1
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
2
|
Zhong SJ, Xing YD, Dong LY, Chen Y, Liu N, Wang ZM, Zhang H, Zheng AP. Progress in the study of curcumin metabolism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-19. [PMID: 39692630 DOI: 10.1080/10286020.2024.2420619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024]
Abstract
Curcumin has diverse biological functions, especially antioxidant and anti-inflammatory properties, but clinical trials have been hindered by its low bioavailability and pharmacokinetic properties. To achieve therapeutic efficacy, understanding curcumin's in vivo metabolism is crucial. We reviewed current research on curcumin metabolism in PubMed, Google Scholar, and CNKI. This article outlines curcumin's metabolic processes in the body via oral and intravenous injection. It suggests that upon entering the human body, curcumin may undergo oxidation, reduction, binding, and microbial community influence.
Collapse
Affiliation(s)
- Shi-Jie Zhong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110000, China
| | - Ya-Dong Xing
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Lu-Yao Dong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110000, China
| | - Yi Chen
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Nan Liu
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Zeng-Ming Wang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Hui Zhang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Ai-Ping Zheng
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| |
Collapse
|
3
|
Luis PB, Nakashima F, Presley SH, Sulikowski GA, Schneider C. Dry Heating of Curcumin in the Presence of Basic Salts Yields Anti-inflammatory Dimerization Products. ACS OMEGA 2024; 9:37025-37034. [PMID: 39246485 PMCID: PMC11375705 DOI: 10.1021/acsomega.4c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Curcumin exerts some of its biological effects via degradation products formed by spontaneous oxidation at physiological, i.e., weakly basic, pH. Here, we analyzed products formed by dry heating of curcumin in the presence of a basic salt (sodium bicarbonate and others). Under the dry heating conditions employed, curcumin was completely consumed, yielding products entirely different from those obtained by autoxidative degradation in buffer. Bioassay-guided fractionation of the reaction mixture was used to identify and isolate compounds with anti-inflammatory activity in a cell-based assay. This provided two dimers of curcumin, dicurmins A and B, featuring a partly saturated naphthalene core that inhibited lipopolysaccharide-induced activation of NF-κB in RAW264.7 cells. Dicurmin A and B are unusual derivatives of curcumin lacking key functional moieties yet exhibit increased anti-inflammatory activity. The process of dry heating of polyphenols in the presence of a basic salt can serve as a novel approach to generating bioactive compounds.
Collapse
Affiliation(s)
- Paula B Luis
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Fumie Nakashima
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Sai Han Presley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Tan T, Yang F, Wang Z, Gao F, Sun L. Mediated Mendelian randomization analysis to determine the role of immune cells in regulating the effects of plasma metabolites on childhood asthma. Medicine (Baltimore) 2024; 103:e38957. [PMID: 39058829 PMCID: PMC11272359 DOI: 10.1097/md.0000000000038957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Childhood asthma is a chronic inflammatory disease of the airways, the pathogenesis of which involves multiple factors including genetic predisposition, environmental exposure, and immune system regulation. To date, the causal relationships between immune cells, plasma metabolites, and childhood asthma remain undetermined. Therefore, we aim to utilize the Mendelian randomization approach to assess the causal relationships among immune cells, plasma metabolites, and childhood asthma. This study employed the Mendelian randomization approach to investigate how immune cells influenced the risk of childhood asthma by modulating the levels of plasma metabolites. Five Mendelian randomization methods-inverse variance weighted, weighted median, Mendelian randomization-Egger, simple mode, and weighted mode-were utilized to explore the causal relationships among 731 types of immune cells, 1400 plasma metabolites, and childhood asthma. The instrumental variables for the 731 immune cells and 1400 plasma metabolites were derived from a genome-wide association study meta-analysis. Additionally, sensitivity analyses were conducted to examine the robustness of the results, potential heterogeneity, and pleiotropy. The inverse variance weighted results indicated that HLA DR on dendritic cells (DC) is a risk factor for childhood asthma (OR: 1.08, 95% CI: 1.02-1.14). In contrast, HLA DR on DC acts as a protective factor against elevated catechol glucuronide levels (OR: 0.94, 95% CI: 0.91-0.98), while catechol glucuronide levels themselves serve as a protective factor for childhood asthma (OR: 0.73, 95% CI: 0.60-0.89). Thus, HLA DR on DC can exert a detrimental effect on childhood asthma through the negative regulation of catechol glucuronide levels. The mediating effect was 0.018, accounting for a mediation effect proportion of 23.4%. This study found that HLA DR on DC can exert a risk effect on childhood asthma through the negative regulation of catechol glucuronide levels, providing new strategies for the prevention and treatment of childhood asthma and guiding future research and clinical practice.
Collapse
Affiliation(s)
- Tianhui Tan
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Fushuang Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Fa Gao
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Liping Sun
- Center of Children’s Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
5
|
El-Saadony MT, Yang T, Korma SA, Sitohy M, Abd El-Mageed TA, Selim S, Al Jaouni SK, Salem HM, Mahmmod Y, Soliman SM, Mo’men SAA, Mosa WFA, El-Wafai NA, Abou-Aly HE, Sitohy B, Abd El-Hack ME, El-Tarabily KA, Saad AM. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2023; 9:1040259. [PMID: 36712505 PMCID: PMC9881416 DOI: 10.3389/fnut.2022.1040259] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin's bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin's multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa A. A. Mo’men
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nahed A. El-Wafai
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hamed E. Abou-Aly
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mohamed E. Abd El-Hack
- Department of Poultry Diseases, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Kunihiro AG, Brickey JA, Frye JB, Cheng JN, Luis PB, Schneider C, Funk JL. Curcumin Inhibition of TGFβ signaling in bone metastatic breast cancer cells and the possible role of oxidative metabolites. J Nutr Biochem 2022; 99:108842. [PMID: 34407450 PMCID: PMC8628222 DOI: 10.1016/j.jnutbio.2021.108842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
TGFβ signaling promotes progression of bone-metastatic (BMET) breast cancer (BCa) cells by driving tumor-associated osteolysis, a hallmark of BCa BMETs, thus allowing for tumor expansion within bone. Turmeric-derived bioactive curcumin, enriched in bone via local enzymatic deconjugation of inactive circulating curcumin-glucuronides, inhibits osteolysis and BMET progression in human xenograft BCa BMET models by blocking tumoral TGFβ signaling pathways mediating osteolysis. This is a unique antiosteolytic mechanism in contrast to current osteoclast-targeting therapeutics. Therefore, experiments were undertaken to elucidate the mechanism for curcumin inhibition of BCa TGFβ signaling and the application of this finding across multiple BCa cell lines forming TGFβ-dependent BMETs, including a possible role for bioactive curcumin metabolites in mediating these effects. Immunoblot analysis of TGFβ signaling proteins in bone tropic human (MDA-SA, MDA-1833, MDA-2287) and murine (4T1) BCa cells revealed uniform curcumin blockade of TGFβ-induced Smad activation due to down-regulation of plasma membrane associated TGFβR2 and cellular receptor Smad proteins that propagate Smad-mediated gene expression, resulting in downregulation of PTHrP expression, the osteolytic factor driving in vivo BMET progression. With the exception of early decreases in TGFβR2, inhibitory effects appeared to be mediated by oxidative metabolites of curcumin and involved inhibition of gene expression. Interestingly, while not contributing to changes in Smad-mediated TGFβ signaling, curcumin caused early activation of MAPK signaling in all cell lines, including JNK, an effect possibly involving interactions with TGFβR2 within lipid rafts. Treatment with curcumin or oxidizable analogs of curcumin may have clinical relevancy in the management of TGFβ-dependent BCa BMETs.
Collapse
Affiliation(s)
- Andrew G Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Julia A Brickey
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jennifer B Frye
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Julia N Cheng
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA; Department of Medicine, University of Arizona, Tucson, Arizona, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
7
|
Ray AK, Luis PB, Mishra SK, Barry DP, Asim M, Pandey A, Chaturvedi M, Gupta J, Gupta S, Mahant S, Das R, Kumar P, Shalimar, Wilson KT, Schneider C, Chaturvedi R. Curcumin Oxidation Is Required for Inhibition of Helicobacter pylori Growth, Translocation and Phosphorylation of Cag A. Front Cell Infect Microbiol 2021; 11:765842. [PMID: 35004346 PMCID: PMC8740292 DOI: 10.3389/fcimb.2021.765842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Saheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Paula B. Luis
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | | | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Achyut Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maya Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shilpi Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Mahant
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rajashree Das
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pramod Kumar
- Department of Chemistry, Sri Aurobindo College, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Funk JL, Schneider C. Perspective on Improving the Relevance, Rigor, and Reproducibility of Botanical Clinical Trials: Lessons Learned From Turmeric Trials. Front Nutr 2021; 8:782912. [PMID: 34926556 PMCID: PMC8678600 DOI: 10.3389/fnut.2021.782912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plant-derived compounds, without doubt, can have significant medicinal effects since many notable drugs in use today, such as morphine or taxol, were first isolated from botanical sources. When an isolated and purified phytochemical is developed as a pharmaceutical, the uniformity and appropriate use of the product are well defined. Less clear are the benefits and best use of plant-based dietary supplements or other formulations since these products, unlike traditional drugs, are chemically complex and variable in composition, even if derived from a single plant source. This perspective will summarize key points-including the premise of ethnobotanical and preclinical evidence, pharmacokinetics, metabolism, and safety-inherent and unique to the study of botanical dietary supplements to be considered when planning or evaluating botanical clinical trials. Market forces and regulatory frameworks also affect clinical trial design since in the United States, for example, botanical dietary supplements cannot be marketed for disease treatment and submission of information on safety or efficacy is not required. Specific challenges are thus readily apparent both for consumers comparing available products for purchase, as well as for commercially sponsored vs. independent researchers planning clinical trials to evaluate medicinal effects of botanicals. Turmeric dietary supplements, a top selling botanical in the United States and focus of over 400 clinical trials to date, will be used throughout to illustrate both the promise and pitfalls associated with the clinical evaluation of botanicals.
Collapse
Affiliation(s)
- Janet L Funk
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Edwards RL, Luis PB, Nakashima F, Kunihiro AG, Presley SH, Funk JL, Schneider C. Mechanistic Differences in the Inhibition of NF-κB by Turmeric and Its Curcuminoid Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6154-6160. [PMID: 32378408 PMCID: PMC8406555 DOI: 10.1021/acs.jafc.0c02607] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Turmeric extract, a mixture of curcumin and its demethoxy (DMC) and bisdemethoxy (BDMC) isomers, is used as an anti-inflammatory preparation in traditional Asian medicine. Curcumin is considered to be the major bioactive compound in turmeric but less is known about the relative anti-inflammatory potency and mechanism of the other components, their mixture, or the reduced in vivo metabolites. We quantified inhibition of the NF-κB pathway in cells, adduction to a peptide mimicking IκB kinase β, and the role of cellular glutathione as a scavenger of electrophilic curcuminoid oxidation products, suggested to be the active metabolites. Turmeric extracts (IC50 14.5 ± 2.9 μM), DMC (IC50 12.1 ± 7.2 μM), and BDMC (IC50 8.3 ± 1.6 μM), but not reduced curcumin, inhibited NF-κB similar to curcumin (IC50 18.2 ± 3.9 μM). Peptide adduction was formed with turmeric and DMC but not with BDMC, and this correlated with their oxidative degradation. Inhibition of glutathione biosynthesis enhanced the activity of DMC but not BDMC in the cellular assay. These findings suggest that NF-κB inhibition by curcumin and DMC involves their oxidation to reactive electrophiles, whereas BDMC does not require oxidation. Because it has not been established whether curcumin undergoes oxidative transformation in vivo, oxidation-independent BDMC may be a promising alternative to test in clinical trials.
Collapse
Affiliation(s)
- Rebecca L. Edwards
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Paula B. Luis
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Fumie Nakashima
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Andrew G. Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85719, U.S.A
| | - Sai-Han Presley
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Janet L. Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85719, U.S.A
- Department of Medicine, University of Arizona, Tucson, AZ 85719, U.S.A
| | - Claus Schneider
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| |
Collapse
|
10
|
Luis PB, Kunihiro AG, Funk JL, Schneider C. Incomplete Hydrolysis of Curcumin Conjugates by β-Glucuronidase: Detection of Complex Conjugates in Plasma. Mol Nutr Food Res 2020; 64:e1901037. [PMID: 31962379 DOI: 10.1002/mnfr.201901037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/13/2020] [Indexed: 12/19/2022]
Abstract
SCOPE The diphenol curcumin from turmeric is rapidly metabolized into phase II conjugates following oral administration, resulting in negligible plasma concentration of the free compound, which is considered the bioactive form. Total plasma concentration of curcumin is often quantified after treatment with β-glucuronidase to hydrolyze curcumin-glucuronide, the most abundant conjugate in vivo. The efficiency of enzymatic hydrolysis has not been tested. METHODS AND RESULTS Using liquid chromatography-mass spectrometry (LC-MS) analyses the efficiency of β-glucuronidase and sulfatase from Helix pomatia is compared to hydrolyze curcumin conjugates in human and mouse plasma after oral administration of turmeric. Both β-glucuronidase and sulfatase completely hydrolyze curcumin-glucuronide. Unexpectedly, β-glucuronidase hydrolysis is incomplete, affording a large amount of curcumin-sulfate, whereas sulfatase hydrolyzed both glucuronide and sulfate conjugates. With sulfatase, the concentration of free curcumin is doubled in human and increased in mouse plasma compared to β-glucuronidase treatment. Incomplete hydrolysis by β-glucuronidase suggests the presence of mixed glucuronide-sulfate conjugates. LC-MS based searches detect diglucuronide, disulfate, and mixed sulfate-glucuronide and sulfate-diglucuronide conjugates in plasma that likely contribute to the increase of free curcumin upon sulfatase treatment. CONCLUSION β-Glucuronidase incompletely hydrolyzes complex sulfate-containing conjugates that appear to be major metabolites, resulting in an underestimation of the total plasma concentration of curcumin.
Collapse
Affiliation(s)
- Paula B Luis
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Andrew G Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85719, USA
- Department of Medicine, University of Arizona, Tucson, AZ, 85719, USA
| | - Claus Schneider
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| |
Collapse
|
11
|
Low-dose curcumin reduced TNBS-associated mucin depleted foci in mice by scavenging superoxide anion and lipid peroxides, rebalancing matrix NO synthase and aconitase activities, and recoupling mitochondria. Inflammopharmacology 2020; 28:949-965. [DOI: 10.1007/s10787-019-00684-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022]
|
12
|
Alli-Oluwafuyi AM, Luis PB, Nakashima F, Giménez-Bastida JA, Presley SH, Duvernay MT, Iwalewa EO, Schneider C. Curcumin induces secretion of glucagon-like peptide-1 through an oxidation-dependent mechanism. Biochimie 2019; 165:250-257. [PMID: 31470039 DOI: 10.1016/j.biochi.2019.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Curcumin shows antiglycemic effects in animals. Curcumin is chemically unstable at physiological pH, and its oxidative degradation products were shown to contribute to its anti-inflammatory effects. Since the degradation products may also contribute to other effects, we analyzed their role in the antiglycemic activity of curcumin. We quantified curcumin-induced release of glucagon-like peptide 1 (GLP-1) from mouse STC-1 cells that represent enteroendocrine L-cells as a major source of this anti-diabetic hormone. Curcumin induced secretion of GLP-1 in a dose-dependent manner. Two chemically stable analogues of curcumin that do not readily undergo degradation, were less active while two unstable analogues were active secretagogues. Chromatographically isolated spiroepoxide, an unstable oxidative metabolite of curcumin with anti-inflammatory activity, also induced secretion of GLP-1. Stable compounds like the final oxidative metabolite bicyclopentadione, and the major plasma metabolite, curcumin-glucuronide, were inactive. GLP-1 secretion induced by curcumin and its oxidative degradation products was associated with activation of PKC, ERK, and CaM kinase II. Since activity largely correlated with instability of curcumin and the analogues, we tested the extent of covalent binding to proteins in STC-1 cells and found it occurred with similar affinity as N-ethylmaleimide, indicating covalent binding occurred with nucleophilic cysteine residues. These results suggest that oxidative metabolites of curcumin are involved in the antiglycemic effects of curcumin. Our findings support the hypothesis that curcumin functions as a pro-drug requiring oxidative activation to reveal its bioactive metabolites that act by binding to target proteins thereby causing a change in function.
Collapse
Affiliation(s)
- Abdul-Musawwir Alli-Oluwafuyi
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA; Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Paula B Luis
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Fumie Nakashima
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Juan A Giménez-Bastida
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Sai Han Presley
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Matthew T Duvernay
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Ezekiel O Iwalewa
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Kunihiro AG, Luis PB, Brickey JA, Frye JB, Chow HHS, Schneider C, Funk JL. Beta-Glucuronidase Catalyzes Deconjugation and Activation of Curcumin-Glucuronide in Bone. JOURNAL OF NATURAL PRODUCTS 2019; 82:500-509. [PMID: 30794412 PMCID: PMC6528680 DOI: 10.1021/acs.jnatprod.8b00873] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The biological basis for documented in vivo bone-protective effects of turmeric-derived curcumin is unclear since curcumin is barely detectable in serum, being rapidly conjugated to form what is thought to be an inactive glucuronide. Studies were therefore undertaken to test the postulate that antiresorptive effects of curcumin require deconjugation within bone to form the bioactive aglycone and that β-glucuronidase (GUSB), a deconjugating enzyme expressed by hematopoietic marrow cells, facilitates this site-specific transformation. Consistent with this postulate, aglycone, but not glucuronidated, curcumin inhibited RANKL-stimulated osteoclastogenesis, a key curcumin target in bone. Aglycone curcumin, expressed relative to total curcumin, was higher in bone marrow than in serum of curcumin-treated C57BL/6J mice, while remaining a minor component. Ex vivo, under conditions preventing further metabolism of the unstable aglycone, the majority of curcumin-glucuronide delivered to marrow in vivo was hydrolyzed to the aglycone, a process that was inhibited by treatment with saccharolactone, a GUSB inhibitor, or in mice having reduced (C3H/HeJ) or absent (mps/mps) GUSB activity. These findings suggest that curcumin, despite low systemic bioavailability, may be enzymatically activated (deconjugated) within GUSB-enriched bone to exert protective effects, a metabolic process that could also contribute to bone-protective effects of other highly glucuronidated dietary polyphenols.
Collapse
Affiliation(s)
- Andrew G Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Julia A Brickey
- Department of Medicine, University of Arizona, Tucson, AZ 85724
| | - Jen B Frye
- Department of Medicine, University of Arizona, Tucson, AZ 85724
| | - H-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724
- Department of Medicine, University of Arizona, Tucson, AZ 85724
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
14
|
Kunihiro AG, Brickey JA, Frye JB, Luis PB, Schneider C, Funk JL. Curcumin, but not curcumin-glucuronide, inhibits Smad signaling in TGFβ-dependent bone metastatic breast cancer cells and is enriched in bone compared to other tissues. J Nutr Biochem 2019; 63:150-156. [PMID: 30393127 PMCID: PMC6296872 DOI: 10.1016/j.jnutbio.2018.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023]
Abstract
Breast cancer (BCa) bone metastases (BMETs) drive osteolysis via a feed-forward loop involving tumoral secretion of osteolytic factors (e.g., PTHrP) induced by bone-matrix-derived growth factors (e.g., TGFβ). In prior experiments, turmeric-derived curcumin inhibited in vivo BMET progression and in vitro TGFβ/Smad-signaling in a TGFβ-stimulated PTHrP-dependent human xenograft BCa BMET model (MDA-SA cells). However, it is unclear whether curcumin or curcumin-glucuronide mediates in vivo protection since curcumin-glucuronide is the primary circulating metabolite in rodents and in humans. Thus, effects of curcumin vs. curcumin-glucuronide on Smad-dependent TGFβ signaling were compared in a series of BCa cell lines forming TGFβ-dependent BMET in murine models, and tissue-specific metabolism of curcumin in mice was examined by LC-MS. While curcumin inhibited TGFβ-receptor-mediated Smad2/3 phosphorylation in all BCa cells studied (human MDA-SA, MDA-1833, MDA-2287 and murine 4T1 cells), curcumin-glucuronide did not. Similarly, curcumin, but not curcumin-glucuronide, blocked TGFβ-stimulated secretion of PTHrP from MDA-SA and 4T1 cells. Because the predominant serum metabolite, curcumin-glucuronide, lacked bioactivity, we examined tissue-specific metabolism of curcumin in mice. Compared to serum and other organs, free curcumin (both absolute and percentage of total) was significantly increased in bone, which was also a rich source of enzymatic deglucuronidation activity. Thus, curcumin, and not curcumin-glucuronide, appears to inhibit bone-tropic BCa cell TGFβ-signaling and to undergo site-specific activation (deconjugation) within the bone microenvironment. These findings suggest that circulating curcumin-glucuronide may act as a prodrug that preferentially targets bone, a process that may contribute to the bone-protective effects of curcumin and other highly glucuronidated dietary polyphenols.
Collapse
Affiliation(s)
- Andrew G Kunihiro
- Department of Nutritional Sciences, University of Arizona, 1656 E. Mabel St, Medical Research Building Rm 418, Tucson, AZ 85719, USA.
| | - Julia A Brickey
- Department of Medicine, University of Arizona, 1656 E. Mabel St, Medical Research Building Rm 418, Tucson, AZ 85719, USA.
| | - Jennifer B Frye
- Department of Medicine, University of Arizona, 1656 E. Mabel St, Medical Research Building Rm 418, Tucson, AZ 85719, USA.
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University, 23(rd) Ave S at Pierce RRB, Rm 514, Nashville, TN 37232-6602, USA.
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, 23(rd) Ave S at Pierce RRB, Rm 514, Nashville, TN 37232-6602, USA.
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, 1656 E. Mabel St, Medical Research Building Rm 418, Tucson, AZ 85719, USA; Department of Medicine, University of Arizona, 1656 E. Mabel St, Medical Research Building Rm 418, Tucson, AZ 85719, USA.
| |
Collapse
|
15
|
Joseph AI, Luis PB, Schneider C. A Curcumin Degradation Product, 7-Norcyclopentadione, Formed by Aryl Migration and Loss of a Carbon from the Heptadienedione Chain. JOURNAL OF NATURAL PRODUCTS 2018; 81:2756-2762. [PMID: 30560664 PMCID: PMC6474840 DOI: 10.1021/acs.jnatprod.8b00822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Evidence that anti-inflammatory and other biological effects of curcumin may at least in part be mediated by its metabolites underscores the importance of identifying novel transformation products. Spontaneous degradation of curcumin in buffer pH 7.5 results mainly in dioxygenated products with a characteristic cyclopentadione ring composed of carbons 2 through 6 of the former heptadienedione chain. When analyzing degradation reactions of 4'- O-methylcurcumin, a product was identified missing one of the terminal carbons of the heptadienedione moiety while containing a cyclopentadione ring and adjacent hydroxy group typical of curcumin degradation products. Analysis of curcumin autoxidation reactions showed formation of an analogous compound, 7-norcyclopentadione, a degradation product exhibiting net loss of a carbon and gain of an oxygen atom. Removal of the carbon is proposed to occur via a peroxide-linked curcumin dimer in conjunction with radical-mediated 1,2-aryl migration of a guaiacol moiety. Oxidation reactions of demethoxycurcumin gave demethoxy-7-norcyclopentadione, whereas an analogous product was not observed from bis-demethoxycurcumin. Incubation of RAW264.7 macrophage-like cells with curcumin showed the presence of 7-norcyclopentadione, the formation of which was not increased upon activation of the cells with 12- O-tetradecanoylphorbol-13-acetate . 7-Norcyclopentadione is a novel type of degradation product that is most likely formed via autoxidative processes when cells are incubated with curcumin.
Collapse
Affiliation(s)
- Akil I. Joseph
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, United States
| | - Paula B. Luis
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, United States
| | - Claus Schneider
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
Franck T, Aldib I, Zouaoui Boudjeltia K, Furtmüller PG, Obinger C, Neven P, Prévost M, Soubhye J, Van Antwerpen P, Mouithys-Mickalad A, Serteyn D. The soluble curcumin derivative NDS27 inhibits superoxide anion production by neutrophils and acts as substrate and reversible inhibitor of myeloperoxidase. Chem Biol Interact 2018; 297:34-43. [PMID: 30342014 DOI: 10.1016/j.cbi.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 01/17/2023]
Abstract
A water-soluble curcumin lysinate incorporated into hydroxypropyl-β-cyclodextrin (NDS27) has been developed and shown anti-inflammatory properties but no comparative study has been made in parallel with its parent molecule, curcumin on polymorphonuclear neutrophils (PMNs) and myeloperoxidase (MPO) involved in inflammation. The effect of NDS27, its excipients (hydroxypropyl-β-cyclodextrin and lysine), curcumin lysinate and curcumin were compared on the release of superoxide anion by PMNs using a chemiluminescence assay and on the enzymatic activity of MPO. It was shown that curcumin and NDS27 exhibit similar inhibition activities on superoxide anion release by stimulated PMNs but also on MPO peroxidase and halogenation activities. The action mechanism of curcumin and NDS27 on the MPO activity was refined by stopped-flow and docking analyses. We demonstrate that both curcumin and NDS27 are reversible inhibitors of MPO by acting as excellent electron donors for redox intermediate Compound I (∼107 M-1 s-1) but not for Compound II (∼103 M-1 s-1) in the peroxidase cycle of the enzyme, thereby trapping the enzyme in the Compound II state. Docking calculations show that curcumin is able to enter the enzymatic pocket of MPO and bind to the heme cavity by π-stacking and formation of hydrogen bonds involving substituents from both aromatic rings. Hydroxypropyl-β-cyclodextrin is too bulky to enter MPO channel leading to the binding site suggesting a full release of curcumin from the cyclodextrin thereby allowing its full access to the active site of MPO. In conclusion, the hydroxypropyl-β-cyclodextrin of NDS27 enhances curcumin solubilization without affecting its antioxidant capacity and inhibitory activity on MPO.
Collapse
Affiliation(s)
- Thierry Franck
- Department of Clinical Sciences, Anesthesiology and Equine Surgery, Faculty of Veterinary Medicine, B 41, University of Liege, Sart Tilman, Liège, Belgium; Centre of Oxygen, Research and Development-CIRM, Institute of Chemistry B 6a, University of Liege, Sart Tilman, Liège, Belgium.
| | - Iyas Aldib
- Laboratory of Pharmaceutical Chemistry & Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB 222), CHU de Charleroi, Hôpital Vésale, Montigny-le-Tilleul, Belgium
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Philippe Neven
- Laboratory of Medicinal Chemistry-CIRM, Faculty of Pharmacy, B36, CHU Liège, Liège, Belgium
| | - Martine Prévost
- Structure and Function of Biological Membranes, Faculty of Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jalal Soubhye
- Laboratory of Pharmaceutical Chemistry & Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry & Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Ange Mouithys-Mickalad
- Centre of Oxygen, Research and Development-CIRM, Institute of Chemistry B 6a, University of Liege, Sart Tilman, Liège, Belgium
| | - Didier Serteyn
- Department of Clinical Sciences, Anesthesiology and Equine Surgery, Faculty of Veterinary Medicine, B 41, University of Liege, Sart Tilman, Liège, Belgium; Centre of Oxygen, Research and Development-CIRM, Institute of Chemistry B 6a, University of Liege, Sart Tilman, Liège, Belgium
| |
Collapse
|
17
|
Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct 2018; 9:705-714. [PMID: 29206254 DOI: 10.1039/c7fo01242j] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcumin is a polyphenol found in turmeric (Curcuma longa), used as a spice, in food coloring, and as a traditional herbal medicine. It has been shown that curcumin has health benefits such as antioxidant, anti-inflammatory, and anticancer properties, improvement of brain function, and control of obesity and diabetes. However, native curcumin easily degrades and has low oral bioavailability, and a recent report has expressed doubt about curcumin's various effects. To overcome its low bioavailability, various curcumin formulations with enhanced bioavailability are currently being developed. This review discusses the chemistry, metabolism, and absorption of curcumin, to which various reported health benefits have been ascribed, as well as curcumin's degradation products and metabolites and their possible functions. Moreover, the research trend towards the obesity- and diabetes-preventing/suppressing aspects of curcumin and the latest case studies on highly water-dispersible and bioavailable curcumin formulations will be discussed. We summarize the challenges concerning research on curcumin's health benefits as follows: clarifying the relationship between curcumin's health benefits and the formation of curcumin-derived oxidation and degradation products and metabolites, determining whether curcumin itself or other components in turmeric are responsible for its effects, and conducting further human trials in which multiple research groups employ the same samples and conditions. High-bioavailability formulations would be useful in such future studies.
Collapse
Affiliation(s)
- Takanori Tsuda
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
18
|
Skiba MB, Luis PB, Alfarara C, Billheimer D, Schneider C, Funk JL. Curcuminoid Content and Safety-Related Markers of Quality of Turmeric Dietary Supplements Sold in an Urban Retail Marketplace in the United States. Mol Nutr Food Res 2018; 62:e1800143. [PMID: 29808963 PMCID: PMC6277232 DOI: 10.1002/mnfr.201800143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/08/2018] [Indexed: 01/25/2023]
Abstract
SCOPE Turmeric is a top selling dietary supplement (DS) in the United States with rapidly expanding usage. Therefore, turmeric DS formulations available for sale in an urban US retail marketplace are analyzed, and point of sale information is related to measures of quality relevant to safety. METHODS AND RESULTS Eighty-seven unique turmeric DS are identified; a majority (94%) contained turmeric-derived curcuminoid extracts (TD-CE), which are combined with other bioactives in 47% of products, including piperine (24%), an additive that could alter the metabolism of concurrent medications. While curcuminoid content is within 80% of anticipated for a majority of products analyzed (n = 35), curcuminoid composition (% curcumin) did not meet US Pharmacopeia (USP) criteria for TD-CE in 59% and is suggestive of possible unlabeled use of synthetic curcumin in some. Lead content is associated with the inclusion of turmeric root and exceeded USP limits in one product. Residues of toxic class 1 or 2 solvents, which are not needed for TD-CE isolation, are present in 71% of products, although quantified levels were within USP-specified limits. CONCLUSION Assessment of turmeric DS quality at point of sale is difficult for consumers and may best be managed in partnership with knowledgeable healthcare professionals.
Collapse
Affiliation(s)
- Meghan B Skiba
- Mel and Enid Zuckerman College of Public Health, Department of Health Promotion Sciences, University of Arizona, Tucson, Arizona,College of Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Paula B. Luis
- School of Medicine, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Chelsea Alfarara
- College of Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Dean Billheimer
- Mel and Enid Zuckerman College of Public Health, Department of Health Promotion Sciences, University of Arizona, Tucson, Arizona
| | - Claus Schneider
- School of Medicine, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Janet L Funk
- College of Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
19
|
Joseph AI, Edwards RL, Luis PB, Presley SH, Porter NA, Schneider C. Stability and anti-inflammatory activity of the reduction-resistant curcumin analog, 2,6-dimethyl-curcumin. Org Biomol Chem 2018; 16:3273-3281. [PMID: 29664496 PMCID: PMC5932260 DOI: 10.1039/c8ob00639c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The efficacy of the curry spice compound curcumin as a natural anti-inflammatory agent is limited by its rapid reductive metabolism in vivo. A recent report described a novel synthetic derivative, 2,6-dimethyl-curcumin, with increased stability against reduction in vitro and in vivo. It is also known that curcumin is unstable at physiological pH in vitro and undergoes rapid autoxidative transformation. Since the oxidation products may contribute to the biological effects of curcumin, we tested oxidative stability of 2,6-dimethyl-curcumin in buffer (pH 7.5). The rate of degradation was similar to curcumin. The degradation products were identified as a one-carbon chain-shortened alcohol, vanillin, and two isomeric epoxides that underwent cleavage to vanillin and a corresponding hydroxylated cleavage product. 2,6-Dimethyl-curcumin was more potent than curcumin in inhibiting NF-κB activity but less potent in inhibiting expression of cyclooxygenase-2 in LPS-activated RAW264.7 cells. 2,6-Dimethyl-curcumin and some of its degradation products covalently bound to a peptide that contains the redox-sensitive cysteine of IKKβ kinase, the activating kinase upstream of NF-κB, providing a mechanism for the anti-inflammatory activity. In RAW264.7 cells vanillin, the chain-shortened alcohol, and reduced 2,6-dimethyl-curcumin were detected as major metabolites. These studies provide new insight into the oxidative transformation mechanism of curcumin and related compounds. The products resulting from oxidative transformation contribute to the anti-inflammatory activity of 2,6-dimethyl-curcumin in addition to its enhanced resistance against enzymatic reduction.
Collapse
Affiliation(s)
- Akil I Joseph
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
20
|
Luis PB, Boeglin WE, Schneider C. Thiol Reactivity of Curcumin and Its Oxidation Products. Chem Res Toxicol 2018; 31:269-276. [PMID: 29569909 DOI: 10.1021/acs.chemrestox.7b00326] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polypharmacological effects of the turmeric compound curcumin may be partly mediated by covalent adduction to cellular protein. Covalent binding to small molecule and protein thiols is thought to occur through a Michael-type addition at the enone moiety of the heptadienedione chain connecting the two methoxyphenol rings of curcumin. Here we show that curcumin forms the predicted thiol-Michael adducts with three model thiols, glutathione, N-acetylcysteine, and β-mercaptoethanol. More abundant, however, are respective thiol adducts of the dioxygenated spiroepoxide intermediate of curcumin autoxidation. Two electrophilic sites at the quinone-like ring of the spiroepoxide are identified. Addition of β-mercaptoethanol at the 5'-position of the ring gives a 1,7-dihydroxycyclopentadione-5' thioether, and addition at the 1'-position results in cleavage of the aromatic ring from the molecule, forming methoxyphenol-thioether and a tentatively identified cyclopentadione aldehyde. The curcuminoids demethoxy- and bisdemethoxycurcumin do not form all of the possible thioether adducts, corresponding with their increased stability toward autoxidation. RAW264.7 macrophage-like cells activated with phorbol ester form curcumin-glutathionyl and the 1,7-dihydroxycyclopentadione-5'-glutathionyl adducts. These studies indicate that the enone of the parent compound is not the only functional electrophile in curcumin, and that its oxidation products provide additional electrophilic sites. This suggests that protein binding by curcumin may involve oxidative activation into reactive quinone methide and spiroepoxide electrophiles.
Collapse
Affiliation(s)
- Paula B Luis
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology , Vanderbilt University Medical School , Nashville , Tennessee 37232 , United States
| | - William E Boeglin
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology , Vanderbilt University Medical School , Nashville , Tennessee 37232 , United States
| | - Claus Schneider
- Department of Pharmacology, Division of Clinical Pharmacology, and Vanderbilt Institute of Chemical Biology , Vanderbilt University Medical School , Nashville , Tennessee 37232 , United States
| |
Collapse
|
21
|
|
22
|
Edwards RL, Luis PB, Varuzza PV, Joseph AI, Presley SH, Chaturvedi R, Schneider C. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J Biol Chem 2017; 292:21243-21252. [PMID: 29097552 DOI: 10.1074/jbc.ra117.000123] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
The spice turmeric, with its active polyphenol curcumin, has been used as anti-inflammatory remedy in traditional Asian medicine for centuries. Many cellular targets of curcumin have been identified, but how such a wide range of targets can be affected by a single compound is unclear. Here, we identified curcumin as a pro-drug that requires oxidative activation into reactive metabolites to exert anti-inflammatory activities. Synthetic curcumin analogs that undergo oxidative transformation potently inhibited the pro-inflammatory transcription factor nuclear factor κB (NF-κB), whereas stable, non-oxidizable analogs were less active, with a correlation coefficient (R2) of IC50versus log of autoxidation rate of 0.75. Inhibition of glutathione biosynthesis, which protects cells from reactive metabolites, increased the potency of curcumin and decreased the amount of curcumin-glutathione adducts in cells. Oxidative metabolites of curcumin adducted to and inhibited the inhibitor of NF-κB kinase subunit β (IKKβ), an activating kinase upstream of NF-κB. An unstable, alkynyl-tagged curcumin analog yielded abundant adducts with cellular protein that were decreased by pretreatment with curcumin or an unstable analog but not by a stable analog. Bioactivation of curcumin occurred readily in vitro, which may explain the wide range of cellular targets, but if bioactivation is insufficient in vivo, it may also help explain the inconclusive results in human studies with curcumin so far. We conclude that the paradigm of metabolic bioactivation uncovered here should be considered for the evaluation and design of clinical trials of curcumin and other polyphenols of medicinal interest.
Collapse
Affiliation(s)
- Rebecca L Edwards
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232 and
| | - Paula B Luis
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232 and
| | - Paolo V Varuzza
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232 and
| | - Akil I Joseph
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232 and
| | - Sai Han Presley
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232 and
| | - Rupesh Chaturvedi
- the School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Claus Schneider
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232 and
| |
Collapse
|
23
|
Alberti Á, Riethmüller E, Béni S. Characterization of diarylheptanoids: An emerging class of bioactive natural products. J Pharm Biomed Anal 2017; 147:13-34. [PMID: 28958734 DOI: 10.1016/j.jpba.2017.08.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 01/11/2023]
Abstract
Diarylheptanoids are a class of secondary plant metabolites with a wide variety of bioactivity. Research on their phytochemistry and phytoanalysis is rapidly growing and the number of identified structures bearing the aryl-C7-aryl skeleton is at present approaching 500. Historically, the yellow pigment curcumin has been characterized as the first diarylheptanoid and the extensive research on naturally occurring analogues is still ongoing. In this review, studies dealing with the characterization of linear and cyclic derivatives are discussed from the phytoanalytical point of view. Isolation, fractionation and purification strategies from natural sources along with their chromatographic behavior and structural characteristics are discussed. The role of various techniques used for the extraction (such as Soxhlet extraction, sonication, maceration/percolation, microwave-assisted extraction, supercritical carbon dioxide extraction); isolation (liquid-liquid extraction, column chromatographic techniques, preparative thin-layer and high-performance liquid chromatography, centrifugal partition chromatography, counter-current chromatography); separation (thin-layer chromatography, high-performance liquid chromatography, gas chromatography, capillary electrophoresis) and structural characterization (UV/Vis spectroscopy, infrared spectroscopy, X-ray crystallography, mass spectrometry, nuclear magnetic resonance spectroscopy and circular dichroism spectroscopy) are critically reviewed.
Collapse
Affiliation(s)
- Ágnes Alberti
- Semmelweis University, Department of Pharmacognosy, 1085 Budapest, Üllői út, 26. Hungary.
| | - Eszter Riethmüller
- Semmelweis University, Department of Pharmacognosy, 1085 Budapest, Üllői út, 26. Hungary
| | - Szabolcs Béni
- Semmelweis University, Department of Pharmacognosy, 1085 Budapest, Üllői út, 26. Hungary.
| |
Collapse
|
24
|
Liang Z, Wu R, Xie W, Xie C, Wu J, Geng S, Li X, Zhu M, Zhu W, Zhu J, Huang C, Ma X, Xu W, Zhong C, Han H. Effects of Curcumin on Tobacco Smoke-induced Hepatic MAPK Pathway Activation and Epithelial-Mesenchymal Transition In Vivo. Phytother Res 2017; 31:1230-1239. [PMID: 28585748 DOI: 10.1002/ptr.5844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Tobacco smoke is a major risk factor for hepatic cancer. Epithelial-mesenchymal transition (EMT) induced by tobacco smoke is crucially involved in the initiation and development of cancer. Mitogen-activated protein kinase (MAPK) pathways play important roles in tobacco smoke-associated carcinogenesis including EMT process. The chemopreventive effect of curcumin supplementation against cancers has been reported. In this study, we investigated the effects of tobacco smoke on MAPK pathway activation and EMT alterations, and then the preventive effect of curcumin was examined in the liver of BALB/c mice. Our results indicated that exposure of mice to tobacco smoke for 12 weeks led to activation of ERK1/2, JNK, p38 and ERK5 pathways as well as activator protein-1 (AP-1) proteins in liver tissue. Exposure of mice to tobacco smoke reduced the hepatic mRNA and protein expression of the epithelial markers, while the hepatic mRNA and protein levels of the mesenchymal markers were increased. Treatment of curcumin effectively attenuated tobacco smoke-induced activation of ERK1/2 and JNK MAPK pathways, AP-1 proteins and EMT alterations in the mice liver. Our data suggested the protective effect of curcumin in tobacco smoke-triggered MAPK pathway activation and EMT in the liver of BALB/c mice, thus providing new insights into the chemoprevention of tobacco smoke-associated hepatic cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Chongchuanqu Market Supervision Administration, Nantong, 226006, China
| | - Wei Xie
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingming Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiwei Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianyun Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Cong Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Caiyun Zhong
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China
| |
Collapse
|