1
|
Schaller S, Michon I, Baier V, Martins FS, Nolain P, Taneja A. Evaluation of BCRP-Related DDIs Between Methotrexate and Cyclosporin A Using Physiologically Based Pharmacokinetic Modelling. Drugs R D 2024:10.1007/s40268-024-00495-1. [PMID: 39715910 DOI: 10.1007/s40268-024-00495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE This study provides a physiologically based pharmacokinetic (PBPK) model-based analysis of the potential drug-drug interaction (DDI) between cyclosporin A (CsA), a breast cancer resistance protein transporter (BCRP) inhibitor, and methotrexate (MTX), a putative BCRP substrate. METHODS PBPK models for CsA and MTX were built using open-source tools and published data for both model building and for model verification and validation. The MTX and CsA PBPK models were evaluated for their application in simulating BCRP-related DDIs. A qualification of an introduced empirical uniform in vitro scaling factor of Ki values for transporter inhibition by CsA was conducted by using a previously developed model of rosuvastatin (sensitive index BCRP substrate), and assessing if corresponding DDI ratios were well captured. RESULTS Within the simulated DDI scenarios for MTX in the presence of CsA, the developed models could capture the observed changes in PK parameters as changes in the area under the curve ratios (area under the curve during DDI/area under the curve control) of 1.30 versus 1.31 observed and the DDI peak plasma concentration ratios (peak plasma concentration during DDI/peak plasma concentration control) of 1.07 versus 1.28 observed. The originally reported in vitro Ki values of CsA were scaled with the uniform qualified scaling factor for their use in the in vivo DDI simulations to correct for the low intracellular unbound fraction of the CsA effector concentration. The resulting predicted versus observed ratios of peak plasma concentration and area under the curve DDI ratios with MTX were 0.82 and 0.99, respectively, indicating adequate model accuracy and choice of a scaling factor to capture the observed DDI. CONCLUSIONS All models have been comprehensively documented and made publicly available as tools to support the drug development and clinical research community and further community-driven model development.
Collapse
Affiliation(s)
| | | | | | | | | | - Amit Taneja
- Galapagos SASU, Romainville, France
- Simulations Plus, Inc., Lancaster, California, USA
| |
Collapse
|
2
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
3
|
Hammid A, Fallon JK, Vellonen KS, Lassila T, Reinisalo M, Urtti A, Gonzalez F, Tolonen A, Smith PC, Honkakoski P. Aldehyde oxidase 1 activity and protein expression in human, rabbit, and pig ocular tissues. Eur J Pharm Sci 2023; 191:106603. [PMID: 37827455 DOI: 10.1016/j.ejps.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Aldehyde oxidase (AOX) is a cytosolic drug-metabolizing enzyme which has attracted increasing attention in drug development due to its high hepatic expression, broad substrate profile and species differences. In contrast, there is limited information on the presence and activity of AOX in extrahepatic tissues including ocular tissues. Because several ocular drugs are potential substrates for AOX, we performed a comprehensive analysis of the AOX1 expression and activity profile in seven ocular tissues from humans, rabbits, and pigs. AOX activities were determined using optimized assays for the established human AOX1 probe substrates 4-dimethylamino-cinnamaldehyde (DMAC) and phthalazine. Inhibition studies were undertaken in conjunctival and retinal homogenates using well-established human AOX1 inhibitors menadione and chlorpromazine. AOX1 protein contents were quantitated with targeted proteomics and confirmed by immunoblotting. Overall, DMAC oxidation rates varied over 10-fold between species (human ˃˃ rabbit ˃ pig) and showed 2- to 6-fold differences between tissues from the same species. Menadione seemed a more potent inhibitor of DMAC oxidation across species than chlorpromazine. Human AOX1 protein levels were highest in the conjunctiva, followed by most posterior tissues, whereas anterior tissues showed low levels. The rabbit AOX1 expression was high in the conjunctiva, retinal pigment epithelial (RPE), and choroid while lower in the anterior tissues. Quantification of pig AOX1 was not successful but immunoblotting confirmed the presence of AOX1 in all species. DMAC oxidation rates and AOX1 contents correlated quite well in humans and rabbits. This study provides, for the first time, insights into the ocular expression and activity of AOX1 among multiple species.
Collapse
Affiliation(s)
- Anam Hammid
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland.
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7355, Chapel Hill, NC 27599-7355, United States
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| | - Toni Lassila
- Admescope Ltd, Typpitie 1, FI-90620 Oulu, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland; Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Francisco Gonzalez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Service of Ophthalmology, University Hospital of Santiago de Compostela, and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Ari Tolonen
- Admescope Ltd, Typpitie 1, FI-90620 Oulu, Finland
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7355, Chapel Hill, NC 27599-7355, United States
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| |
Collapse
|
4
|
Izat N, Bolleddula J, Abbasi A, Cheruzel L, Jones RS, Moss D, Ortega-Muro F, Parmentier Y, Peterkin VC, Tian DD, Venkatakrishnan K, Zientek MA, Barber J, Houston JB, Galetin A, Scotcher D. Challenges and Opportunities for In Vitro-In Vivo Extrapolation of Aldehyde Oxidase-Mediated Clearance: Toward a Roadmap for Quantitative Translation. Drug Metab Dispos 2023; 51:1591-1606. [PMID: 37751998 DOI: 10.1124/dmd.123.001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Underestimation of aldehyde oxidase (AO)-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present study we first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation of unbound hepatic intrinsic clearance (CLint,u) and unbound hepatic intrinsic clearance by AO (CLint,u,AO) was assessed using a comprehensive literature database of in vitro (human cytosol/S9/hepatocytes) and in vivo (intravenous/oral) data collated for 22 AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation was done by experimental data or in silico predictions. The fraction metabolized by AO (fmAO) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CLint,u (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe's as empirical scaling factors improved predictions (45%-57% within twofold of observed) compared with no correction (11%-27% within twofold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fmAO In conclusion, the study provides the most robust system-specific empirical scaling factors to date as a pragmatic approach for the prediction of in vivo CLint,u,AO in the early stages of drug development. SIGNIFICANCE STATEMENT: Confidence remains low when predicting in vivo clearance of AO substrates using in vitro systems, leading to de-prioritization of AO substrates from the drug development pipeline to mitigate risk of unexpected and costly in vivo impact. The current study establishes a set of empirical scaling factors as a pragmatic tool to improve predictability of in vivo AO clearance. Developing clinical pharmacology strategies for AO substrates by utilizing mass balance/clinical drug-drug interaction data will help build confidence in fmAO.
Collapse
Affiliation(s)
- Nihan Izat
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Jayaprakasam Bolleddula
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Armina Abbasi
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Lionel Cheruzel
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Robert S Jones
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Darren Moss
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Fatima Ortega-Muro
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Yannick Parmentier
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Vincent C Peterkin
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Dan-Dan Tian
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Karthik Venkatakrishnan
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Michael A Zientek
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| |
Collapse
|
5
|
Uehara S, Yasuda M, Higuchi Y, Yoneda N, Kawai K, Suzuki M, Yamazaki H, Suemizu H. SGX523 causes renal toxicity through aldehyde oxidase-mediated less-soluble metabolite formation in chimeric mice with humanized livers. Toxicol Lett 2023; 388:48-55. [PMID: 37806366 DOI: 10.1016/j.toxlet.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
SGX523 is a c-Met tyrosine kinase inhibitor that failed in clinical trials because of renal toxicity caused by crystal deposits in renal tubules. SGX523 is metabolized by aldehyde oxidase (AOX) in a species-dependent manner to the considerably less soluble 2-quinolinone-SGX523, which is likely involved in the clinically observed obstructive nephropathy. This study investigated the metabolism and renal toxicity of SGX523 in chimeric mice with humanized livers (humanized-liver mice). The 2-quinolinone-SGX523 formation activity was higher in humanized-liver mouse and human hepatocytes than in mouse hepatocytes. Additionally, this activity in the liver cytosolic fraction from humanized-liver mice was inhibited by the AOX inhibitors raloxifene and hydralazine. After oral SGX523 administration, higher maximum concentrations, larger areas under the plasma concentration versus time curves, and higher urinary concentrations of 2-quinolinone-SGX523 were observed in humanized-liver mice than in non-humanized mice. Serum creatinine and blood urea nitrogen levels were elevated in humanized-liver mice following repeated oral SGX523 administration. The accumulation of amorphous material in the tubules and infiltration of inflammatory cells around tubules were observed in the kidneys of humanized-liver mice after repeated oral SGX523 administration. These findings demonstrate that humanized-liver mice are useful for understanding the metabolism and toxicity of SGX523.
Collapse
Affiliation(s)
- Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan.
| | - Masahiko Yasuda
- Pathology Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Yuichiro Higuchi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Kenji Kawai
- Pathology Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Masami Suzuki
- Translational Research Division, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida 194-8543, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| |
Collapse
|
6
|
Huang M, Zhu K, Wang Y, Lou C, Sun H, Li W, Tang Y, Liu G. In Silico Prediction of Metabolic Reaction Catalyzed by Human Aldehyde Oxidase. Metabolites 2023; 13:metabo13030449. [PMID: 36984889 PMCID: PMC10059660 DOI: 10.3390/metabo13030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Aldehyde oxidase (AOX) plays an important role in drug metabolism. Human AOX (hAOX) is widely distributed in the body, and there are some differences between species. Currently, animal models cannot accurately predict the metabolism of hAOX. Therefore, more and more in silico models have been constructed for the prediction of the hAOX metabolism. These models are based on molecular docking and quantum chemistry theory, which are time-consuming and difficult to automate. Therefore, in this study, we compared traditional machine learning methods, graph convolutional neural network methods, and sequence-based methods with limited data, and proposed a ligand-based model for the metabolism prediction catalyzed by hAOX. Compared with the published models, our model achieved better performance (ACC = 0.91, F1 = 0.77). What's more, we built a web server to predict the sites of metabolism (SOMs) for hAOX. In summary, this study provides a convenient and automatable model and builds a web server named Meta-hAOX for accelerating the drug design and optimization stage.
Collapse
Affiliation(s)
- Mengting Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Keyun Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yimeng Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chaofeng Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huimin Sun
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
8
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
9
|
Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Oxidative metabolism and pharmacokinetics of the EGFR inhibitor BIBX1382 in chimeric NOG-TKm30 mice transplanted with human hepatocytes. Drug Metab Pharmacokinet 2021; 41:100419. [PMID: 34624627 DOI: 10.1016/j.dmpk.2021.100419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
The epidermal growth factor receptor inhibitor BIBX1382 has failed in drug development because of poor oral exposure and low bioavailability associated with its extensive metabolism by aldehyde oxidase (AOX) in humans. In this study, we investigated the metabolic profiles and pharmacokinetics of BIBX1382 in chimeric NOG-TKm30 mice with humanized liver (humanized liver mice). After intravenous and oral BIBX1382 administration, increased plasma clearance and decreased oral exposure together with high production of the predominant oxidative metabolite (M1, BIBU1476) and secondary oxidized metabolite (M2) were observed in humanized liver mice. Extensive oxidation rates of BIBX1382 were observed in hepatocytes from humanized liver mice and were suppressed by the typical human AOX1 inhibitors raloxifene and hydralazine. Liver cytosolic fractions from humans, humanized liver mice, cynomolgus monkeys, minipigs, and guinea pigs, but not fractions from dogs, rabbits, rats, and mice, displayed high BIBX1382 clearance and resulted in oxidative metabolite production. These results indicate that humanized liver mice have human-type AOX activity based on the transplanted human liver AOX1 function. Humanized liver mice can be considered an important animal model for understanding the metabolism and pharmacokinetics of AOX drug substrates.
Collapse
Affiliation(s)
- Shotaro Uehara
- Central Institute for Experimental Animals, Kawasaki, Japan.
| | - Nao Yoneda
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | | |
Collapse
|
10
|
Kasteel EEJ, Westerink RHS. Refining in vitro and in silico neurotoxicity approaches by accounting for interspecies and interindividual differences in toxicodynamics. Expert Opin Drug Metab Toxicol 2021; 17:1007-1017. [PMID: 33586568 DOI: 10.1080/17425255.2021.1885647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The process of chemical risk assessment traditionally relies on animal experiments and associated default uncertainty factors to account for interspecies and interindividual differences. To work toward a more precise and personalized risk assessment, these uncertainty factors should be refined and replaced by chemical-specific adjustment factors (CSAFs). AREAS COVERED This concise review discusses alternative (in vitro/in silico) approaches that can be used to assess interspecies and interindividual differences in toxicodynamics, ranging from targeted to more integrated approaches. Although data are available on interspecies differences, the increasing use of human-induced pluripotent stem cell (hiPSC)-derived neurons may provide opportunities to also assess interindividual variability in neurotoxicity. More integrated approaches, like adverse outcome pathways (AOPs) can provide a more quantitative understanding of the toxicodynamics of a chemical. EXPERT OPINION To improve chemical risk assessment, refinement of uncertainty factors is crucial. In vitro and in silico models can facilitate the development of CSAFs, but still these models cannot always capture the complexity of the in vivo situation, thereby potentially hampering regulatory acceptance. The combined use of more integrated approaches, like AOPs and physiologically based kinetic models, can aid in structuring data and increasing suitability of alternative approaches for regulatory purposes.
Collapse
Affiliation(s)
- Emma E J Kasteel
- Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Remco H S Westerink
- Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
12
|
Zhang Y, Yang Y, Shen G, Mao X, Jiao M, Lin Y. Identification and Characterization of Aldehyde Oxidase 5 in the Pheromone Gland of the Silkworm (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:6029056. [PMID: 33295983 PMCID: PMC7724976 DOI: 10.1093/jisesa/ieaa132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Aldehyde oxidases (AOXs) are a subfamily of cytosolic molybdo-flavoenzymes that play critical roles in the detoxification and degradation of chemicals. Active AOXs, such as AOX1 and AOX2, have been identified and functionally analyzed in insect antennae but are rarely reported in other tissues. This is the first study to isolate and characterize the cDNA that encodes aldehyde oxidase 5 (BmAOX5) in the pheromone gland (PG) of the silkworm, Bombyx mori. The size of BmAOX5 cDNA is 3,741 nucleotides and includes an open reading frame, which encodes a protein of 1,246 amino acid residues. The theoretical molecular weight and isoelectric point of BmAOX5 are approximately 138 kDa and 5.58, respectively. BmAOX5 shares a similar primary structure with BmAOX1 and BmAOX2, containing two [2Fe-2S] redox centers, a FAD-binding domain, and a molybdenum cofactor (MoCo)-binding domain. RT-PCR revealed BmAOX5 to be particularly highly expressed in the PG (including ovipositor) of the female silkworm moth, and the expression was further confirmed by in situ hybridization, AOX activity staining, and anti-BmAOX5 western blotting. Further, BmAOX5 was shown to metabolize aromatic aldehydes, such as benzaldehyde, salicylaldehyde, and vanillic aldehyde, and fatty aldehydes, such as heptaldehyde and propionaldehyde. The maximum reaction rate (Vmax) of benzaldehyde as substrate was 21 mU and Km was 1.745 mmol/liter. These results suggested that BmAOX5 in the PG could metabolize aldehydes in the cytoplasm for detoxification or participate in the degradation of aldehyde pheromone substances and odorant compounds to identify mating partners and locate suitable spawning sites.
Collapse
Affiliation(s)
- Yandi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yu Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Xueqin Mao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Mengyao Jiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| |
Collapse
|
13
|
Abbasi A, Joswig-Jones CA, Jones JP. Site-Directed Mutagenesis at the Molybdenum Pterin Cofactor Site of the Human Aldehyde Oxidase: Interrogating the Kinetic Differences Between Human and Cynomolgus Monkey. Drug Metab Dispos 2020; 48:1364-1371. [PMID: 33020066 DOI: 10.1124/dmd.120.000187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022] Open
Abstract
The estimation of the drug clearance by aldehyde oxidase (AO) has been complicated because of this enzyme's atypical kinetics and species and substrate specificity. Since human AO (hAO) and cynomolgus monkey AO (mAO) have a 95.1% sequence identity, cynomolgus monkeys may be the best species for estimating AO clearance in humans. Here, O6-benzylguanine (O6BG) and dantrolene were used under anaerobic conditions, as oxidative and reductive substrates of AO, respectively, to compare and contrast the kinetics of these two species through numerical modeling. Whereas dantrolene reduction followed the same linear kinetics in both species, the oxidation rate of O6BG was also linear in mAO and did not follow the already established biphasic kinetics of hAO. In an attempt to determine why hAO and mAO are kinetically distinct, we have altered the hAO V811 and F885 amino acids at the oxidation site adjacent to the molybdenum pterin cofactor to the corresponding alanine and leucine in mAO, respectively. Although some shift to a more monkey-like kinetics was observed for the V811A mutant, five more mutations around the AO cofactors still need to be investigated for this purpose. In comparing the oxidative and reductive rates of metabolism under anaerobic conditions, we have come to the conclusion that despite having similar rates of reduction (4-fold difference), the oxidation rate in mAO is more than 50-fold slower than hAO. This finding implies that the presence of nonlinearity in AO kinetics is dependent upon the degree of imbalance between the rates of oxidation and reduction in this enzyme. SIGNIFICANCE STATEMENT: Although they have as much as 95.1% sequence identity, human and cynomolgus monkey aldehyde oxidase are kinetically distinct. Therefore, monkeys may not be good estimators of drug clearance in humans.
Collapse
Affiliation(s)
- Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
14
|
Nimesulide increases the aldehyde oxidase activity of humans and rats. Acta Pharmacol Sin 2020; 41:843-851. [PMID: 31913347 PMCID: PMC7471466 DOI: 10.1038/s41401-019-0336-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/18/2019] [Indexed: 11/09/2022] Open
Abstract
An increasing number of drugs are metabolized by aldehyde oxidase (AOX), but AOX-mediated drug interactions are seldom reported due to the lack of appropriate inhibitors and inducers. A recent study reported that nimesulide (NIM) could increase the liver injury risk of methotrexate. The latter was mainly metabolized by AOX to form hepatotoxic 7-hydroxymethotrexate (7-OH MTX). Thus, we speculated that NIM could induce AOX. In this study, we investigated the potential induction of AOX activity by NIM using methotrexate as the probe substrate. Treatment of primary human and rat hepatocytes with NIM (20 μM) for 24 h caused a 2.0- and 3.1-fold, respectively, increase in 7-OH MTX formation. Oral administration of NIM (100 mg·kg−1·d−1, for 5 days) to rats significantly increased the systematic exposure (6.5-fold), liver distribution (2.5-fold), and excretion (5.2-fold for urinary excretion and 2.1-fold for fecal excretion) of 7-OH MTX. The 7-OH MTX formation in liver cytosol from rats pretreated with 20, 50, and 100 mg·kg−1·d−1 NIM for 5 days increased by 1.9-, 3.2-, and 3.7-fold, respectively, compared with that of rats pretreated with the vehicle. We revealed that the elevation of AOX activity was accompanied by an increase in AOX1 protein levels but not the corresponding mRNA levels. Collectively, our results demonstrate for the first time that NIM can increase the AOX activity of humans and rats, and may raise concerns regarding the risk of drug interactions between NIM and AOX substrates in clinical practice.
Collapse
|
15
|
Manevski N, King L, Pitt WR, Lecomte F, Toselli F. Metabolism by Aldehyde Oxidase: Drug Design and Complementary Approaches to Challenges in Drug Discovery. J Med Chem 2019; 62:10955-10994. [PMID: 31385704 DOI: 10.1021/acs.jmedchem.9b00875] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldehyde oxidase (AO) catalyzes oxidations of azaheterocycles and aldehydes, amide hydrolysis, and diverse reductions. AO substrates are rare among marketed drugs, and many candidates failed due to poor pharmacokinetics, interspecies differences, and adverse effects. As most issues arise from complex and poorly understood AO biology, an effective solution is to stop or decrease AO metabolism. This perspective focuses on rational drug design approaches to modulate AO-mediated metabolism in drug discovery. AO biological aspects are also covered, as they are complementary to chemical design and important when selecting the experimental system for risk assessment. The authors' recommendation is an early consideration of AO-mediated metabolism supported by computational and in vitro experimental methods but not an automatic avoidance of AO structural flags, many of which are versatile and valuable building blocks. Preferably, consideration of AO-mediated metabolism should be part of the multiparametric drug optimization process, with the goal to improve overall drug-like properties.
Collapse
Affiliation(s)
- Nenad Manevski
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Lloyd King
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - William R Pitt
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Fabien Lecomte
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Francesca Toselli
- UCB BioPharma , Chemin du Foriest 1 , 1420 Braine-l'Alleud , Belgium
| |
Collapse
|
16
|
Cheshmazar N, Dastmalchi S, Terao M, Garattini E, Hamzeh-Mivehroud M. Aldehyde oxidase at the crossroad of metabolism and preclinical screening. Drug Metab Rev 2019; 51:428-452. [DOI: 10.1080/03602532.2019.1667379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Narges Cheshmazar
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
18
|
Mei S, Shi X, Du Y, Cui Y, Zeng C, Ren X, Yu K, Zhao Z, Lin S. Simultaneous determination of plasma methotrexate and 7-hydroxy methotrexate by UHPLC–MS/MS in patients receiving high-dose methotrexate therapy. J Pharm Biomed Anal 2018; 158:300-306. [DOI: 10.1016/j.jpba.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
|
19
|
Mota C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ. Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Crouch RD, Blobaum AL, Felts AS, Conn PJ, Lindsley CW. Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu5-Negative Allosteric Modulator VU0424238 (Auglurant). Drug Metab Dispos 2017; 45:1245-1259. [DOI: 10.1124/dmd.117.077552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/20/2017] [Indexed: 01/10/2023] Open
|
21
|
Foti A, Dorendorf F, Leimkühler S. A single nucleotide polymorphism causes enhanced radical oxygen species production by human aldehyde oxidase. PLoS One 2017; 12:e0182061. [PMID: 28750088 PMCID: PMC5531472 DOI: 10.1371/journal.pone.0182061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/11/2017] [Indexed: 12/23/2022] Open
Abstract
Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. The physiological function of mammalian AOX isoenzymes is still unclear, however, human AOX (hAOX1) is an emerging enzyme in phase-I drug metabolism. Indeed, the number of xenobiotics acting as hAOX1 substrates is increasing. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified within the hAOX1 gene. SNPs are a major source of inter-individual variability in the human population, and SNP-based amino acid exchanges in hAOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. In this report we selected ten novel SNPs resulting in amino acid exchanges in proximity to the FAD site of hAOX1 and characterized the purified enzymes after heterologous expression in Escherichia coli. The hAOX1 variants were characterized carefully by quantitative differences in their ability to produce superoxide radical. ROS represent prominent key molecules in physiological and pathological conditions in the cell. Our data reveal significant alterations in superoxide anion production among the variants. In particular the SNP-based amino acid exchange L438V in proximity to the isoalloxanzine ring of the FAD cofactor resulted in increased rate of superoxide radical production of 75%. Considering the high toxicity of the superoxide in the cell, the hAOX1-L438V SNP variant is an eventual candidate for critical or pathological roles of this natural variant within the human population.
Collapse
Affiliation(s)
- Alessandro Foti
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Dorendorf
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
22
|
Kücükgöze G, Terao M, Garattini E, Leimkühler S. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse. Drug Metab Dispos 2017; 45:947-955. [DOI: 10.1124/dmd.117.075937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022] Open
|
23
|
Rashidi MR, Soltani S. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery. Expert Opin Drug Discov 2017; 12:305-316. [DOI: 10.1080/17460441.2017.1284198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Foti RS, Dalvie DK. Cytochrome P450 and Non-Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics. ACTA ACUST UNITED AC 2016; 44:1229-45. [PMID: 27298339 DOI: 10.1124/dmd.116.071753] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
The drug-metabolizing enzymes that contribute to the metabolism or bioactivation of a drug play a crucial role in defining the absorption, distribution, metabolism, and excretion properties of that drug. Although the overall effect of the cytochrome P450 (P450) family of drug-metabolizing enzymes in this capacity cannot be understated, advancements in the field of non-P450-mediated metabolism have garnered increasing attention in recent years. This is perhaps a direct result of our ability to systematically avoid P450 liabilities by introducing chemical moieties that are not susceptible to P450 metabolism but, as a result, may introduce key pharmacophores for other drug-metabolizing enzymes. Furthermore, the effects of both P450 and non-P450 metabolism at a drug's site of therapeutic action have also been subject to increased scrutiny. To this end, this Special Section on Emerging Novel Enzyme Pathways in Drug Metabolism will highlight a number of advancements that have recently been reported. The included articles support the important role of non-P450 enzymes in the clearance pathways of U.S. Food and Drug Administration-approved drugs over the past 10 years. Specific examples will detail recent reports of aldehyde oxidase, flavin-containing monooxygenase, and other non-P450 pathways that contribute to the metabolic, pharmacokinetic, or pharmacodynamic properties of xenobiotic compounds. Collectively, this series of articles provides additional support for the role of non-P450-mediated metabolic pathways that contribute to the absorption, distribution, metabolism, and excretion properties of current xenobiotics.
Collapse
Affiliation(s)
- Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts (R.S.F.); and Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California (D.K.D.)
| | - Deepak K Dalvie
- Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts (R.S.F.); and Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California (D.K.D.)
| |
Collapse
|
25
|
Structure and function of mammalian aldehyde oxidases. Arch Toxicol 2016; 90:753-80. [DOI: 10.1007/s00204-016-1683-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
|