1
|
Li Y, Wang Y, Li T, Li Z, Guo T, Xue G, Duan Y, Yao Y. Sesquiterpene from Artemisia argyi seed extracts: A new anti-acute peritonitis agent that suppresses the MAPK pathway and promotes autophagy. Inflammopharmacology 2024; 32:447-460. [PMID: 37578619 DOI: 10.1007/s10787-023-01297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
To find novel anti-inflammatory drugs, we screened anti-inflammatory compounds from 18 different types of Artemisia argyi seed extracts. The in vitro and in vivo anti-inflammatory activities of the screened compounds and their mechanisms were characterized. We first detected the cytotoxic effect of the compounds on RAW264.7 cells and the inhibitory effect on LPS-induced NO release. It was found that sesquiterpenoids CA-2 and CA-4 had low cytotoxic and strong NO inhibitory activity with an IC50 of 4.22 ± 0.61 μM and 2.98 ± 0.23 μM for NO inhibition, respectively. Therefore, compound CA-4 was studied in depth. We found that compound CA-4 inhibited LPS-induced pro-inflammatory factor production and M1 macrophage differentiation in RAW264.7 cells. Additionally, CA-4 inhibited the expression of p-ERK1/2, p-JNK, iNOS, and COX-2 by blocking the MAPK signaling pathway. CA-4 also promoted the expression of autophagy-related proteins such as LC3 II and Beclin-1 by inhibiting activation of the PI3K/AKT/mTOR signaling pathway, and promoted the generation of autophagosomes. Finally, CA-4 significantly inhibited the degree of inflammation in mice with acute peritonitis, showing good anti-inflammatory activity in vivo. Consequently, compound CA-4 may be a promising drug for the treatment of acute inflammatory diseases and provide new ideas for the synthesis of novel anti-inflammatory compounds.
Collapse
Affiliation(s)
- Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuanhui Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Tianxin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhenzhen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Tao Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Guimin Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Dawood AS, Sedeek MS, Farag MA, Abdelnaser A. Terfezia boudieri and Terfezia claveryi inhibit the LPS/IFN-γ-mediated inflammation in RAW 264.7 macrophages through an Nrf2-independent mechanism. Sci Rep 2023; 13:10106. [PMID: 37344506 PMCID: PMC10284807 DOI: 10.1038/s41598-023-35612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/21/2023] [Indexed: 06/23/2023] Open
Abstract
Desert truffles have been used as traditional treatments for numerous inflammatory disorders. However, the molecular mechanisms underlying their anti-inflammatory effects in RAW 264.7 macrophages have yet to be fully elucidated. The present study investigated the anti-inflammatory activities of two main desert truffles, Terfezia boudieri and T. claveryi, and the underlying mechanisms associated with their anti-inflammatory activities in RAW 264.7 macrophages stimulated with lipopolysaccharide/interferon-gamma (LPS/IFN-γ). Our results demonstrated that treatment with T. boudieri and T. claveryi extracts effectively suppressed the inflammatory response in LPS/IFN-γ-stimulated RAW 264.7 macrophages. Specifically, T. boudieri extract was found to reduce the production of nitric oxide and inhibit the expression of various pro-inflammatory markers, including inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), tumor necrosis factor-α, and interleukin-6 (IL-6) at both the mRNA and protein levels. Similarly, T. claveryi extract exhibited comparable inhibitory effects, except for the expression of IL-6 and COX-2 at the protein level, where no significant effect was observed. Moreover, both studied extracts significantly downregulated the microRNA expression levels of miR-21, miR-146a, and miR-155, suggesting that T. boudieri and T. claveryi suppress the inflammatory response in LPS/IFN-γ-stimulated RAW 264.7 cells through an epigenetic mechanism. Furthermore, our study reveals a new mechanism for the anti-inflammatory properties of desert truffle extracts. We show for the first time that Terfezia extracts do not rely on the nuclear factor erythroid 2-related factor 2 pathway, previously linked to anti-inflammatory responses. This expands our understanding of natural product anti-inflammatory mechanisms and could have important implications for developing new therapies. To account for differences in truffle effects, extracts prepared were subjected to secondary metabolites profiling using UPLC-MS. UPLC-MS led to the annotation of 87 secondary metabolites belonging to various classes, including amino acids, carbohydrates, alkaloids, amides, fatty acids, sterols, and phenolic compounds. Therefore, these results indicate that T. boudieri and T. claveryi exhibit anti-inflammatory activities through suppressing multiple inflammatory mediators and cytokines and may be potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Abdelhameed S Dawood
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box: 74, New Cairo, 11835, Egypt
| | - Mohamed S Sedeek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box: 74, New Cairo, 11835, Egypt.
| |
Collapse
|
3
|
Zhao M, Wang X, Kumar SA, Yao Y, Sun M. A Pharmacological Insight of Piperlongumine, Bioactive Validating Its Therapeutic Efficacy as a Drug to Treat Inflammatory Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Fan X, Qiu J, Yuan T, Zhang J, Xu J. Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation. Front Immunol 2022; 13:1090877. [PMID: 36591243 PMCID: PMC9802119 DOI: 10.3389/fimmu.2022.1090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neovascularization and inflammatory response are two essential features of corneal allograft rejection. Here, we investigated the impact of Piperlongumine (PL) on alleviating corneal allograft rejection, primarily focusing on pathological angiogenesis and inflammation. Methods A murine corneal allograft transplantation model was utilized to investigate the role of PL in preventing corneal allograft rejection. PL (10 mg/kg) or vehicle was intraperitoneally injected daily into BALB/c recipients from day -3 to day 14. The clinical signs of the corneal grafts were monitored for 30 days. Corneal neovascularization and inflammatory cell infiltration were detected by immunofluorescence staining and immunohistochemistry. The proportion of CD4+ T cells and macrophages in the draining lymph nodes (DLNs) was examined by flow cytometry. In vitro, HUVECs were cultured under hypoxia or incubated with TNF-α to mimic the hypoxic and inflammatory microenvironment favoring neovascularization in corneal allograft rejection. Multiple angiogenic processes including proliferation, migration, invasion and tube formation of HUVECs in hypoxia with or without PL treatment were routinely evaluated. The influence of PL treatment on TNF-α-induced pro-inflammation in HUVECs was investigated by real-time PCR and ELISA. Results In vivo, PL treatment effectively attenuated corneal allograft rejection, paralleled by coincident suppression of neovascularization and alleviation of inflammatory response. In vitro, PL distinctively inhibited hypoxia-induced angiogenic processes in HUVECs. Two key players in hypoxia-induced angiogenesis, HIF-1α and VEGF-A were significantly suppressed by PL treatment. Also, TNF-α-induced pro-inflammation in HUVECs was hampered by PL treatment, along with a pronounced reduction in ICAM-1, VCAM-1, CCL2, and CXCL5 expression. Conclusions The current study demonstrated that PL could exhibit both anti-angiogenic and anti-inflammatory effects in preventing corneal allograft rejection, highlighting the potential therapeutic applications of PL in clinical strategy.
Collapse
Affiliation(s)
- Xiangyu Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jini Qiu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Tianjie Yuan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,National Health Commission (NHC), Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Jing Zhang, ; Jianjiang Xu,
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,National Health Commission (NHC), Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Jing Zhang, ; Jianjiang Xu,
| |
Collapse
|
5
|
Chen S, Guo H, Wu Z, Wu Q, Jiang M, Li H, Liu L. Targeted Discovery of Sorbicillinoid Pigments with Anti-Inflammatory Activity from the Sponge-Derived Fungus Stagonospora sp. SYSU-MS7888 Using the PMG Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15116-15125. [PMID: 36410725 DOI: 10.1021/acs.jafc.2c05940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An effective identification and discovery of fungal pigments is very important to illustrate the role of fungal pigments in the life process and conduce to the discovery of new bioactive and edible pigments. The phenotype combined with metabolomic and genomic (PMG) strategy led to the discovery and characterization of three new sorbicillinoid pigments, stasorbicillinoids A-C (1-3), and five known analogues (4-8) from the sponge-derived fungus Stagonospora sp. SYSU-MS7888. Their structures were elucidated by the application of spectroscopic methods (NMR, MS, UV, IR, and ECD) and modified Mosher's method. Compounds 1 and 2 featured novel naphthone nuclei linked by two alkyl side chains possibly undergoing inter- and intramolecular Michael reactions. Compounds 1-8 exhibited potent anti-inflammatory activity with IC50 values in the range of 3.56-22.8 μM. Furthermore, compound 2 inhibited the production of IL-1β, IL-6, and TNF-α in a dose-dependent manner. This study provides an effective strategy to accelerate the discovery of new fungal pigments and further exploration of their potential applications in different fields such as medicine and food industries.
Collapse
Affiliation(s)
- Senhua Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Heng Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
| | - Zhenger Wu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
| | - Minghua Jiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Hanxiang Li
- Institutional Center for Shared Technologies and Facilities, South China Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou 510650, PR China
- South China National Botanical Garden, Guangzhou 510650, PR China
| | - Lan Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
6
|
Liu Y, Liu X, Zhou W, Zhang J, Wu J, Guo S, Jia S, Wang H, Li J, Tan Y. Integrated bioinformatics analysis reveals potential mechanisms associated with intestinal flora intervention in nonalcoholic fatty liver disease. Medicine (Baltimore) 2022; 101:e30184. [PMID: 36086766 PMCID: PMC10980383 DOI: 10.1097/md.0000000000030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that imposes a huge economic burden on global public health. And the gut-liver axis theory supports the therapeutic role of intestinal flora in the development and progression of NAFLD. To this end, we designed bioinformatics study on the relationship between intestinal flora disorder and NAFLD, to explore the possible molecular mechanism of intestinal flora interfering with NAFLD. METHODS Differentially expressed genes for NAFLD were obtained from the GEO database. And the disease genes for NAFLD and intestinal flora disorder were obtained from the disease databases. The protein-protein interaction network was established by string 11.0 database and visualized by Cytoscape 3.7.2 software. Cytoscape plug-in MCODE and cytoHubba were used to screen the potential genes of intestinal flora disorder and NAFLD, to obtain potential targets for intestinal flora to interfere in the occurrence and process of NAFLD. Enrichment analysis of potential targets was carried out using R 4.0.2 software. RESULTS The results showed that 7 targets might be the key genes for intestinal flora to interfere with NAFLD. CCL2, IL6, IL1B, and FOS are mainly related to the occurrence and development mechanism of NAFLD, while PTGS2, SPINK1, and C5AR1 are mainly related to the intervention of intestinal flora in the occurrence and development of NAFLD. The gene function is mainly reflected in basic biological processes, including the regulation of metabolic process, epithelial development, and immune influence. The pathway is mainly related to signal transduction, immune regulation, and physiological metabolism. The TNF signaling pathway, AGE-RAGE signaling pathway in diabetic activity, and NF-Kappa B signaling pathways are important pathways for intestinal flora to interfere with NAFLD. According to the analysis results, there is a certain correlation between intestinal flora disorder and NAFLD. CONCLUSION It is speculated that the mechanism by which intestinal flora may interfere with the occurrence and development of NAFLD is mainly related to inflammatory response and insulin resistance. Nevertheless, further research is needed to explore the specific molecular mechanisms.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Patel K, Jain P, Rajput PK, Jangid AK, Solanki R, Kulhari H, Patel S. Human Serum Albumin-based Propulsive Piperlongumine-loaded Nanoparticles: Formulation development, characterization and anti-cancer study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Yuan S, Chen L, Wu Q, Jiang M, Guo H, Hu Z, Chen S, Liu L, Gao Z. Genome Mining of α-Pyrone Natural Products from Ascidian-Derived Fungus Amphichordafelina SYSU-MS7908. Mar Drugs 2022; 20:294. [PMID: 35621945 PMCID: PMC9146101 DOI: 10.3390/md20050294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/24/2023] Open
Abstract
Culturing ascidian-derived fungus Amphichorda felina SYSU-MS7908 under standard laboratory conditions mainly yielded meroterpenoid, and nonribosomal peptide-type natural products. We sequenced the genome of Amphichorda felina SYSU-MS7908 and found 56 biosynthetic gene clusters (BGCs) after bioinformatics analysis, suggesting that the majority of those BGCSs are silent. Here we report our genome mining effort on one cryptic BGC by heterologous expression in Aspergillus oryzae NSAR1, and the identification of two new α-pyrone derivatives, amphichopyrone A (1) and B (2), along with a known compound, udagawanone A (3). Anti-inflammatory activities were performed, and amphichopyrone A (1) and B (2) displayed potent anti-inflammatory activity by inhibiting nitric oxide (NO) production in RAW264.7 cells with IC50 values 18.09 ± 4.83 and 7.18 ± 0.93 μM, respectively.
Collapse
Affiliation(s)
- Siwen Yuan
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
| | - Litong Chen
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
| | - Qilin Wu
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
| | - Minghua Jiang
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
| | - Heng Guo
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
| | - Zhibo Hu
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
| | - Senhua Chen
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Zhizeng Gao
- School of Maine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.Y.); (L.C.); (Q.W.); (M.J.); (H.G.); (Z.H.); (S.C.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|
9
|
Unravelling the Interaction of Piperlongumine with the Nucleotide-Binding Domain of HSP70: A Spectroscopic and In Silico Study. Pharmaceuticals (Basel) 2021; 14:ph14121298. [PMID: 34959698 PMCID: PMC8703466 DOI: 10.3390/ph14121298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Piperlongumine (PPL) is an alkaloid extracted from several pepper species that exhibits anti-inflammatory and anti-carcinogenic properties. Nevertheless, the molecular mode of action of PPL that confers such powerful pharmacological properties remains unknown. From this perspective, spectroscopic methods aided by computational modeling were employed to characterize the interaction between PPL and nucleotide-binding domain of heat shock protein 70 (NBD/HSP70), which is involved in the pathogenesis of several diseases. Steady-state fluorescence spectroscopy along with time-resolved fluorescence revealed the complex formation based on a static quenching mechanism. Van't Hoff analyses showed that the binding of PPL toward NBD is driven by equivalent contributions of entropic and enthalpic factors. Furthermore, IDF and Scatchard methods applied to fluorescence intensities determined two cooperative binding sites with Kb of (6.3 ± 0.2) × 104 M-1. Circular dichroism determined the thermal stability of the NBD domain and showed that PPL caused minor changes in the protein secondary structure. Computational simulations elucidated the microenvironment of these interactions, showing that the binding sites are composed mainly of polar amino acids and the predominant interaction of PPL with NBD is Van der Waals in nature.
Collapse
|
10
|
Protective effects of piperlongumin in the prevention of inflammatory damage caused by pulmonary exposure to benzopyrene carcinogen. Int Immunopharmacol 2021; 101:108285. [PMID: 34802947 DOI: 10.1016/j.intimp.2021.108285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
Benzopyrene is one of the main polycyclic aromatic hydrocarbons with carcinogenic capacity. Research has shown that anti-inflammatory drugs can reduce the incidence of lung cancer. In this scenario, we highlight piperlongumin (PL), an alkaloid from Piper longum with anti-inflammatory properties. Therefore, our aim was to study the effect of PL administration in a model of pulmonary carcinogenesis induced by benzopyrene in Balb/c mice. Animals were divided into 3 groups (n = 10/group): sham (10% DMSO), induced by benzopyrene (100 mg/kg, diluted in DMSO) without treatment (BaP) for 12 weeks and induced by benzopyrene and treated with PL (BaP/PL) (2 mg/kg in 10% DMSO) from the eighth week post-induction. Animals were weighed daily and pletsmography was performed in the 12th week. Genotoxicity and hemoglobin levels were analyzed in blood and quantification of leukocytes in bronchoalveolar lavage (BAL). Lungs were collected for histopathological evaluation, immunohistochemical studies of annexin A1 (AnxA1), cyclooxygenase 2 (COX-2), anti-apoptotic protein Bcl-2 and nuclear transcription factor (NF-kB) and also the measurement of interleukin cytokines (IL)-1β, IL-17 and tumor necrosis factor (TNF) -α. Treatment with PL reduced the pulmonary parameters (p < 0,001) of frequency, volume and pulmonary ventilation, decreased lymphocytes, monocytes and neutrophils in BAL (p < 0,05) as well as blood hemoglobin levels (p < 0,01). PL administration also reduced DNA damage and preserved the pulmonary architecture compared to the BaP group. Moreover, the anti-inflammatory effect of PL was evidenced by the maintenance of AnxA1 levels, reduction of COX-2 (p < 0,05), Bcl-2 (p < 0,01) and NF-kB (p < 0,001) expressions and decreased IL-1β, IL-17 (p < 0,01) and TNF-α (p < 0,05) levels. The results show the therapeutic potential of PL in the treatment of pulmonary anti-inflammatory and anti-tumor diseases with promising therapeutic implications.
Collapse
|
11
|
Girol AP, de Freitas Zanon C, Caruso ÍP, de Souza Costa S, Souza HR, Cornélio ML, Oliani SM. Annexin A1 Mimetic Peptide and Piperlongumine: Anti-Inflammatory Profiles in Endotoxin-Induced Uveitis. Cells 2021; 10:3170. [PMID: 34831393 PMCID: PMC8625584 DOI: 10.3390/cells10113170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Uveitis is one of the main causes of blindness worldwide, and therapeutic alternatives are worthy of study. We investigated the effects of piperlongumine (PL) and/or annexin A1 (AnxA1) mimetic peptide Ac2-26 on endotoxin-induced uveitis (EIU). Rats were inoculated with lipopolysaccharide (LPS) and intraperitoneally treated with Ac2-26 (200 µg), PL (200 and 400 µg), or Ac2-26 + PL after 15 min. Then, 24 h after LPS inoculation, leukocytes in aqueous humor, mononuclear cells, AnxA1, formyl peptide receptor (fpr)1, fpr2, and cyclooxygenase (COX)-2 were evaluated in the ocular tissues, along with inflammatory mediators in the blood and macerated supernatant. Decreased leukocyte influx, levels of inflammatory mediators, and COX-2 expression confirmed the anti-inflammatory actions of the peptide and pointed to the protective effects of PL at higher dosage. However, when PL and Ac2-26 were administered in combination, the inflammatory potential was lost. AnxA1 expression was elevated among groups treated with PL or Ac2-26 + PL but reduced after treatment with Ac2-26. Fpr2 expression was increased only in untreated EIU and Ac2-26 groups. The interaction between Ac2-26 and PL negatively affected the anti-inflammatory action of Ac2-26 or PL. We emphasize that the anti-inflammatory effects of PL can be used as a therapeutic strategy to protect against uveitis.
Collapse
Affiliation(s)
- Ana Paula Girol
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Post Graduate Program in Structural and Functional Biology, Escola Paulista de Medicina (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil
| | - Caroline de Freitas Zanon
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Ícaro Putinhon Caruso
- Department of Phisics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (Í.P.C.); (M.L.C.)
| | - Sara de Souza Costa
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Helena Ribeiro Souza
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Marinônio Lopes Cornélio
- Department of Phisics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (Í.P.C.); (M.L.C.)
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Post Graduate Program in Structural and Functional Biology, Escola Paulista de Medicina (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil
- Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto 15030-070, SP, Brazil
| |
Collapse
|
12
|
Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK, Kumar A, Kunnumakkara AB. The promising potential of piperlongumine as an emerging therapeutics for cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:323-354. [PMID: 36046754 PMCID: PMC9400693 DOI: 10.37349/etat.2021.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the immense advancement in the diagnostic and treatment modalities, cancer continues to be one of the leading causes of mortality across the globe, responsible for the death of around 10 million patients every year. The foremost challenges faced in the treatment of this disease are chemoresistance, adverse effects of the drugs, and the high cost of treatment. Though scientific studies over the past few decades have foreseen and are focusing on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action, many more of these agents are not still explored. Piperlongumine (PL), or piplartine, is one such alkaloid isolated from Piper longum Linn. which is shown to be safe and has significant potential in the prevention and therapy of cancer. Numerous shreds of evidence have established the ability of this alkaloid and its analogs and nanoformulations in modulating various complex molecular pathways such as phosphatidylinositol-3-kinase/protein kinase B /mammalian target of rapamycin, nuclear factor kappa-B, Janus kinases/signal transducer and activator of transcription 3, etc. and inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases, etc. In addition, PL was also shown to inhibit radioresistance and chemoresistance and sensitize the cancer cells to the standard chemotherapeutic agents. Therefore, this compound has high potential as a drug candidate for the prevention and treatment of different cancers. The current review briefly reiterates the anti-cancer properties of PL against different types of cancer, which permits further investigation by conducting clinical studies.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem 2021; 220:113471. [PMID: 33930801 DOI: 10.1016/j.ejmech.2021.113471] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
Natural products have long been an important source for discovery of new drugs to treat human diseases. Piperlongumine (PL) is an amide alkaloid isolated from Piper longum L. (long piper) and other piper plants and has received widespread attention because of its diverse biological activities. A large number of PL derivatives have been designed, synthesized and assessed in many pharmacological functions, including antiplatelet aggregation, neuroprotective activities, anti-diabetic activities, anti-inflammatory activities, anti-senolytic activities, immune activities, and antitumor activities. Among them, the anti-tumor effects and application of PL and its derivatives are most extensively studied. We herein summarize the development of PL derivatives, the structure and activity relationships (SARs), and their therapeutic potential on the treatments of various diseases, especially against cancer. We also discussed the challenges and future directions associated with PL and its derivatives in these indications.
Collapse
Affiliation(s)
- Peng Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jianqiang Qian
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Weizhong Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Yanan Zhang
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
14
|
Khlebnicova TS, Piven YA, Lakhvich FA, Sorokina IV, Frolova TS, Baev DS, Tolstikova TG. Betulinic Acid-Azaprostanoid Hybrids: Synthesis and Pharmacological Evaluation as Anti-inflammatory Agents. Antiinflamm Antiallergy Agents Med Chem 2021; 19:254-267. [PMID: 33001006 PMCID: PMC7499346 DOI: 10.2174/1871523018666190426152049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023]
Abstract
Background: Prevention and treatment of chronic inflammatory diseases require effective and low-toxic medicines. Molecular hybridization is an effective strategy to enhance the biological activity of new compounds. Triterpenoid scaffolds are in the focus of attention owing to their anti-inflammatory, antiviral, antiproliferative, and immunomodulatory activities. Heteroprostanoids have different pleiotropic effects in acute and chronic inflammatory processes. Objective: The study aimed to develop structurally new and low toxic anti-inflammatory agents via hybridization of betulinic acid with azaprostanoic acids. Methods: A series of betulinic acid-azaprostanoid hybrids was synthesized. The synthetic pathway included the transformation of betulin via Jones' oxidation into betulonic acid, reductive amination of the latter and coupling obtained by 3β-amino-3-deoxybetulinic acid with the 7- or 13-azaprostanoic acids and their homo analogues. The hybrids 1-9 were investigated in vivo on histamine-, formalin- and concanavalin A-induced mouse paw edema models and two models of pain - the acetic acid-induced abdominal writhing and the hot-plate test. The hybrids were in vitro evaluated for cytotoxic activity on cancer (MCF7, U-87 MG) and non-cancer humane cell lines. Results: In the immunogenic inflammation model, the substances showed a pronounced anti-inflammatory effect, which was comparable to that of indomethacin. In the models of the exudative inflammation, none of the compounds displayed a statistically significant effect. The hybrids produced weak or moderate analgesic effects. All the agents revealed low cytotoxicity on human immortalized fibroblasts and cancer cell lines compared with 3β-amino-3-deoxybetulinic acid and doxorubicin. Conclusion: The results indicate that the principal anti-inflammatory effect of hybrids is substantially provided with the triterpenoid scaffold and in some cases with the azaprostanoid scaffold, but the latter makes a significant contribution to reducing the toxicity of hybrids. Hybrid 1 is of interest as a potent low toxic agent against immune-mediated inflammation.
Collapse
Affiliation(s)
- Tatyana S Khlebnicova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Acad. Kuprevicha Street 5/2, 220141, Minsk, Belarus
| | - Yuri A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Acad. Kuprevicha Street 5/2, 220141, Minsk, Belarus
| | - Fedor A Lakhvich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Acad. Kuprevicha Street 5/2, 220141, Minsk, Belarus
| | - Iryna V Sorokina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Acad. Lavrentieva, 630090, Novosibirsk, Russian Federation
| | - Tatiana S Frolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Acad. Lavrentieva, 630090, Novosibirsk, Russian Federation
| | - Dmitry S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Acad. Lavrentieva, 630090, Novosibirsk, Russian Federation
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Acad. Lavrentieva, 630090, Novosibirsk, Russian Federation
| |
Collapse
|
15
|
Guo H, Wu Q, Chen D, Jiang M, Chen B, Lu Y, Li J, Liu L, Chen S. Absolute configuration of polypropionate derivatives: Decempyrones A-J and their MptpA inhibition and anti-inflammatory activities. Bioorg Chem 2021; 115:105156. [PMID: 34314917 DOI: 10.1016/j.bioorg.2021.105156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Under guidance of 1H NMR, ten new polypropionate derivatives, decempyrones A-J (1-10) along with two known analogues (11 and 12), were isolated from the marine-derived fungusFusarium decemcellulare SYSU-MS6716. The planar structures were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, and HR-ESIMS). The absolute configuration of the chiral centers in the side chain is a major obstacle for the structure identification of natural polypropionate derivatives. Herein, the J-based configurational analysis (JBCA), chemical degradation, geminal proton rule, and the modified Mosher's method were adopted to fix their absolute configurations in the side chain. Compounds 3 and 10 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide with IC50values 22.4 ± 1.8 and 21.7 ± 1.1 μM. In addition, compounds 3 and 10 displayed MptpA inhibitory activity with an IC50 value of 19.2 ± 0.9 and 33.1 ± 2.9 µM. Structure-activity relationships of the polypropionate derivatives were discussed.
Collapse
Affiliation(s)
- Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongni Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bin Chen
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China.
| |
Collapse
|
16
|
Zhang DF, Yang ZC, Chen JQ, Jin XX, Qiu YD, Chen XJ, Shi HY, Liu ZG, Wang MS, Liang G, Zheng XH. Piperlongumine inhibits migration and proliferation of castration-resistant prostate cancer cells via triggering persistent DNA damage. BMC Complement Med Ther 2021; 21:195. [PMID: 34229670 PMCID: PMC8261967 DOI: 10.1186/s12906-021-03369-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (CRPC) is the leading cause of death among men diagnosed with prostate cancer. Piperlongumine (PL) is a novel potential anticancer agent that has been demonstrated to exhibit anticancer efficacy against prostate cancer cells. However, the effects of PL on DNA damage and repair against CRPC have remained unclear. The aim of this study was to further explore the anticancer activity and mechanisms of action of PL against CRPC in terms of DNA damage and repair processes. METHODS The effect of PL on CRPC was evaluated by MTT assay, long-term cell proliferation, reactive oxygen species assay, western blot assay, flow cytometry assay (annexin V/PI staining), β-gal staining assay and DAPI staining assay. The capacity of PL to inhibit the invasion and migration of CRPC cells was assessed by scratch-wound assay, cell adhesion assay, transwell assay and immunofluorescence (IF) assay. The effect of PL on DNA damage and repair was determined via IF assay and comet assay. RESULTS The results showed that PL exhibited stronger anticancer activity against CRPC compared to that of taxol, cisplatin (DDP), doxorubicin (Dox), or 5-Fluorouracil (5-FU), with fewer side effects in normal cells. Importantly, PL treatment significantly decreased cell adhesion to the extracellular matrix and inhibited the migration of CRPC cells through affecting the expression and distribution of focal adhesion kinase (FAK), leading to concentration-dependent inhibition of CRPC cell proliferation and concomitantly increased cell death. Moreover, PL treatment triggered persistent DNA damage and provoked strong DNA damage responses in CRPC cells. CONCLUSION Collectively, our findings demonstrate that PL potently inhibited proliferation, migration, and invasion of CRPC cells and that these potent anticancer effects were potentially achieved via triggering persistent DNA damage in CRPC cells.
Collapse
Affiliation(s)
- Ding-Fang Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Zhi-Chun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
- The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, Lishui, 323000, Zhejiang, People's Republic of China
| | - Jian-Qiang Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Xiang-Xiang Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Yin-da Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Xiao-Jing Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Hong-Yi Shi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Zhi-Guo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Min-Shan Wang
- The Affiliated Xiangshan Hospital, Wenzhou Medical University, Ningbo, 315000, Zhejiang, China
- Hospital of Chinese Medicine of Haishu District, Ningbo, 315000, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.
| | - Xiao-Hui Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Nam HH, Nan L, Choo BK. Inhibitory effects of Camellia japonica on cell inflammation and acute rat reflux esophagitis. Chin Med 2021; 16:6. [PMID: 33413538 PMCID: PMC7791640 DOI: 10.1186/s13020-020-00411-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Excessive and continuous inflammation may be the main cause of various immune system diseases. Reflux esophagitis (RE) is a common gastroesophageal reflux disease (GERD). Camellia japonica has high medicinal value and has long been used as a traditional herbal hemostatic medicine in China and Korea. The purpose of this study is to explore the antioxidant and anti-inflammatory activities of CJE and its protective effect on RE. Materials and methods Buds from C. japonica plants were collected in the mountain area of Jeju, South Korea. Dried C. japonica buds were extracted with 75% ethanol. DPPH and ABTS radical scavenging assay were evaluated according to previous method. The ROS production and anti-inflammatory effects of C. japonica buds ethanol extract (CJE) were evaluated on LPS-induced RAW 264.7 cell inflammation. The protective effects of CJE on RE were conducted in a RE rat model. Results CJE eliminated over 50% of DPPH and ABTS radical at concentration of 100 and 200 µg/mL, respectively. CJE alleviated changes in cell morphology, reduced production of ROS, NO and IL-1β. Also, down-regulated expression levels of iNOS, TNF-α, phosphorylated NF-κB, IκBα, and JNK/p38/MAPK. CJE reduced esophageal tissue damage ratio (40.3%) and attenuation of histological changes. In addition, CJE down-regulated the expression levels of TNF-α, IL-1β, COX-2 and phosphorylation levels of NF-κB and IκBα in esophageal tissue. Conclusions CJE possesses good anti-oxidation and anti-inflammatory activity, and can improve RE in rats caused by gastric acid reflux. Therefore, CJE is a natural material with good anti-oxidant and anti-inflammatory activity and has the possibility of being a candidate phytomedicine source for the treatment of RE.
Collapse
Affiliation(s)
- Hyeon Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 58245, Naju-si, Jeollanam-do, Republic of Korea
| | - Li Nan
- Agricultural College of Yanbian University, Jilin, 133002, Yanji, People's Republic of China
| | - Byung Kil Choo
- Department of Crop Science & Biotechnology, Chonbuk National University, 54896, Jeonju, Republic of Korea.
| |
Collapse
|
18
|
Fan QZ, Zhou J, Zhu YB, He LJ, Miao DD, Zhang SP, Liu XP, Zhang C. Design, synthesis, and biological evaluation of a novel indoleamine 2,3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor. Bioorg Chem 2020; 105:104401. [PMID: 33113415 DOI: 10.1016/j.bioorg.2020.104401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
Targeting the Trp-Kyn pathway is an attractive approach for cancer immunotherapy. Thioredoxin reductase (TrxR) enzymes are reactive oxygen species (ROS) modulators that are involved in the tumor cell growth and survival processes. The 4-phenylimidazole scaffold is well-established as useful for indoleamine 2,3-dioxygenase 1 (IDO1) inhibition, while piperlongumine (PL) and its derivatives have been reported to be inhibitors of TrxR. To take advantage of both immunotherapy and TrxR inhibition, we designed a first-generation dual IDO1 and TrxR inhibitor (ZC0101) using the structural combination of 4-phenylimidazole and PL scaffolds. ZC0101 exhibited better dual inhibition against IDO1 and TrxR in vitro and in cell enzyme assays than the uncombined forms of 4-phenylimidazole and PL. It also showed antiproliferative activity in various cancer cell lines, and a selective killing effect between normal and cancer cells. Furthermore, ZC0101 effectively induced apoptosis and ROS accumulation in cancer cells. Knockdown of TrxR1 and IDO1 expression induced cellular enzyme inhibition and ROS accumulation effects during ZC0101 treatment, but only reduced TrxR1 expression was able to improve ZC0101's antiproliferation effect. This proof-of-concept study provides a novel strategy for cancer treatment. ZC0101 represents a promising lead compound for the development of novel antitumor agents that can also be used as a valuable probe to clarify the relationships and mechanisms of cancer immunotherapy and ROS modulators.
Collapse
Affiliation(s)
- Qing-Zhu Fan
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Ji Zhou
- Center for Reproductive Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Yi-Bao Zhu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Lian-Jun He
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Dong-Dong Miao
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China.
| | - Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
19
|
Chilvery S, Bansod S, Saifi MA, Godugu C. Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways. Int Immunopharmacol 2020; 88:106909. [PMID: 32882664 DOI: 10.1016/j.intimp.2020.106909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis (LF) is a progressive liver injury that may result in excessive accumulation of extracellular matrix (ECM). However, transforming growth factor-beta (TGF-β) and epithelial to mesenchymal transition (EMT) play a central role in the progression of LF through the activation of matrix producing hepatic stellate cells (HSCs). Piperlongumine (PL), an alkaloid extracted from Piper longum, has been reported to possess anti-inflammatory and antioxidant activities in various diseases but its hepatoprotective and antifibrotic effects have not been reported yet. Therefore, in the present study, we investigated the protective effect of PL in bile duct ligation (BDL)-induced LF model and explored the molecular mechanisms underlying its antifibrotic effect. BDL group displayed a significant degree of liver damage, oxidative-nitrosative stress, hepatic inflammation and collagen deposition in the liver while these pathological changes were effectively attenuated by treatment with PL. Furthermore, we found that PL treatment greatly inhibited HSCs activation and ECM deposition via downregulation of fibronectin, α-SMA, collagen1a, and collagen3a expression in the fibrotic livers. We further demonstrated that PL administration significantly inhibited TGF-β1/Smad and EMT signaling pathways. Our study demonstrated that PL exerted strong hepatoprotective and antifibrotic activities against BDL-induced LF and might be an effective therapeutic agent for the treatment of LF.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
20
|
Qiu X, Pei H, Ni H, Su Z, Li Y, Yang Z, Dou C, Chen L, Wan L. Design, synthesis and anti-inflammatory study of novel N-heterocyclic substituted Aloe-emodin derivatives. Chem Biol Drug Des 2020; 97:358-371. [PMID: 32889741 DOI: 10.1111/cbdd.13788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023]
Abstract
A novel series of Aloe-emodin derivatives containing N-heterocyclic moieties was designed and synthesized. The structure-activity relationship studies (SARs) indicated that the replacement of hydroxyethyl and benzhydryl piperazine groups could improve efficacy. Compounds 12r and 14a-14c exhibited a higher inhibitory effect on LPS-induced nitric oxide (NO) production in RAW264.7 macrophages than Aloe-emodin did. Among them, 12r showed the most potent inhibition with an IC50 value of 5.66 ± 0.47 μM. Further toxicity and pharmacokinetic studies were carried out and 12r was found to be the most active structure with low toxicity risk and good metabolic properties. It could also decrease the levels of IL-1β, TNF-α, PGE2 and inhibit the activation of nuclear factor-κB signalling pathway. Importantly, 12r showed oral bioavailability of up to 55.16% and attenuated the inflammatory symptoms in an ulcerative colitis mouse model in vivo. These results indicate that 12r is suitable for development as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Xiang Qiu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Hengfan Ni
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengying Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Caixia Dou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Heiran R, Sepehri S, Jarrahpour A, Digiorgio C, Douafer H, Brunel JM, Gholami A, Riazimontazer E, Turos E. Synthesis, docking and evaluation of in vitro anti-inflammatory activity of novel morpholine capped β-lactam derivatives. Bioorg Chem 2020; 102:104091. [PMID: 32717692 DOI: 10.1016/j.bioorg.2020.104091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
This study reports the synthesis and biological investigation of three series of novel monocyclic β-lactam derivatives bearing a morpholine ring substituent on the nitrogen. The resulting β-lactam adducts were synthesized via Staudinger's [2 + 2]-ketene-imine cycloaddition reaction. New synthesized products were fully characterized by spectral data and elemental analyses, and then evaluated for anti-inflammatory activity toward human inducible nitric oxide synthase (iNOS) and cytotoxicity toward HepG2 cell line. The compounds 3e, 3h, 3k, 5c, 5f, 6c, 6d and 6f showed higher activity with anti-inflammatory ratio values of 38, 62, 51, 72, 51, 35, 55 and 99, respectively, in comparison to the reference compound dexamethasone having an anti-inflammatory ratio value of 32. Hence, these compounds can be considered as potent iNOS inhibitors. They also exhibited IC50 values of 0.48 ± 0.04 mM, 0.51 ± 0.01 mM, 0.22 ± 0.02 mM, 0.12 ± 0.00 mM, 0.25 ± 0.05 mM, 0.82 ± 0.07 mM, 0.44 ± 0.04 mM and 0.60 ± 0.04 mM, respectively, in comparison with doxorubicin (IC50 < 0.01 mM) against HepG2 cells, biocompatibility and nontoxic behavior. In silico prediction of drug-likeness characteristic indicated that the compounds are compliant with the Lipinski and Veber rules. Molecular docking experiments showed a good correlation between the experimental activity and the calculated binding affinity to human inducible nitric oxide synthase, the enzymatic target for the anti-inflammatory response.
Collapse
Affiliation(s)
- Roghayeh Heiran
- Department of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran; Department of Chemistry, Estahban Higher Education Center, Estahban, Iran.
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aliasghar Jarrahpour
- Department of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran.
| | - Carole Digiorgio
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Laboratoire de Mutagénèse Environnementale, 13385 Marseille, France
| | - Hana Douafer
- Aix Marseille Université, INSERM, SSA, MCT, Marseille, France
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Riazimontazer
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Edward Turos
- Center for Molecular Diversity in Drug Design, Discovery, and Delivery, Department of Chemistry, CHE 205, 4202 East Fowler Avenue, University of South Florida, Tampa, FL 33620 USA
| |
Collapse
|
22
|
Zazeri G, Povinelli APR, Le Duff CS, Tang B, Cornelio ML, Jones AM. Synthesis and Spectroscopic Analysis of Piperine- and Piperlongumine-Inspired Natural Product Scaffolds and Their Molecular Docking with IL-1β and NF-κB Proteins. Molecules 2020; 25:E2841. [PMID: 32575582 PMCID: PMC7356504 DOI: 10.3390/molecules25122841] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the remarkable bioactivities exhibited by the natural products, piperine and piperlongumine, we synthesised eight natural product-inspired analogues to further investigate their structures. For the first time, we confirmed the structure of the key cyclised dihydropyrazolecarbothioamide piperine analogues including the use of two-dimensional (2D) 15N-based spectroscopy nuclear magnetic resonance (NMR) spectroscopy. Prior investigations demonstrated promising results from these scaffolds for the inhibition of inflammatory response via downregulation of the IL-1β and NF-κB pathway. However, the molecular interaction of these molecules with their protein targets remains unknown. Ab initio calculations revealed the electronic density function map of the molecules, showing the effects of structural modification in the electronic structure. Finally, molecular interactions between the synthesized molecules and the proteins IL-1β and NF-κB were achieved. Docking results showed that all the analogues interact in the DNA binding site of NF-κB with higher affinity compared to the natural products and, with the exception of 9a and 9b, have higher affinity than the natural products for the binding site of IL-1β. Specificity for the molecular recognition of 3a, 3c and 9b with IL-1β through cation-π interactions was determined. These results revealed 3a, 3c, 4a, 4c and 10 as the most promising molecules to be evaluated as IL-1β and NF-κB inhibitors.
Collapse
Affiliation(s)
- Gabriel Zazeri
- Departamento de Física–IBILCE, Rua Cristovão Colombo, 2265 CEP 15054-000 São José do Rio Preto–São Paulo, Brazil; (G.Z.); (A.P.R.P.)
- School of Pharmacy, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ana Paula R. Povinelli
- Departamento de Física–IBILCE, Rua Cristovão Colombo, 2265 CEP 15054-000 São José do Rio Preto–São Paulo, Brazil; (G.Z.); (A.P.R.P.)
- School of Pharmacy, University of Birmingham, Edgbaston B15 2TT, UK
| | - Cécile S. Le Duff
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, UK; (C.S.L.D.); (B.T.)
| | - Bridget Tang
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, UK; (C.S.L.D.); (B.T.)
| | - Marinonio L. Cornelio
- Departamento de Física–IBILCE, Rua Cristovão Colombo, 2265 CEP 15054-000 São José do Rio Preto–São Paulo, Brazil; (G.Z.); (A.P.R.P.)
| | - Alan M. Jones
- School of Pharmacy, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
23
|
Tripathi SK, Biswal BK. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol Res 2020; 156:104772. [PMID: 32283222 DOI: 10.1016/j.phrs.2020.104772] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Piperlongumine, a white to beige biologically active alkaloid/amide phytochemical, has high pharmacological relevance as an anticancer agent. Piperlongumine has several biological activities, including selective cytotoxicity against multiple cancer cells of different origins at a preclinical level. Several preclinical studies have documented the anticancer potential of piperlongumine through its targeting of multiple molecular mechanisms, such as cell cycle arrest, anti-angiogenesis, anti- invasive and anti-metastasis pathways, autophagy pathways, and intrinsic apoptotic pathways in vitro and in vivo. Mechanistically, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cyclin D1. Furthermore, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy. Nanoformulation of piperlongumine has been associated with increased aqueous solubility and bioavailability and lower toxicity, thus enhancing therapeutic efficacy in both preclinical and clinical settings. The current review highlights anticancer studies on the occurrence, chemical properties, chemopreventive mechanisms, toxicity, bioavailability, and pharmaceutical relevance of piperlongumine in vitro and in vivo.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
24
|
Wang T, Peng T, Wen X, Wang G, Liu S, Sun Y, Zhang S, Wang L. Design, Synthesis and Evaluation of 3-Substituted Coumarin Derivatives as Anti-inflammatory Agents. Chem Pharm Bull (Tokyo) 2020; 68:443-446. [PMID: 32173668 DOI: 10.1248/cpb.c19-01085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coumarin moiety has garnered momentous attention especially in the design of compounds with significant biological activities. In this work, a series of 3-substituted coumarin derivatives 6a-6l were synthesized and fully characterized. Most of the compounds could obviously inhibit the activity of cyclooxygenase-1 (COX-1) at the concentration of 10 µM. Besides, 6h and 6l exhibited highest inhibitory effects against COX-2 with inhibition rates of 33.48 and 35.71%, respectively. Detailed structure-activity relationships (SARs) were also discussed. In vivo studies, 6b, 6i and 6l could remarkably repress the xylene-induced ear swelling in mice at the dose of 20 mg/kg. Especially, 6l seemed to be the most effective compound at the dose of 10 mg/kg, displaying favorable anti-inflammatory activity comparable to indomethacin. All of these findings suggested that 6l might be utilized as a candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Science and Bio-engineering, Beijing University of Technology.,Beijing Institute of Radiation Medicine
| | - Tao Peng
- Beijing Institute of Radiation Medicine
| | | | - Gang Wang
- Beijing Institute of Radiation Medicine
| | | | - Yunbo Sun
- Beijing Institute of Radiation Medicine
| | | | - Lin Wang
- College of Life Science and Bio-engineering, Beijing University of Technology.,Beijing Institute of Radiation Medicine
| |
Collapse
|
25
|
Hu YS, Han X, Yu PJ, Jiao MM, Liu XH, Shi JB. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Bioorg Chem 2020; 98:103735. [PMID: 32171986 DOI: 10.1016/j.bioorg.2020.103735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 01/02/2023]
Abstract
Paeonol has been proved to have potential anti-inflammatory activity, but its clinical application is not extensive due to the poor anti-inflammatory activity (14.74% inhibitory activity at 20 μM). In order to discover novel lead compound with high anti-inflammatory activity, series of paeonol derivatives were designed and synthesized, their anti-inflammatory activities were screened in vitro and in vivo. Structure-activity relationships (SARs) have been fully concluded, and finally (E)-N-(4-(2-acetyl-5-methoxyphenoxy)phenyl)-3-(3,4,5-trimet-hoxyphenyl)acrylamide (compound 11a) was found to be the best active compound with low toxicity, which showed 96.32% inhibitory activity at 20 μM and IC50 value of 6.96 μM against LPS-induced over expression of nitric oxide (NO) in RAW 264.7 macrophages. Preliminary mechanism studies indicated that it could inhibit the expression of TLR4, resulting in inhibiting of NF-κB and MAPK pathways. Further studies have shown that compound 11a has obvious therapeutic effect against the adjuvant-induced rat arthritis model.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xu Han
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pei Jing Yu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Ming Ming Jiao
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
26
|
Liu C, Han X, Yu PJ, Chen LZ, Xue W, Liu XH. Synthesis and biological evaluation of myricetin-pentadienone hybrids as potential anti-inflammatory agents in vitro and in vivo. Bioorg Chem 2020; 96:103597. [PMID: 32028063 DOI: 10.1016/j.bioorg.2020.103597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/01/2023]
Abstract
Some important pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α and nitric oxide are thought to play key roles in the destruction of cartilage and bone tissue in joints affected by rheumatoid arthritis. In the present study, a series of new myricetin-pentadienone hybrids were designed and synthesized. Majority of them effectively inhibited the expressions liposaccharide-induced secretion of IL-6, TNF-α and NO in RAW264.7. The most prominent compound 5o could significantly decrease production of above inflammatory factors with IC50 values of 5.22 µM, 8.22 µM and 9.31 µM, respectively. Preliminary mechanism studies indicated that it could inhibit the expression of thioredoxin reductase, resulting in inhibiting of cell signaling pathway nuclear factor (N-κB) and mitogen-activated protein kinases. Significantly, compound 5o was found to effectively inhibit Freund's complete adjuvant induced rat adjuvant arthritis in vivo.
Collapse
Affiliation(s)
- Chao Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, PR China
| | - Xu Han
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pei Jing Yu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, PR China.
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
27
|
Li G, Zheng Y, Yao J, Hu L, Liu Q, Ke F, Feng W, Zhao Y, Yan P, He W, Deng H, Qiu P, Li W, Wu J. Design and Green Synthesis of Piperlongumine Analogs and Their Antioxidant Activity against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2019; 10:4545-4557. [PMID: 31491086 DOI: 10.1021/acschemneuro.9b00402] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The supplementation of exogenous antioxidants to scavenge excessive reactive oxygen species (ROS) is an effective treatment for cerebral ischemia-reperfusion injury (CIRI) in stroke. Piperlongumine (PL), a natural alkaloid, has a great potential as a neuroprotective agent, but it also has obvious toxicity. Moreover, its neuroprotective effects remain to be improved. In this study, we designed a series of novel PL analogs by hybridizing the screened low-toxicity diketene skeleton with antioxidant effect and the 3,4,5-trimethoxyphenyl group, which may increase the antioxidant activity of PL. The intermediate was synthesized by a novel green synthesis method, and 34 compounds were obtained. The compounds without obvious cytotoxicity have remarkable antioxidant effects, especially compared with diketene skeletons and PL. The cytoprotection of the active compound decreased significantly by reduction of the carbon-carbon double bonds of the Michael acceptor in the diketene skeleton. More importantly, further study revealed that compound A9, which has the best activity, can confer protection for cells against oxidative stress and attenuate brain injury in vivo. Overall, this study provided a promising drug candidate for the treatment of CIRI and guided the further development of drug research in oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Ge Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Yuantie Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiali Yao
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Linya Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Qunpeng Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325035 , China
| | - Furong Ke
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Weixiao Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Ya Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- Department of Periodontics, Hospital & School of Stomatology , Wenzhou Medical University , No. 373 West Xueyuan Road , Wenzhou , Zhejiang 325035 , China
| | - Pencheng Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Wenfei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Hui Deng
- Department of Periodontics, Hospital & School of Stomatology , Wenzhou Medical University , No. 373 West Xueyuan Road , Wenzhou , Zhejiang 325035 , China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
28
|
Shen QK, Gong GH, Li G, Jin M, Cao LH, Quan ZS. Discovery and evaluation of novel synthetic 5-alkyl-4-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoxaline-1-carbox-amide derivatives as anti-inflammatory agents. J Enzyme Inhib Med Chem 2019; 35:85-95. [PMID: 31707866 PMCID: PMC6853232 DOI: 10.1080/14756366.2019.1680658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To develop novel anti-inflammatory agents, a series of 5-alkyl-4-oxo-4,5-dihydro-[1, 2, 4]triazolo[4,3-a]quinoxaline-1-carboxamide derivatives were designed, synthesised, and evaluated for anti-inflammatory effects using RAW264.7 cells. Structures of the synthesised compounds were determined using 1H NMR, 13 C NMR, and HRMS. All the compounds were screened for anti-inflammatory activity based on their inhibitory effects against LPS-induced NO release. Among them, 5-(3,4,5-trimethoxybenzyl)-4-oxo-4,5-dihydro-[1, 2, 4]triazolo[4,3-a]quinoxaline-1-carboxamide (6p) showed the highest anti-inflammatory activity and inhibited NO release more potently than the lead compound D1. Further studies revealed that compound 6p reduced the levels of NO, TNF-α, and IL-6, and that its anti-inflammatory activity involves the inhibition of COX-2 and iNOS and downregulation of the mitogen-activated protein kinases (MAPK) signal pathway. Notably, compound 6p displayed more prominent anti-inflammatory activity than D1 and the positive control ibuprofen in the in vivo acute inflammatory model. Overall, these findings indicate that compound 6p is a therapeutic candidate for the treatment of inflammation.
Collapse
Affiliation(s)
- Qing-Kun Shen
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Guo-Hua Gong
- Inner Mongolia Autonomous Region Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China.,Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Gao- Li
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei- Jin
- Department of Central Laboratory, Yanbian University Hospital, Yanji, China
| | - Li-Hua Cao
- College of Medical, Yanbian University, Yanji, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
29
|
Povinelli APR, Zazeri G, de Freitas Lima M, Cornélio ML. Details of the cooperative binding of piperlongumine with rat serum albumin obtained by spectroscopic and computational analyses. Sci Rep 2019; 9:15667. [PMID: 31666676 PMCID: PMC6821919 DOI: 10.1038/s41598-019-52187-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022] Open
Abstract
Piperlongumine (PPL) has presented a variety of important pharmacological activities. In recent pharmacokinetics studies in rats, this molecule reached 76.39% of bioavailability. Although PPL is present in the bloodstream, no information is found on the interaction between PPL and rat serum albumin (RSA), the most abundant protein with the function of transporting endo/exogenous molecules. In this sense, the present study elucidated the mechanism of interaction between PPL and RSA, using in conjunction spectroscopic and computational techniques. This paper shows the importance of applying inner filter correction over the entire fluorescence spectrum prior to any conclusion regarding changes in the polarity of the fluorophore microenvironment, also demonstrates the convergence of the results obtained from the treatment of fluorescence data using the area below the spectrum curve and the intensity in a single wavelength. Thermodynamic parameters revealed that PPL binds to RSA spontaneously (ΔG < 0) and the process is entropically driven. Interaction density function method (IDF) indicated that PPL accessed two cooperative sites in RSA, with moderate binding constants (2.3 × 105 M-1 and 1.3 × 105 M-1). The molecular docking described the microenvironment of the interaction sites, rich in apolar residues. The stability of the RSA-PPL complex was checked by molecular dynamics.
Collapse
Affiliation(s)
- Ana Paula Ribeiro Povinelli
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil
| | - Gabriel Zazeri
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil
| | - Marcelo de Freitas Lima
- Departamento de Química, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil
| | - Marinônio Lopes Cornélio
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
30
|
Anti-Neuroinflammatory Effect of Alantolactone through the Suppression of the NF-κB and MAPK Signaling Pathways. Cells 2019; 8:cells8070739. [PMID: 31323885 PMCID: PMC6678480 DOI: 10.3390/cells8070739] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023] Open
Abstract
Neuroinflammation is a major cause of central nervous system (CNS) damage and can result in long-term disability and mortality. Therefore, the development of effective anti-neuroinflammatory agents for neuroprotection is vital. To our surprise, the naturally occurring molecule alantolactone (Ala) was reported to significantly inhibit tumor growth and metastasis as a result of its excellent anti-inflammatory effects. Thus, we proposed that it could also act as an anti-neuroinflammatory agent. Thus, in this study, a coculture system of BV2 cells and PC12 cells were used as an in vitro neuroinflammatory model to investigate the anti-neuroinflammatory mechanism of Ala. The results indicated that Ala downregulated the expression of proinflammatory factors by suppressing the nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Further evaluation using a middle cerebral artery occlusion and reperfusion (MCAO/R) rat model supported the conclusion that Ala could (1) alleviate cerebral ischemia-reperfusion injury; (2) reduce neurological deficits, cerebral infarct volume, and brain edema; and (3) attenuate the apoptosis and necrosis of neurons. In sum, Ala demonstrates anti-neuroinflammatory properties that contribute to the amelioration of CNS damage, and it could be a promising candidate for future applications in CNS injury treatment.
Collapse
|
31
|
Nardochinoid B Inhibited the Activation of RAW264.7 Macrophages Stimulated by Lipopolysaccharide through Activating the Nrf2/HO-1 Pathway. Molecules 2019; 24:molecules24132482. [PMID: 31284554 PMCID: PMC6650925 DOI: 10.3390/molecules24132482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Nardochinoid B (NAB) is a new compound isolated from Nardostachys chinensis. Although our previous study reported that the NAB suppressed the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW264.7 cells, the specific mechanisms of anti-inflammatory action of NAB remains unknown. Thus, we examined the effects of NAB against LPS-induced inflammation. In this study, we found that NAB suppressed the LPS-induced inflammatory responses by restraining the expression of inducible nitric oxide synthase (iNOS) proteins and mRNA instead of cyclooxygenase-2 (COX-2) protein and mRNA in RAW264.7 cells, implying that NAB may have lower side effects compared with nonsteroidal anti-inflammatory drugs (NSAIDs). Besides, NAB upregulated the protein and mRNA expressions of heme oxygenase (HO)-1 when it exerted its anti-inflammatory effects. Also, NAB restrained the production of NO by increasing HO-1 expression in LPS-stimulated RAW264.7 cells. Thus, it is considered that the anti-inflammatory effect of NAB is associated with an induction of antioxidant protein HO-1, and thus NAB may be a potential HO-1 inducer for treating inflammatory diseases. Moreover, our study found that the inhibitory effect of NAB on NO is similar to that of the positive drug dexamethasone, suggesting that NAB has great potential for developing new drugs in treating inflammatory diseases.
Collapse
|
32
|
Bai Z, Chen G, Li W, Hou Y, Li N. Natural Inhibitors on Over-Activation of Microglia from Herbals. Chem Pharm Bull (Tokyo) 2019; 67:640-647. [PMID: 31257319 DOI: 10.1248/cpb.c18-00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroinflammation manifested by over-activation of microglial cells plays an essential role in neurodegenerative diseases. Short-term activation of microglia can be beneficial, but chronically activated microglia can aggravate neuronal dysfunction possibly by secreting potentially cytotoxic substances such as tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO), which can result in dysfunction and death of neurons. Therefore inhibiting over-activation of microglia and the production of cytotoxic intermediates may become an effective therapeutic approach for neuroinflammation. In this paper, we review our continuous research on natural inhibitors of over-activated microglia from traditional herbals, including flavonoids, lignans, sesquiterpene coumarins, and stilbenes.
Collapse
Affiliation(s)
- Zisong Bai
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University.,College of Life and Health Sciences, Northeastern University
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
| |
Collapse
|
33
|
Six New Methyl Apiofuranosides from the Bark of Phellodendron chinense Schneid and Their Inhibitory Effects on Nitric Oxide Production. Molecules 2019; 24:molecules24101851. [PMID: 31091775 PMCID: PMC6572284 DOI: 10.3390/molecules24101851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
A chemical investigation on 70% EtOH extract from the bark of Phellodendron chinense Schneid (Rutaceae) led to six new methyl apiofuranosides (1–6), and ten known compounds (7–16). All these compounds were characterized by the basic analysis of the spectroscopic data including extensive 1D-, 2D-NMR (HSQC, HMBC), and high-resolution mass spectrometry, and the absolute configurations were determined by both empirical approaches and NOESY. Inhibitory effects of compounds 1–9 and 11–16 on nitric oxide production were investigated in lipopolysaccharide (LPS)-mediated RAW 264.7 cells, as a result, most of these isolates inhibited nitric oxide (NO) release, and among them 9, 11, and 12 displayed the strongest inhibition on NO release at the concentration of 12.5 μM.
Collapse
|
34
|
Zhao Z, Song H, Xie J, Liu T, Zhao X, Chen X, He X, Wu S, Zhang Y, Zheng X. Research progress in the biological activities of 3,4,5-trimethoxycinnamic acid (TMCA) derivatives. Eur J Med Chem 2019; 173:213-227. [PMID: 31009908 PMCID: PMC7115657 DOI: 10.1016/j.ejmech.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 01/02/2023]
Abstract
TMCA (3,4,5-trimethoxycinnamic acid) ester and amide are privileged structural scaffolds in drug discovery which are widely distributed in natural products and consequently produced diverse therapeutically relevant pharmacological functions. Owing to the potential of TMCA ester and amide analogues as therapeutic agents, researches on chemical syntheses and modifications have been carried out to drug-like candidates with broad range of medicinal properties such as antitumor, antiviral, CNS (central nervous system) agents, antimicrobial, anti-inflammatory and hematologic agents for a long time. At the same time, SAR (structure-activity relationship) studies have draw greater attention among medicinal chemists, and many of the lead compounds were derived for various disease targets. However, there is an urgent need for the medicinal chemists to further exploit the precursor in developing chemical entities with promising bioactivity and druggability. This review concisely summarizes the synthesis and biological activity for TMCA ester and amide analogues. It also comprehensively reveals the relationship of significant biological activities along with SAR studies. 3,4,5-Trimethoxycinnamic acid (TMCA) derivatives show applications in different pathophysiological conditions due to its privileged structural scaffolds. Natural derived TMCA analogues and chemically modified TMCA ester and amide analogues and their bioactivities are focused in this review. Additionally, it also comprehensively summarized the relationship of significant biological activities along with SAR studies of synthetic TMCA derivatives.
Collapse
Affiliation(s)
- Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Huanhuan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jing Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Tian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xirui He
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China.
| |
Collapse
|
35
|
|
36
|
Li LN, Liu XQ, Zhu DR, Chen C, Lin YL, Wang WL, Zhu L, Luo JG, Kong LY. Officinalins A and B, a pair of C23 terpenoid epimers with a tetracyclic 6/7/5/5 system from Salvia officinalis. Org Chem Front 2019. [DOI: 10.1039/c9qo00861f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Officinalins A (1) and B (2), a pair of 6/7/5/5 tetracyclic C23 terpenoid epimers with a unique tetracycline-[9.6.0.03,8.012,16]-heptadecane core and a peroxide bridge, were isolated from the leaves of Salvia officinalis.
Collapse
Affiliation(s)
- Ling-Nan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xiao-Qin Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Dong-Rong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Yao-Lan Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Wen-Li Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Li Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|
37
|
Li Q, Zhang J, Chen LZ, Wang JQ, Zhou HP, Tang WJ, Xue W, Liu XH. New pentadienone oxime ester derivatives: synthesis and anti-inflammatory activity. J Enzyme Inhib Med Chem 2018; 33:130-138. [PMID: 29199491 PMCID: PMC6010105 DOI: 10.1080/14756366.2017.1396455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
To develop novel anti-inflammatory agents, a series of new pentadienone oxime ester compounds were designed and synthesized. The structures were determined by IR, 1H NMR, 13 C NMR, and HRMS. All compounds have been screened for their anti-inflammatory activity by evaluating their inhibition against LPS-induced nitric oxide (NO) release in RAW 264.7 cell. Among them, compound 5j was found to be one of the most potent compounds in inhibiting NO and IL-6 (IC50 values were 6.66 µM and 5.07 µM, respectively). Preliminary mechanism studies show that title compound 5j could significantly suppress expressions of nitric oxide synthase, COX-2, and NO, IL-6 through Toll-like receptor 4/mitogen-activated protein kinases/NF-κB signalling pathway. These data support further studies to assess rational design of more efficient pentadienone oxime ester derivatives with anti-inflammatory activity in the future.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Juping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Jie Quan Wang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Hai Ping Zhou
- School of Material Science Chemical Engineering, ChuZhou University, ChuZhou, P. R. China
| | - Wen Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, P. R. China
- School of Material Science Chemical Engineering, ChuZhou University, ChuZhou, P. R. China
| |
Collapse
|
38
|
Luo JF, Shen XY, Lio CK, Dai Y, Cheng CS, Liu JX, Yao YD, Yu Y, Xie Y, Luo P, Yao XS, Liu ZQ, Zhou H. Activation of Nrf2/HO-1 Pathway by Nardochinoid C Inhibits Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages. Front Pharmacol 2018; 9:911. [PMID: 30233360 PMCID: PMC6131578 DOI: 10.3389/fphar.2018.00911] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The roots and rhizomes of Nardostachys chinensis have neuroprotection and cardiovascular protection effects. However, the specific mechanism of N. chinensis is not yet clear. Nardochinoid C (DC) is a new compound with new skeleton isolated from N. chinensis and this study for the first time explored the anti-inflammatory and anti-oxidant effect of DC. The results showed that DC significantly reduced the release of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW264.7 cells. The expression of pro-inflammatory proteins including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were also obviously inhibited by DC in LPS-activated RAW264.7 cells. Besides, the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also remarkably inhibited by DC in LPS-activated RAW264.7 cells. DC also suppressed inflammation indicators including COX-2, PGE2, TNF-α, and IL-6 in LPS-stimulated THP-1 macrophages. Furthermore, DC inhibited the macrophage M1 phenotype and the production of reactive oxygen species (ROS) in LPS-activated RAW264.7 cells. Mechanism studies showed that DC mainly activated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, increased the level of anti-oxidant protein heme oxygenase-1 (HO-1) and thus produced the anti-inflammatory and anti-oxidant effects, which were abolished by Nrf2 siRNA and HO-1 inhibitor. These findings suggested that DC could be a new Nrf2 activator for the treatment and prevention of diseases related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xiu-Yu Shen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chon Kit Lio
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jian-Xin Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun-Da Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Gu SM, Lee HP, Ham YW, Son DJ, Kim HY, Oh KW, Han SB, Yun J, Hong JT. Piperlongumine Improves Lipopolysaccharide-Induced Amyloidogenesis by Suppressing NF-KappaB Pathway. Neuromolecular Med 2018; 20:312-327. [PMID: 29802525 PMCID: PMC6097046 DOI: 10.1007/s12017-018-8495-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Amyloidogenesis is known to cause Alzheimer's disease. Our previous studies have found that lipopolysaccharide (LPS) causes neuroinflammation and amyloidogenesis through activation of nuclear factor kappaB (NF-κB). Piperlongumine (PL) is an alkaloid amide found naturally in long pepper (Piper longum) isolates; it was reported to have inhibitory effects on NF-κB activity. We therefore investigated whether PL exhibits anti-inflammatory and anti-amyloidogenic effects by inhibiting NF-κB. A murine model of LPS-induced memory impairment was made via the intraperitoneal (i.p.) injection of LPS (0.25 mg/kg/day, i.p.). We then injected PL (1.5 or 3.0 mg/kg/day, i.p.) for 7 days in three groups of mice to observe effects on memory. We also conducted an in vitro study with astrocytes and microglial BV-2 cells, which were treated with LPS (1 µg/mL) or PL (0.5 or 1.0 or 2.5 µM). Results from our behavioral tests showed that PL inhibited LPS-induced memory. PL also prevented LPS-induced beta-amyloid (Aβ) accumulation and inhibited the activities of β- and γ-secretases. The expression of inflammatory proteins also was decreased in PL-treated mice, cultured BV-2, and primary astrocyte cells. These effects were associated with the inhibition of NF-κB activity. A docking model analysis and pull-down assay showed that PL binds to p50. Taken together, our findings suggest that PL diminishes LPS-induced amyloidogenesis and neuroinflammation by inhibiting NF-κB signaling; PL therefore demonstrates potential for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University, 800W University Pkwy, Orem, UT, 84058, USA
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Hoi Yeong Kim
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-eup, Jeungpyeong-gun, Chungbuk, 27909, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- Department of Neuroimmunology, College of Pharmacy, Wonkwang University, 460 Iksan-daero, Iksan-si, Jeonbuk, 54538, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
40
|
Kim KW, Yoon CS, Kim YC, Oh H. Desoxo-narchinol A and Narchinol B Isolated from Nardostachys jatamansi Exert Anti-neuroinflammatory Effects by Up-regulating of Nuclear Transcription Factor Erythroid-2-Related Factor 2/Heme Oxygenase-1 Signaling. Neurotox Res 2018; 35:230-243. [PMID: 30168019 DOI: 10.1007/s12640-018-9951-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that desoxo-narchinol A and narchinol B from Nardostachys jatamansi DC (Valerianaceae) inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein in lipopolysaccharide (LPS)-stimulated BV2 and primary microglial cells. In this study, we aimed to elucidate the molecular mechanism underlying the anti-neuroinflammatory effects of desoxo-narchinol A and narchinol B. These two compounds inhibited the nuclear factor (NF)-κB pathway, by repressing the phosphorylation and degradation of inhibitor kappa B (IκB)-α, nuclear translocation of the p65/p50 heterodimer, and DNA-binding activity of the p65 subunit. Furthermore, both compounds induced heme oxygenase-1 (HO-1) protein expression, which was mediated by the activation of nuclear transcription factor erythroid-2-related factor 2 (Nrf2). Activation of the Nrf2/HO-1 pathway by desoxo-narchinol A was shown to be regulated by increased phosphorylation of p38 and extracellular signal-regulated kinase (ERK), whereas only p38 was involved in narchinol B-induced activation of the Nrf2/HO-1 pathway. In addition, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling was also involved in the activation of HO-1 by desoxo-narchinol A and narchinol B. These compounds also increased the phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine-9 residue, following phosphorylation of Akt. The anti-neuroinflammatory effect of desoxo-narchinol A and narchinol B was partially blocked by a selective HO-1 inhibitor, suggesting that this effect is partly mediated by HO-1 induction. In addition, both compounds also induced HO-1 protein expression in rat-derived primary microglial cells, which was correlated with their anti-neuroinflammatory effects in LPS-stimulated primary microglial cells. In conclusion, desoxo-narchinol A and narchinol B are potential candidates for the development of preventive agents for the regulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
41
|
Liu X, Wang Y, Zhang X, Gao Z, Zhang S, Shi P, Zhang X, Song L, Hendrickson H, Zhou D, Zheng G. Senolytic activity of piperlongumine analogues: Synthesis and biological evaluation. Bioorg Med Chem 2018; 26:3925-3938. [PMID: 29925484 PMCID: PMC6087492 DOI: 10.1016/j.bmc.2018.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Selective clearance of senescent cells (SCs) has emerged as a potential therapeutic approach for age-related diseases, as well as chemotherapy- and radiotherapy-induced adverse effects. Through a cell-based phenotypic screening approach, we recently identified piperlongumine (PL), a dietary natural product, as a novel senolytic agent, referring to small molecules that can selectively kill SCs over normal or non-senescent cells. In an effort to establish the structure-senolytic activity relationships of PL analogues, we performed a series of structural modifications on the trimethoxyphenyl and the α,β-unsaturated δ-valerolactam rings of PL. We show that modifications on the trimethoxyphenyl ring are well tolerated, while the Michael acceptor on the lactam ring is critical for the senolytic activity. Replacing the endocyclic C2-C3 olefin with an exocyclic methylene at C2 render PL analogues 47-49 with increased senolytic activity. These α-methylene containing analogues are also more potent than PL in inducing ROS production in WI-38 SCs. Similar to PL, 47-49 reduce the protein levels of oxidation resistance 1 (OXR1), an important oxidative stress response protein that regulates the expression of a variety of antioxidant enzymes, in cells. This study represents a useful starting point toward the discovery of senolytic agents for therapeutic uses.
Collapse
Affiliation(s)
- Xingui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Yingying Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Xuan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Zhengya Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Suping Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Peizhong Shi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Xin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Lin Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Howard Hendrickson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
42
|
Yuan Q, Zhang D, Liu C, Zhang C, Yuan D. Chikusetsusaponin V Inhibits LPS-Activated Inflammatory Responses via SIRT1/NF-κB Signaling Pathway in RAW264.7 Cells. Inflammation 2018; 41:2149-2159. [DOI: 10.1007/s10753-018-0858-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Du YT, Zheng YL, Ji Y, Dai F, Hu YJ, Zhou B. Applying an Electrophilicity-Based Strategy to Develop a Novel Nrf2 Activator Inspired from Dietary [6]-Shogaol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7983-7994. [PMID: 29987924 DOI: 10.1021/acs.jafc.8b02442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) is a crucial cellular defense mechanisms against oxidative stress and also an effective means to decrease the risk of oxidative stress-related diseases including cancer. Thus, identifying novel Nrf2 activators is highly anticipated. Inspired from [6]-shogaol (6S), an active component of ginger, herein we developed a novel potent Nrf2 activator, (1E,4E)-1-(4-hydroxy-3-methoxyphenyl)-7-methylocta-1,4,6-trien-3-one (SA) by an electrophilicity-based strategy. Compared with the parent 6S, SA bearing a short but entirely conjugated unsaturated ketone chain manifested the improved electrophilicity and cytoprotection (cell viability for the 10 μM 6S- and SA-treated group being 48.9 ± 5.3% and 76.1 ± 3.2%, respectively) against tert-butylhydroperoxide ( t-BHP)-induced cell death (cell viability for the t-BHP-stimulated group being 42.4 ± 0.4%) of HepG2. Mechanistic study uncovers that SA works as a potent Nrf2 activator by inducing Keap1 modification, inhibiting Nrf2 ubiquitylation and phosphorylating ERK in a Michael acceptor-dependent fashion. Taking 6S as an example, this works illustrates the feasibility and importance of applying an electrophilicity-based strategy to develop Nrf2 activators with dietary molecules as an inspiration due to their low toxicity and extraordinarily diverse chemical scaffolds.
Collapse
Affiliation(s)
- Yu-Ting Du
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Yuan Ji
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Yong-Jing Hu
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , China
| |
Collapse
|
44
|
Bajpai VK, Alam MB, Quan KT, Ju MK, Majumder R, Shukla S, Huh YS, Na M, Lee SH, Han YK. Attenuation of inflammatory responses by (+)-syringaresinol via MAP-Kinase-mediated suppression of NF-κB signaling in vitro and in vivo. Sci Rep 2018; 8:9216. [PMID: 29907781 PMCID: PMC6003921 DOI: 10.1038/s41598-018-27585-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/16/2018] [Indexed: 01/23/2023] Open
Abstract
We examined the anti-inflammatory effects of (+)-syringaresinol (SGRS), a lignan isolated from Rubia philippinensis, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells using enzyme-based immuno assay, Western blotting, and RT-PCR analyses. Additionally, in vivo effects of SGRS in the acute inflammatory state were examined by using the carrageenan-induced hind paw edema assay in experimental mice. As a result, treatment with SGRS (25, 50, and 100 μM) inhibited protein expression of lipopolysaccharide-stimulated inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB) as well as production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) induced by LPS. Moreover, SGRS also reduced LPS-induced mRNA expression levels of iNOS and COX-2, including NO, PGE2, TNF-α, IL-1β, and IL-6 cytokines in a dose-dependent fashion. Furthermore, carrageenan-induced paw edema assay validated the in vivo anti-edema effect of SGRS. Interestingly, SGRS (30 mg/kg) suppressed carrageenan-induced elevation of iNOS, COX-2, TNF-α, IL-1β, and IL-6 mRNA levels as well as COX-2 and NF-κB protein levels, suggesting SGRS may possess anti-inflammatory activities.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Md Badrul Alam
- Departments of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mi-Kyoung Ju
- Departments of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rajib Majumder
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, 2567, Australia
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sang Han Lee
- Departments of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
45
|
Kim N, Do J, Bae JS, Jin HK, Kim JH, Inn KS, Oh MS, Lee JK. Piperlongumine inhibits neuroinflammation via regulating NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. J Pharmacol Sci 2018; 137:195-201. [PMID: 29970291 DOI: 10.1016/j.jphs.2018.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023] Open
Abstract
Inflammatory processes in the central nervous system are feature among biological reactions to harmful stimuli such as pathogens and damaged cells. In resting conditions, microglia are involved in immune surveillance and brain homeostasis. However, the activation of abnormal microglia can be detrimental to neurons, even resulting in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Therefore, normalization of microglial activation is considered a promising strategy for developing drugs that can treat or prevent inflammation-related brain diseases. In the present study, we investigated the effects of piperlongumine, an active component of Piper longum, on lipopolysaccharide (LPS)-induced neuroinflammation using BV2 microglial cells. We found that piperlongumine significantly inhibited the production of nitric oxide and prostaglandin E2 induced by LPS. Piperlongumine also reduced the expression of inducible nitric oxide synthase and cyclooxygenase-2 as well as proinflammatory cytokines such as tumor necrosis factor-α and interleukin-6. Piperlongumine exerted its anti-neuroinflammatory effects by suppressing the nuclear factor kappa B signaling pathway. These findings suggest that piperlongumine could be a candidate agent for the treatment of inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jimin Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Ho Kim
- Department of Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung-Soo Inn
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jong Kil Lee
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
46
|
Dai F, Yuan CH, Ji Y, Du YT, Bao XZ, Wu LX, Jin XL, Zhou B. Keto-enol-based modification on piperlongumine to generate a potent Cu(II) ionophore that triggers redox imbalance and death of HepG2 cells. Free Radic Biol Med 2018; 120:124-132. [PMID: 29555591 DOI: 10.1016/j.freeradbiomed.2018.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/15/2018] [Indexed: 01/17/2023]
Abstract
Altered redox status including higher levels of copper in cancer cells than in normal cells inspired many researchers to develop copper ionophores targeting this status. We have recently found that flavon-3-ol (3-HF) works as a potent Cu(II) ionophore by virtue of its keto-enol moiety. To further emphasize the significance of this moiety for developing Cu(II) ionophores, we herein designed a β-diketo analog of piperlongumine, PL-I, characterized by the presence of high proportion of the keto-enol form in dimethylsulfoxide and chloroform, and identified its keto-enol structure by NMR and theoretical calculations. Benefiting from deprotonation of its enolic hydroxyl group, this molecule is capable of facilitating the transport of Cu(II) through cellular membranes to disrupt redox homeostasis of human hepatoma HepG2 cells and trigger their death.
Collapse
Affiliation(s)
- Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Cui-Hong Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuan Ji
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Ting Du
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling-Xi Wu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
47
|
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2018; 22:325-356. [PMID: 27988811 DOI: 10.1007/s10495-016-1335-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Collapse
Affiliation(s)
- Peiqi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingjuan Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feihong Gan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Suyu Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanyuan Yin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
48
|
Xu S, Xiao Y, Zeng S, Zou Y, Qiu Q, Huang M, Zhan Z, Liang L, Yang X, Xu H. Piperlongumine inhibits the proliferation, migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflamm Res 2018; 67:233-243. [PMID: 29119225 DOI: 10.1007/s00011-017-1112-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Recent studies have indicated that piperlongumine (PLM) may exert anti-inflammatory effects. In the present study, we determined the effect of PLM on the proliferation, apoptosis, migration and invasion of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) (referred to herein as RA FLS). We further explored the mechanisms by which the studied compound inhibits the functions of RA FLS. METHODS RA FLS viability and apoptosis were tested using MTT and Annexin V/PI assays, respectively. We performed an EDU assay to examine the proliferation of RA FLS. The migration and invasion of these cells were measured using a transwell chamber method and wound closure assay. The MMP-1, MMP-3, and MMP-13 levels in the culture supernatants of RA FLS were detected using a Luminex Assay kit. The intracellular ROS levels were detected using DCFH-DA. The expression levels of signal transduction proteins were measured using western blot. RESULTS We found that PLM induced apoptosis in RA FLS at concentrations of 15 and 20 μM. The proliferation of RA FLS was downregulated by PLM at concentrations of 1, 5 and 10 μM. Migration and invasion of RA FLS were reduced by PLM at concentrations of 1, 5 and 10 μM. PLM also inhibited cytoskeletal reorganization in migrating RA FLS and decreased TNF-α-induced intracellular ROS production. Moreover, we demonstrated the inhibitory effect of PLM on activation of the p38, JNK, NF-κB and STAT3 pathways. CONCLUSIONS Our findings suggest that PLM can inhibit proliferation, migration and invasion of RA FLS. Moreover, these data suggests that PLM might have therapeutic potential for the treatment of RA.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Youjun Xiao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Yaoyao Zou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Qian Qiu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Mingcheng Huang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Zhongping Zhan
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Xiuyan Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
49
|
Xue GM, Li XQ, Chen C, Chen K, Wang XB, Gu YC, Luo JG, Kong LY. Highly Oxidized Guaianolide Sesquiterpenoids with Potential Anti-inflammatory Activity from Chrysanthemum indicum. JOURNAL OF NATURAL PRODUCTS 2018; 81:378-386. [PMID: 29400471 DOI: 10.1021/acs.jnatprod.7b00867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ten new highly oxidized monomeric (1-8) and dimeric guaianolides (9 and 10), along with two known guaianolide derivatives (11 and 12), were isolated from the aerial parts of Chrysanthemum indicum using a bioassay-guided fractionation procedure. The new compounds were characterized by the basic analysis of the spectroscopic data obtained, and the absolute configurations were determined by both empirical approaches and ECD calculations. Inhibitory effects of 1-12 on nitric oxide production were investigated in lipopolysaccaride (LPS)-mediated RAW 264.7 cells, and most of them (1-8 and 11) displayed IC50 values in the range 1.4-9.7 μM. Moreover, a mechanistic study revealed that the potential anti-inflammatory activity of compound 1 appears to be mediated via suppression of an LPS-induced NF-κB pathway and down-regulation of MAPK activation.
Collapse
Affiliation(s)
- Gui-Min Xue
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Xiao-Qing Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Kang Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| |
Collapse
|
50
|
Wiemann J, Karasch J, Loesche A, Heller L, Brandt W, Csuk R. Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Eur J Med Chem 2017; 139:222-231. [PMID: 28802122 DOI: 10.1016/j.ejmech.2017.07.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
Piperlongumine B (19), an alkaloid previously isolated from long pepper (Piper longum) has been synthesized for the first time in a short sequence and in good yield together with 19 analogs. Screening of these compounds in Ellman's assays showed several of them to be good inhibitors of acetylcholinesterase while being less active for butyrylcholinesterase. Activity of the compounds increased with the ring size of the heterocycle, and a maximum of activity was observed for an analog holding 12 methylene groups in the aliphatic side chain. These compounds may be regarded as promising candidates for the development of efficient inhibitors of acetylcholinesterase being useful for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jana Wiemann
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Julia Karasch
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Lucie Heller
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|