol has been demonstrated to manifest multiple pharmacological activities, including induction of apoptosis in numerous types of cancer cell lines. Our previous studies have also suggested that Celastrol is capable of inducing apoptosis of human osteosarcoma cells via the mitochondrial-dependent pathway. The purpose of this study was to investigate the effects of Celastrol on the migration and invasion of human osteosarcoma U-2OS cells in vitro. Cell migration and invasion were investigated using wound healing and Boyden chamber Transwell assays. We observed that Celastrol suppressed cell invasion and migration in human osteosarcoma U-2OS cells. Furthermore, protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K), Akt, inhibitor of κB kinase α/β, inhibitor of κB α, nuclear factor-κB (NF-κB subunit p65) and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. We observed that the PI3K/Akt/NF-κB signaling pathway was inhibited following Celastrol treatment. In addition, the expression levels of MMP-2 and -9 proteins were also reduced significantly following Celastrol treatment. Therefore, we confirmed that Celastrol suppressed osteosarcoma U-2OS cell metastasis via downregulation of the PI3K/Akt/NF-κB signaling pathway in vitro.
Collapse
Affiliation(s)
- Xiaolong Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Changlin Fu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Ming Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Runsheng Guo
- Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hucheng Liu
- Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
41
|
Liu JF, Tsao YT, Hou CH. Fractalkine/CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma. Oncotarget 2016; 8:54136-54148. [PMID: 28903329 PMCID: PMC5589568 DOI: 10.18632/oncotarget.11250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/09/2016] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor in children and teens. The exact molecular mechanism underlying osteosarcoma progression still remains unclear. The CX3CL1/fractalkine has been implicated in various tumors but not in osteosarcoma. This study is the first to show that fractalkine promotes osteosarcoma metastasis by promoting cell migration. Fractalkine expression was higher in osteosarcoma cell lines than in normal osteoblasts. Fractalkine induced cell migration by upregulating intercellular adhesion molecule-1 (ICAM-1) expression via CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma cells. Knockdown of fractalkine expression markedly inhibited cell migration and lung metastasis in osteosarcoma. Finally, we showed a clinical correlation between CX3CL1 expression and ICAM-1 expression as well as tumor stage in human osteosarcoma tissues. In conclusion, our results indicate that fractalkine promotes cell migration and metastasis of osteosarcoma by upregulating ICAM-1 expression. Thus, fractalkine could serve a novel therapeutic target for preventing osteosarcoma metastasis.
Collapse
Affiliation(s)
- Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ya-Ting Tsao
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Abstract
Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.
Collapse
Affiliation(s)
- Vadim V Maximov
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rami I Aqeilan
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.,Department of Molecular Virology, Immunology & Medical Genetics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
43
|
Matsushima-Nishiwaki R, Toyoda H, Nagasawa T, Yasuda E, Chiba N, Okuda S, Maeda A, Kaneoka Y, Kumada T, Kozawa O. Phosphorylated Heat Shock Protein 20 (HSPB6) Regulates Transforming Growth Factor-α-Induced Migration and Invasion of Hepatocellular Carcinoma Cells. PLoS One 2016; 11:e0151907. [PMID: 27046040 PMCID: PMC4821579 DOI: 10.1371/journal.pone.0151907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/12/2016] [Indexed: 01/25/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) is one of the major malignancies in the world. Small heat shock proteins (HSPs) are reported to play an important role in the regulation of a variety of cancer cell functions, and the functions of small HSPs are regulated by post-translational modifications such as phosphorylation. We previously reported that protein levels of a small HSP, HSP20 (HSPB6), decrease in vascular invasion positive HCC compared with those in the negative vascular invasion. Therefore, in the present study, we investigated whether HSP20 is implicated in HCC cell migration and the invasion using human HCC-derived HuH7 cells. The transforming growth factor (TGF)-α-induced migration and invasion were suppressed in the wild-type-HSP20 overexpressed cells in which phosphorylated HSP20 was detected. Phospho-mimic-HSP20 overexpression reduced the migration and invasion compared with unphosphorylated HSP20 overexpression. Dibutyryl cAMP, which enhanced the phosphorylation of wild-type-HSP20, significantly reduced the TGF-α-induced cell migration of wild-type HSP20 overexpressed cells. The TGF-α-induced cell migration was inhibited by SP600125, a c-Jun N-terminal kinases (JNK) inhibitor. In phospho-mimic-HSP20 overexpressed HuH7 cells, TGF-α-stimulated JNK phosphorylation was suppressed compared with the unphosphorylated HSP20 overexpressed cells. Moreover, the level of phospho-HSP20 protein in human HCC tissues was significantly correlated with tumor invasion. Taken together, our findings strongly suggest that phosphorylated HSP20 inhibits TGF-α-induced HCC cell migration and invasion via suppression of the JNK signaling pathway.
Collapse
Affiliation(s)
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Tomoaki Nagasawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Eisuke Yasuda
- Department of Radiological Technology, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Naokazu Chiba
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Seiji Okuda
- Department of Medical Technology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Atsuyuki Maeda
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Yuji Kaneoka
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Takashi Kumada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| |
Collapse
|
44
|
Gao S, Cheng C, Chen H, Li M, Liu K, Wang G. IGF1 3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29 family in osteosarcoma. J Mol Histol 2016; 47:135-43. [PMID: 26759259 DOI: 10.1007/s10735-016-9659-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors in human worldwide. Angiogenesis is a pivotal process during osteosarcoma development. Insulin-like growth factor 1 (IGF1) has been reported to promote angiogenesis. However, the role of 3' untranslational region (3'UTR) of IGF1 mRNA in angiogenic activity in osteosarcomas is still unknown. In the present study, we performed gain-of-function assays to investigate the role of IGF1-3'UTR in angiogenesis. For the first time, we demonstrated that IGF1 3'UTR increased VEGF expression and promotes angiogenesis in osteosarcoma cells. In addition, RNA-immunoprecipitation and luciferase reporter assays showed that IGF1 3'UTR was a direct target of miR-29s. Our data also demonstrated that there existed a competition of miR-29s between IGF1-3'UTR and VEGF mRNA, and IGF1-3'UTR promoted angiogenesis at least in part via sponging miR-29s. Taken together, our study suggests that IGF1-3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29s in osteosarcoma.
Collapse
Affiliation(s)
- Shuming Gao
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Cai Cheng
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Hanwen Chen
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Min Li
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Kehun Liu
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Guangya Wang
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China.
| |
Collapse
|
45
|
Chen S, Sun KX, Liu BL, Zong ZH, Zhao Y. MicroRNA-505 functions as a tumor suppressor in endometrial cancer by targeting TGF-α. Mol Cancer 2016; 15:11. [PMID: 26832151 PMCID: PMC4736705 DOI: 10.1186/s12943-016-0496-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
Background Endometrial carcinoma (EC) is one of the most lethal gynecologic cancers. Patients frequently have regional or distant metastasis at diagnosis. MicroRNAs are small non-coding RNAs that participate in numerous biological processes. Recent studies have demonstrated that miR-505 is associated with several types of cancer; however, the expression and function of miR-505 have not been investigated in EC. Methods miR-505 expression in normal endometrial tissue, endometrial carcinomas were quantified by Quantitative reverse transcription PCR. The endometrial carcinoma cell lines HEC-1B and Ishikawa were each transfected with miR-505 or scrambled mimics, after which cell phenotype and expression of relevant molecules were assayed. Dual-luciferase reporter assay and a xenograft mouse model were used to examine miR-505 and its target gene TGF-α. Results RT-PCR results demonstrated that miR-505 was significantly downregulated in human EC tissues compared to normal endometrial tissues. Besides, miR-505 expression was negatively associated with FIGO stage (stage I-II vs. III-IV), and lymph node metastasis (negative vs. positive). In vitro, overexpression of miR-505 significantly suppressed EC cell proliferation, increased apoptosis and reduced migratory and invasive activity. A miR-505 binding site was identified in the 3′ untranslated region of TGF-α mRNA (TGFA) using miRNA target-detecting software; a dual luciferase reporter assay confirmed that miR-505 directly targets and regulates TGFA. RT-PCR and Western-blotting results indicated that overexpressing miR-505 reduced the expression of TGF-α and the TGF-α-regulated proteins MMP2, MMP9, CDK2, while induced Bax and cleaved-PARP expression in EC cells. In vivo, overexpression of miR-505 reduced the tumorigenicity and inhibited the growth of xenograft tumors in a mouse model of EC. Conclusions Taken together, this study demonstrates that miR-505 acts as tumor suppressor in EC by regulating TGF-α. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0496-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 100013, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
46
|
Downregulation of human intercellular adhesion molecule-1 attenuates the metastatic ability in human breast cancer cell lines. Oncol Rep 2016; 35:1541-8. [PMID: 26751847 DOI: 10.3892/or.2016.4543] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/09/2015] [Indexed: 11/05/2022] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a cell surface glycoprotein that belongs to immunoglobulin superfamily and plays an important role in tumor cell expansion or metastasis. However, the detailed mechanisms of ICAM-1 in breast cancer remain unclear. In this study, we evaluated the expression level of ICAM-1 in breast cancer using tissue microarray and clinical tissue specimens by immunohistochemical method, and the results revealed that ICAM-1 is highly expressed in the breast cancer tissues. To investigate whether ICAM-1 can affect the metastasis ability in breast cancer, we knocked down ICAM-1 expression in breast cancer cell line MCF-7 by using lentivirus-mediated RNA interference (RNAi). As a result, we stably silenced ICAM-1 expression in MCF-7 cells by infection with lentivirus expressing green fluorescent protein (GFP), the change of metastatic ability of MCF-7 cells was assessed by wound-healing assay, Transwell assay or clone formation assay. Our results showed that silencing of ICAM-1 can inhibit the metastatic ability of MCF-7 cell lines in vitro significantly, and the decreased migration and invasion was accompanied by a reduction of MMP-14. These results implying that ICAM-1 might be involved in the progression of breast cancer metastasis and lentivirus-mediated silencing of ICAM-1 might be a potential therapeutic approach for the treatment of breast cancer.
Collapse
|
47
|
Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles combined with growth factors: recent progress and applications. RSC Adv 2016. [DOI: 10.1039/c6ra13636b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing attention has been focused on the applications of nanoparticles combined with growth factors (NPs/GFs) due to the substantial functions of GFs in regenerative medicine and disease treatments.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jia Deng
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Jidong Li
- Research Center for Nano Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
48
|
Kim B, Nam S, Lim JH, Lim JS. NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells. Biomol Ther (Seoul) 2016; 24:9-18. [PMID: 26759696 PMCID: PMC4703347 DOI: 10.4062/biomolther.2015.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022] Open
Abstract
Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression.
Collapse
Affiliation(s)
- Bomi Kim
- Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sorim Nam
- Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Ji Hyun Lim
- Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
49
|
Yang G, Zhang P, Lv A, Liu Y, Wang G. MiR-205 functions as a tumor suppressor via targeting TGF-α in osteosarcoma. Exp Mol Pathol 2015; 100:160-6. [PMID: 26708425 DOI: 10.1016/j.yexmp.2015.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone cancer, and it is most prevalent in children and young adults. The prognosis of OS remains poor, and survival of OS reached a plateau. The discovery of microRNAs (miRNAs) provides a new possibility for the early diagnosis and treatment of OS. In this study, we detected the expression level of miR-205 and Transforming growth factor-alpha (TGF-α) in 15 cases of clinical OS tissues and adjacent normal bone tissues. We found that the expression of miR-205 was significantly lower in OS tissues than in normal bone tissues; the expression of TGF-α mRNA was significantly increased in OS tissues than in normal bone tissues, the miR-205 was negatively correlated with TGF-α levels in both OS and normal bone tissues. Functional studies demonstrated that miR-205 significantly decreased the capability of cell proliferation, invasion and migration and induced G0/G1 growth arrest and apoptosis in OS cells. By using bioinformatics analytic tool (Targetscan), the 3'UTR of TGF-α gene was found to be a target of miR-205. Luciferase report assay further confirmed that TGF-α 3'UTR is a direct target of miR-205. We also found that the expression of TGF-α mRNA and protein was significantly down-regulated or up-regulated after miR-205 mimic or miR-205 inhibitor transfection. TGF-α knockdown study further showed that miR-205 regulated cell proliferation, invasion and migration by targeting TGF-α in OS. Enforced expression of TGF-α sufficiently restore the effects of miR-205 on cell proliferation, invasion and migration. In conclusion, our study suggested that miR-205 may function as a tumor suppressor via targeting TGF-α in OS, and the abnormal expression of miR-205 might be a key factor in OS progression.
Collapse
Affiliation(s)
- Guojin Yang
- Department of Orthopedics, the Second People's Hospital of Taizhou City, Jiangsu Province, China.
| | - Peng Zhang
- Department of Orthopedics, Jiangsu Province Geriatric Institute, Jiangsu Province, China.
| | - Aibin Lv
- Clinical Laboratory, the Second People's Hospital of Taizhou City, Jiangsu Province, China.
| | - Yulin Liu
- Department of Orthopedics, the Second People's Hospital of Taizhou City, Jiangsu Province, China.
| | - Guoxi Wang
- Department of Orthopedics, the Second People's Hospital of Taizhou City, Jiangsu Province, China.
| |
Collapse
|
50
|
Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells. Inflammation 2015; 39:663-71. [DOI: 10.1007/s10753-015-0292-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|