1
|
Li A, Ma T, Wang S, Guo Y, Song Q, Liu H, Yu B, Feng S. Discovery of WS-384, a first-in-class dual LSD1 and DCN1-UBC12 protein-protein interaction inhibitor for the treatment of non-small cell lung cancer. Biomed Pharmacother 2024; 173:116240. [PMID: 38401512 DOI: 10.1016/j.biopha.2024.116240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024] Open
Abstract
Abnormally high expression of lysine-specific demethylase 1 A (LSD1) and DCN1 plays a vital role in the occurrence, development, and poor prognosis of non-small cell lung cancer (NSCLC). Accumulating evidence has shown that the development of small-molecule inhibitors dually targeting LSD1 and the DCN1-UBC12 interaction probably have therapeutic promise for cancer therapy. This work reported that WS-384 dually targeted LSD1 and DCN1-UBC12 interactions and evaluated its antitumor effects in vitro and in vivo. Specifically, WS-384 inhibited A549 and H1975 cells viability and decreased colony formation and EdU incorporation. WS-384 could also trigger cell cycle arrest, DNA damage, and apoptosis. Moreover, WS-384 significantly decreased tumor weight and volume in A549 xenograft mice. Mechanistically, WS-384 increased the gene and protein level of p21 by suppressing the neddylation of cullin 1 and decreasing H3K4 demethylation at the CDKN1A promoter. The synergetic upregulation of p21 contributed to cell cycle arrest and the proapoptotic effect of WS-384 in NSCLC cells. Taken together, our proof of concept studies demonstrated the therapeutic potential of dual inhibition of LSD1 and the DCN1-UBC12 interaction for the treatment of NSCLC. WS-384 could be used as a lead compound to develop new dual LSD1/DCN1 inhibitors for the treatment of human diseases in which LSD1 and DCN1 are dysregulated.
Collapse
Affiliation(s)
- Anqi Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Ma
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyang Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Siqi Feng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Wang X, Fan X, Zhang J, Wang F, Chen J, Wen Y, Wang L, Li T, Li H, Gu H, Zhang Y, Yuan S. hnRNPA2B1 represses the disassembly of arsenite-induced stress granules and is essential for male fertility. Cell Rep 2024; 43:113769. [PMID: 38363675 DOI: 10.1016/j.celrep.2024.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Although the composition and assembly of stress granules (SGs) are well understood, the molecular mechanisms underlying SG disassembly remain unclear. Here, we identify that heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) is associated with SGs and that its absence specifically enhances the disassembly of arsenite-induced SGs depending on the ubiquitination-proteasome system but not the autophagy pathway. hnRNPA2B1 interacts with many core SG proteins, including G3BP1, G3BP2, USP10, and Caprin-1; USP10 can deubiquitinate G3BP1; and hnRNPA2B1 depletion attenuates the G3BP1-USP10/Caprin-1 interaction but elevates the G3BP1 ubiquitination level under arsenite treatment. Moreover, the disease-causing mutation FUSR521C also disassembles faster from SGs in HNRNPA2B1 mutant cells. Furthermore, knockout of hnRNPA2B1 in mice leads to Sertoli cell-only syndrome (SCOS), causing complete male infertility. Consistent with this, arsenite-induced SGs disassemble faster in Hnrnpa2b1 knockout (KO) mouse Sertoli cells as well. These findings reveal the essential roles of hnRNPA2B1 in regulating SG disassembly and male mouse fertility.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingshou Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng Gu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510600, China
| | - Youzhi Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of the Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Zhou S, Zhu H, Xiong P, Shi L, Bai W, Li X. Spore Oil-Functionalized Selenium Nanoparticles Protect Pancreatic Beta Cells from Palmitic Acid-Induced Apoptosis via Inhibition of Oxidative Stress-Mediated Apoptotic Pathways. Antioxidants (Basel) 2023; 12:antiox12040840. [PMID: 37107215 PMCID: PMC10135144 DOI: 10.3390/antiox12040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Oxidative stress damage of pancreatic β-cells is a key link in the pathogenesis of type 2 diabetes mellitus. A long-term increase of free fatty acids induces the increase of reactive oxygen species (ROS) in β-cells, leading to apoptosis and dysfunction of β-cells. Ganoderma lucidum spore oil (GLSO) is a functional food complex with strong antioxidant activity, but its solubility and stability are poor. In the present study, GLSO-functionalized selenium nanoparticles (GLSO@SeNPs) with high stability and uniform particle size were synthesized by a high-pressure homogeneous emulsification method. The aim of this study was to investigate the protective effects of GLSO@SeNPs on INS-1E rat insulinoma β-cells against palmitic-acid (PA)-induced cell death, as well as the underlying mechanisms. Our results showed that GLSO@SeNPs had good stability and biocompatibility, and they significantly inhibited the PA-induced apoptosis of INS-1E pancreatic cells by regulating the activity of related antioxidant enzymes, including thioredoxin reductase (TrxR), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Western blot analysis showed that GLSO@SeNPs reversed the PA-induced changes in MAPK pathway protein expression levels. Thus, the present findings provided a new theoretical basis for utilizing GLSO@SeNPs as a treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Sajin Zhou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Hongyan Zhu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Piaopiao Xiong
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety, Jinan University, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
5
|
Zheng GZ, Zhang QH, Chang B, Xie P, Liao H, Du SX, Li XD. Dioscin induces osteosarcoma cell apoptosis by upregulating ROS-mediated P38 MAPK signaling. Drug Dev Res 2023; 84:25-35. [PMID: 36401839 DOI: 10.1002/ddr.22009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Many patients with osteosarcoma readily develop resistance to chemotherapy and have an extremely dismal prognosis. Dioscin, a saponin, is known to exhibit potent anticancer activities and induce cellular death of a variety of cancer types. However, the inhibitory effect of dioscin on osteosarcoma cells and its underlying mechanisms have not been fully elucidated. We investigated the responses of human U2-OS and MG63 osteosarcoma cells to dioscin with regard to proliferation, apoptosis, migration, and invasion, and studied the effect of dioscin on MAPK-related proteins by western blot analysis assays. Dioscin inhibited osteosarcoma cell proliferation, migration, and invasion. Moreover, it induced osteosarcoma cell apoptosis via reactive oxygen species (ROS)-dependent apoptotic signaling. N-acetylcysteine, a reactive oxygen species inhibitor, suppressed dioscin-induced apoptosis, indicating that ROS play an essential role in dioscin-induced apoptosis. Western blot analysis assays showed that p38 MAPK was upregulated after dioscin treatment, and that dioscin induced apoptosis by upregulating ROS-mediated p38 MAPK signaling. Our study suggests that dioscin possesses antitumor activities against human osteosarcoma cells, inhibits osteosarcoma cell proliferation, migration and invasion, and induces osteosarcoma cell apoptosis through upregulating ROS-mediated p38 MAPK signaling. This study may provide a new therapeutic strategy and potential clinical applications for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Gui-Zhou Zheng
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Qi-Hao Zhang
- Department of Orthopedics, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Bo Chang
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Peng Xie
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Hang Liao
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Shi-Xin Du
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Xue-Dong Li
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Huang B, Lang X, Li X. The role of TIGAR in nervous system diseases. Front Aging Neurosci 2022; 14:1023161. [DOI: 10.3389/fnagi.2022.1023161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) mainly regulates pentose phosphate pathway by inhibiting glycolysis, so as to synthesize ribose required by DNA, promote DNA damage repair and cell proliferation, maintain cell homeostasis and avoid body injury. Its physiological functions include anti-oxidative stress, reducing inflammation, maintaining mitochondrial function, inhibiting apoptosis, reducing autophagy etc. This paper reviews the research of TIGAR in neurological diseases, including stroke, Parkinson’s disease (PD), Alzheimer’s disease (AD), seizures and brain tumors, aiming to provide reference for the development of new therapeutic targets.
Collapse
|
7
|
Gong L, Chen C, Liu X, Wu X, Zhu L, Luo J, Kong L. Hainanolide inhibits the progression of colon cancer via inducing the cell cycle arrest, cell apoptosis and activation of the MAPK signaling pathway. Toxicol Appl Pharmacol 2022; 454:116249. [PMID: 36126765 DOI: 10.1016/j.taap.2022.116249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Hainanolide (HN) is a norditerpenoid metabolite extract from Cephalotaxus fortunei Hook. f. C. fortunei Hook. f. is renowned for the active alkaloids, such as harringtonine (HT) and homoharringtonin (HTT), which have been clinically used to treat chronic myeloid leukemia. Nowadays, diterpenoids, another important metabolite, attracted the attention of chemists. Among them, Hainanolide (HN), a cephalotane-type diterpenoid, has been proven to possess potent antitumor activities. However, the underlying therapeutic mechanisms of HN in anti-tumor have not been investigated yet. Our present study demonstrated that HN inhibited HCT-116 and HCT-15 cell proliferation in a dose- and time-dependent manner. Further studies demonstrated that HN can induce G2/M phase arrest and alter the Cdc25C/Cdc2/CyclinB1 proteins. Western blot indicated that HN promoted apoptosis by up-regulating Bax and down-regulated Bcl-2. And the caspase-3 and caspase-9 activities of HCT-116 and HCT-15 cells were increased. Transcriptome analysis is used to reveal the possible mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested the genes were mainly enriched in the MAPK signaling pathway. Certainly, HN activates MAPK signaling pathway. In vivo, HN prevented the AOM/DSS-induced tumorigenesis of colon cancer in C57BL/6 mice. Our study indicated that HN inhibits the progression of colon cancer cells by blocking the cell cycle, inducing apoptosis, and activating the MAPK pathway. This study provides a theoretical and experimental scientific basis for future investigations of the antitumor effects of HN against colon cancer.
Collapse
Affiliation(s)
- Lijie Gong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chen Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xiaoqin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xiutao Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ling Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
8
|
Wang HY, Yu P, Chen XS, Wei H, Cao SJ, Zhang M, Zhang Y, Tao YG, Cao DS, Qiu F, Cheng Y. Identification of HMGCR as the anticancer target of physapubenolide against melanoma cells by in silico target prediction. Acta Pharmacol Sin 2022; 43:1594-1604. [PMID: 34588618 PMCID: PMC9160031 DOI: 10.1038/s41401-021-00745-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Physapubenolide (PB), a withanolide-type compound extracted from the traditional herb Physalis minima L., has been demonstrated to exert remarkable cytotoxicity against cancer cells; however, its molecular mechanisms are still unclear. In this study, we demonstrated that PB inhibited cell proliferation and migration in melanoma cells by inducing cell apoptosis. The anticancer activity of PB was further verified in a melanoma xenograft model. To explore the mechanism underlying the anticancer effects of PB, we carried out an in silico target prediction study, which combined three approaches (chemical similarity searching, quantitative structure-activity relationship (QSAR), and molecular docking) to identify the targets of PB, and found that PB likely targets 3-hydroxy-methylglutaryl CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway, which promotes cancer cell proliferation, migration, and metastasis. We further demonstrated that PB interacted with HMGCR, decreased its protein expression and inhibited the HMGCR/YAP pathway in melanoma cells. In addition, we found that PB could restore vemurafenib sensitivity in vemurafenib-resistant A-375 cells, which was correlated with the downregulation of HMGCR. In conclusion, we demonstrate that PB elicits anticancer action and enhances sensitivity to vemurafenib by targeting HMGCR.
Collapse
Affiliation(s)
- Hai-yan Wang
- grid.452708.c0000 0004 1803 0208Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Pian Yu
- grid.452708.c0000 0004 1803 0208Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Xi-sha Chen
- grid.452708.c0000 0004 1803 0208Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011 China ,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011 China
| | - Hui Wei
- grid.216417.70000 0001 0379 7164Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 China
| | - Shi-jie Cao
- grid.410648.f0000 0001 1816 6218School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Meng Zhang
- grid.410648.f0000 0001 1816 6218School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yi Zhang
- grid.263761.70000 0001 0198 0694Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215031 China
| | - Yong-guang Tao
- grid.216417.70000 0001 0379 7164Key laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 China ,grid.216417.70000 0001 0379 7164NHC Key laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078 China
| | - Dong-sheng Cao
- grid.216417.70000 0001 0379 7164Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 China
| | - Feng Qiu
- grid.410648.f0000 0001 1816 6218School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yan Cheng
- grid.452708.c0000 0004 1803 0208Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011 China ,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011 China
| |
Collapse
|
9
|
Ma T, Li A, Guo Y, Li S, Li M, Feng S, Liu H. KDM1A/LSD1 as a promising target in various diseases treatment by regulating autophagy network. Biomed Pharmacother 2022; 148:112762. [PMID: 35240522 DOI: 10.1016/j.biopha.2022.112762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetics refers to alterations in gene expressions that are reversible and stable, but do not involve changes in DNA sequences. In recent years, an increasing number of studies have shown that epigenetics plays a critical role in autophagy, which can be schematized as a biological process comprising of the following steps: autophagy signal activation, autophagic vesicle elongation, autophagosome maturation and autophagosome-lysosome fusion. As previously reported, autophagy can maintain intracellular homeostasis and autophagy dysfunction will lead to various diseases. For instance, the abnormal expression of genes involved in autophagy can result in the occurrence of many cancers and atherosclerosis. It is also well known that epigenetic modifications can affect autophagy related genes expressions and modulate other signaling molecular involved in autophagy. As an important epigenetic enzyme, LSD1 (lysine specific demethylase 1) plays an essential role in modulating autophagy. On one hand, LSD1 directly regulates autophagy-related genes expressions, including ATGs, Beclin-1, LC3 and SQSTM1/p62. On the other hand, inhibition of LSD1 can activate autophagy through regulating the activities of some other proteins such as p53, SESN2, mTORC1 and PTEN. Since autophagy activation is tightly related to the occurrence of various diseases and can be induced by LSD1 inhibition, development of LSD1 inhibitors will provide a new direction to treat such diseases. In this review, we described the mechanisms by which LSD1 regulates autophagy in different manners and how autophagic dysfunction leads to diseases occurrence. In addition, some LSD1 inhibitors used to treat diseases through modulating autophagy are also summarized in our review.
Collapse
Affiliation(s)
- Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Anqi Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyang Guo
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shaotong Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Oxidative Stress and AKT-Associated Angiogenesis in a Zebrafish Model and Its Potential Application for Withanolides. Cells 2022; 11:cells11060961. [PMID: 35326412 PMCID: PMC8946239 DOI: 10.3390/cells11060961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and the AKT serine/threonine kinase (AKT) signaling pathway are essential regulators in cellular migration, metastasis, and angiogenesis. More than 300 withanolides were discovered from the plant family Solanaceae, exhibiting diverse functions. Notably, the relationship between oxidative stress, AKT signaling, and angiogenesis in withanolide treatments lacks comprehensive understanding. Here, we summarize connecting evidence related to oxidative stress, AKT signaling, and angiogenesis in the zebrafish model. A convenient vertebrate model monitored the in vivo effects of developmental and tumor xenograft angiogenesis using zebrafish embryos. The oxidative stress and AKT-signaling-modulating abilities of withanolides were highlighted in cancer treatments, which indicated that further assessments of their angiogenesis-modulating potential are necessary in the future. Moreover, targeting AKT for inhibiting AKT and its AKT signaling shows the potential for anti-migration and anti-angiogenesis purposes for future application to withanolides. This particularly holds for investigating the anti-angiogenetic effects mediated by the oxidative stress and AKT signaling pathways in withanolide-based cancer therapy in the future.
Collapse
|
11
|
Chao J, Chen TY, Pao LH, Deng JS, Cheng YC, Su SY, Huang SS. Ethnobotanical Survey on Bitter Tea in Taiwan. Front Pharmacol 2022; 13:816029. [PMID: 35250565 PMCID: PMC8894760 DOI: 10.3389/fphar.2022.816029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacological evidence: In Taiwan, herbal tea is considered a traditional medicine and has been consumed for hundreds of years. In contrast to regular tea, herbal teas are prepared using plants other than the regular tea plant, Camellia sinensis (L.) Kuntze. Bitter tea (kǔ-chá), a series of herbal teas prepared in response to common diseases in Taiwan, is often made from local Taiwanese plants. However, the raw materials and formulations have been kept secret and verbally passed down by store owners across generations without a fixed recipe, and the constituent plant materials have not been disclosed. Aim of the study: The aim was to determine the herbal composition of bitter tea sold in Taiwan, which can facilitate further studies on pharmacological applications and conserve cultural resources. Materials and methods: Interviews were conducted through a semi-structured questionnaire. The surveyed respondents were traditional sellers of traditional herbal tea. The relevant literature was collated for a systematic analysis of the composition, characteristics, and traditional and modern applications of the plant materials used in bitter tea. We also conducted an association analysis of the composition of Taiwanese bitter tea with green herb tea (qing-cao-cha tea), another commonly consumed herbal tea in Taiwan, as well as herbal teas in neighboring areas outside Taiwan. Results: After visiting a total of 59 stores, we identified 32 bitter tea formulations and 73 plant materials. Asteraceae was the most commonly used family, and most stores used whole plants. According to a network analysis of nine plant materials used in high frequency as drug pairs, Tithonia diversifolia and Ajuga nipponensis were found to be the core plant materials used in Taiwanese bitter tea. Conclusion: Plant materials used in Taiwanese bitter tea were distinct, with multiple therapeutic functions. Further research is required to clarify their efficacy and mechanisms.
Collapse
Affiliation(s)
- Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
| | - Ting-Yang Chen
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| | - Shyh-Shyun Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| |
Collapse
|
12
|
Chen C, Zhu T, Liu X, Zhu D, Zhang Y, Wu S, Han C, Zhang H, Luo J, Kong L. Identification of a novel PHGDH covalent inhibitor by chemical proteomics and phenotypic profiling. Acta Pharm Sin B 2022; 12:246-261. [PMID: 35127383 PMCID: PMC8799887 DOI: 10.1016/j.apsb.2021.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
The first rate-limiting enzyme of the serine synthesis pathway (SSP), phosphoglycerate dehydrogenase (PHGDH), is hyperactive in multiple tumors, which leads to the activation of SSP and promotes tumorigenesis. However, only a few inhibitors of PHGDH have been discovered to date, especially the covalent inhibitors of PHGDH. Here, we identified withangulatin A (WA), a natural small molecule, as a novel covalent inhibitor of PHGDH. Affinity-based protein profiling identified that WA could directly bind to PHGDH and inactivate the enzyme activity of PHGDH. Biolayer interferometry and LC-MS/MS analysis further demonstrated the selective covalent binding of WA to the cysteine 295 residue (Cys295) of PHGDH. With the covalent modification of Cys295, WA blocked the substrate-binding domain (SBD) of PHGDH and exerted an allosteric effect to induce PHGDH inactivation. Further studies revealed that with the inhibition of PHGDH mediated by WA, the glutathione synthesis was decreased and intracellular levels of reactive oxygen species (ROS) were elevated, leading to the inhibition of tumor proliferation. This study indicates WA as a novel PHGDH covalent inhibitor, which identifies Cys295 as a novel allosteric regulatory site of PHGDH and holds great potential in developing anti-tumor agents for targeting PHGDH.
Collapse
Key Words
- 3-PG, 3-phosphoglycerate
- 3-PHP, 3-phosphohydroxypyruvate
- ABPP, affinity-based protein profiling
- BLI, biolayer interferometry assay
- CETSA, cellular thermal shift assay
- Chemical proteomics
- Colon cancer
- Covalent inhibitor
- CuAAC, copper-catalyzed alkyne–azide cycloaddition
- DARTS, drug affinity responsive target stability
- GSH, glutathione
- MD, molecular dynamics
- NADPH, nicotinamide adenine dinucleotide phosphate
- Oxidative stress
- PHGDH, phosphoglycerate dehydrogenase
- PSAT, phosphoserine aminotransferase
- Phosphoglycerate dehydrogenase
- RMSD, root mean square deviation
- RMSF, root mean square fluctuations
- ROS, reactive oxygen species
- SBD, substrate-binding domain
- SSP, serine synthesis pathway
- Serine synthesis pathway
- TBTA, tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine
- TCEP, tris(2-carboxyethyl) phosphine
- Withangulatin A
- Withanolides
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianguang Luo
- Corresponding authors. Tel./fax: +86 25 83271405, +86 25 83271402.
| | - Lingyi Kong
- Corresponding authors. Tel./fax: +86 25 83271405, +86 25 83271402.
| |
Collapse
|
13
|
Elizalde-Romero CA, Montoya-Inzunza LA, Contreras-Angulo LA, Heredia JB, Gutiérrez-Grijalva EP. Solanum Fruits: Phytochemicals, Bioaccessibility and Bioavailability, and Their Relationship With Their Health-Promoting Effects. Front Nutr 2021; 8:790582. [PMID: 34938764 PMCID: PMC8687741 DOI: 10.3389/fnut.2021.790582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 01/05/2023] Open
Abstract
The Solanum genus is the largest in the Solanaceae family containing around 2,000 species. There is a great number of edibles obtained from this genus, and globally, the most common are tomato (S. lycopersicum), potato (S. tuberosum), and eggplant (S. melongena). Other fruits are common in specific regions and countries, for instance, S. nigrum, S. torvum, S. betaceum, and S. stramonifolium. Various reports have shown that flavonoids, phenolic acids, alkaloids, saponins, and other molecules can be found in these plants. These molecules are associated with various health-promoting properties against many non-communicable diseases, the main causes of death globally. Nonetheless, the transformations of the structure of antioxidants caused by cooking methods and gastrointestinal digestion impact their potential benefits and must be considered. This review provides information about antioxidant compounds, their bioaccessibility and bioavailability, and their health-promoting effects. Bioaccessibility and bioavailability studies must be considered when evaluating the bioactive properties of health-promoting molecules like those from the Solanum genus.
Collapse
Affiliation(s)
| | | | | | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | | |
Collapse
|
14
|
Huang SS, Sheng YC, Jiang YY, Liu N, Lin MM, Wu JC, Liang ZQ, Qin ZH, Wang Y. TIGAR plays neuroprotective roles in KA-induced excitotoxicity through reducing neuroinflammation and improving mitochondrial function. Neurochem Int 2021; 152:105244. [PMID: 34826530 DOI: 10.1016/j.neuint.2021.105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/30/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023]
Abstract
Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Si-Si Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi-Chao Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi-Yue Jiang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Na Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao-Miao Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhong-Qin Liang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
16
|
Nkwe DO, Lotshwao B, Rantong G, Matshwele J, Kwape TE, Masisi K, Gaobotse G, Hefferon K, Makhzoum A. Anticancer Mechanisms of Bioactive Compounds from Solanaceae: An Update. Cancers (Basel) 2021; 13:4989. [PMID: 34638473 PMCID: PMC8507657 DOI: 10.3390/cancers13194989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Plants continue to provide unlimited pharmacologically active compounds that can treat various illnesses, including cancer. The Solanaceae family, besides providing economically important food plants, such as potatoes and tomatoes, has been exploited extensively in folk medicine, as it provides an array of bioactive compounds. Many studies have demonstrated the anticancer potency of some of the compounds, but the corresponding molecular targets are not well defined. However, advances in molecular cell biology and in silico modelling have made it possible to dissect some of the underlying mechanisms. By reviewing the literature over the last five years, we provide an update on anticancer mechanisms associated with phytochemicals isolated from species in the Solanaceae plant family. These mechanisms are conveniently grouped into cell cycle arrest, transcription regulation, modulation of autophagy, inhibition of signalling pathways, suppression of metabolic enzymes, and membrane disruption. The majority of the bioactive compounds exert their antiproliferative effects by inhibiting diverse signalling pathways, as well as arresting the cell cycle. Furthermore, some of the phytochemicals are effective against more than one cancer type. Therefore, understanding these mechanisms provides paths for future formulation of novel anticancer drugs, as well as highlighting potential areas of research.
Collapse
Affiliation(s)
- David O. Nkwe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Bonolo Lotshwao
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - James Matshwele
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana;
- Department of Applied Sciences, Botho University, Gaborone, Botswana
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| |
Collapse
|
17
|
Chen C, Gong L, Liu X, Zhu T, Zhou W, Kong L, Luo J. Identification of peroxiredoxin 6 as a direct target of withangulatin A by quantitative chemical proteomics in non-small cell lung cancer. Redox Biol 2021; 46:102130. [PMID: 34517184 PMCID: PMC8441215 DOI: 10.1016/j.redox.2021.102130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6), as a bifunctional enzyme with glutathione peroxidase activity (GPx) and Ca2+-independent phospholipase A2 (iPLA2) activity, has a higher expression in various cancer cells, which leads to the increase of antioxidant properties and promotes tumorigenesis. However, only a few inhibitors of PRDX6 have been discovered to date, especially the covalent inhibitors of PRDX6. Here, we firstly identified Withangulatin A (WA), a natural small molecule, as a novel covalent inhibitor of PRDX6. SILAC-ABPP identified that WA could directly bind to PRDX6 and inactivate the enzyme activity of PRDX6 by the α, β-unsaturated ketone moiety. Moreover, WA also facilitated the generation of ROS, and inhibited the GPx and iPLA2 activities. However, WA-1, with a reduced α, β-unsaturated ketone moiety, had no significant inhibition of the GPx and iPLA2 activities. Biolayer interferometry and LC-MS/MS analysis further demonstrated the selectively covalent binding of WA to the cysteine 47 residue (Cys47) of PRDX6, while mutation of Cys47 blocked the binding of WA to PRDX6. Notably, WA-mediated cytotoxicity and inhibition of the GPx and iPLA2 activities were almost abolished by the deficiency of PRDX6. Therefore, this study indicates that WA is a novel PRDX6 covalent inhibitor, which could covalently bind to the Cys47 of PRDX6 and holds great potential in developing anti-tumor agents for targeting PRDX6.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lijie Gong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wuxi Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Yan Y, Yao S, Jia Z, Zhao J, Wang L. Iso-suillin-induced DNA damage leading to cell cycle arrest and apoptosis arised from p53 phosphorylation in A549 cells. Eur J Pharmacol 2021; 907:174299. [PMID: 34217708 DOI: 10.1016/j.ejphar.2021.174299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023]
Abstract
Extensive investigations have revealed that iso-suillin, a secondary metabolite isolated from Suillus flavus, could induce cell cycle arrest and apoptosis in human chronic myeloid leukemia K562 cells, human hepatocellular carcinoma SMMC-7721 cell line, and human small cell lung cancer H446 cell line in vitro. In the present study, human lung cancer A549 cells were used to reveal the mechanism of iso-suillin's effects on lung adenocarcinoma, which were detected both in vitro and in vivo. Results showed that iso-suillin potently inhibited A549 cell proliferation through an early G1 arrest. Iso-suillin also induced A549 cell apoptosis in vitro. Phosphorylation of p53 at serines 15 and 20 may be one of the pivotal factors for cell cycle arrest and apoptosis after treatment of iso-suillin in A549 cells. Moreover, in an A549 xenograft model, tumor growth and progression could be inhibited by iso-suillin. Body weight change and some vital organs toxicity was also roughly examined, no significant toxic effects of iso-suillin were shown (at a dose of 5 mg/kg for each administration). The in vitro and in vivo anti-tumor effects implied that iso-suillin may act as a tumor growth inhibitor, and its induction of p53 phosphorylation is pivotal for cell cycle arrest and apoptosis in A549 cells.
Collapse
Affiliation(s)
- Yongxin Yan
- The Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Shengjie Yao
- The Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zhiqiang Jia
- The Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Junxia Zhao
- The Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Li'an Wang
- The Life Science College, Hebei Normal University, Shijiazhuang, 050024, PR China
| |
Collapse
|
19
|
DT-diaphorase triggered theranostic nanoparticles induce the self-burst of reactive oxygen species for tumor diagnosis and treatment. Acta Biomater 2021; 125:267-279. [PMID: 33652166 DOI: 10.1016/j.actbio.2021.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 01/27/2023]
Abstract
On-demand therapy following effective tumor detection would considerably reduce the side effects of traditional chemotherapy. DT-diaphorase (DTD), whose level is strongly elevated in various tumors, is a cytosolic flavoenzyme that promotes intracellular reactive oxygen species (ROS) generation via the redox cycling of hydroquinones. Incorporation of the DTD-responsive substrate to the structures of the probe and prodrug may facilitate the tumor detection and therapy. Herein, we established an multifunctional drug delivery nanosystem (HTLAC) that rapidly responds to the DTD enzyme, leads to the early-stage precise detection and termination of tumors. Firstly, the synthesis of DTD-responsive withaferin A (DT-WA) and indocyanine green (DT-Cy5) was performed. In the presence of DTD, WA, which produces ROS in cells, was released from DT-WA, and the red fluorescence of DT-Cy5 was detected for tumor imaging. Additionally, these DTD enzyme reaction processes of DT-WA and DT-Cy5 induced ROS. The self-burst of ROS generation by the two enzyme reaction processes as well as the released WA then led to the apoptosis of tumor cells. To increase the bioavailability and tumor targeting of drugs, cell-penetrating peptide and hyaluronic acid functionalized liposomes were used to encapsulate the drugs. The detailed in vitro and in vivo assays showed that HTLAC achieved enhanced tumor detection and superior antitumor efficiency. According to above outcomes, results showed that HTLAC might provide an efficacious approach for the fabrication of enzyme-triggering nanosystems to detect tumor and induce the self-burst of ROS for an efficient tumor treatment. STATEMENT OF SIGNIFICANCE: We have fabricated a HTLAC nanosystem to address the need of bursting reactive oxygen species (ROS) generation within tumor site. Our goal uniquely aims at not only augmentation of ROS-inducing anticancer efficacy, but also to meet the challenges of tumor dynamic detection in the clinical practices. In this work, the DT-diaphorase responsive withaferin A (DT-WA) and indocyanine green (DT-Cy5) are synthesized, and observed more specifically toward DTD under physiological conditions. As the cell-penetrating peptide and hyaluronic acid functionalized liposome, the HTLAC not only induces antiproliferative activity by generating self-burst of ROS, but also effectively accumulate and restore its fluorescence at the tumor site because of the HA actively targeting tumor along with the prolonged presence in blood circulation. Besides, this enzyme-triggering nanosystem exhibited an effective tumor inhibition with a low systemic toxicity.
Collapse
|
20
|
Chandel V, Sharma PP, Nayar SA, Jha NK, Jha SK, Rathi B, Kumar D. In silico identification of potential inhibitor for TP53-induced glycolysis and apoptosis regulator in head and neck squamous cell carcinoma. 3 Biotech 2021; 11:117. [PMID: 33604233 DOI: 10.1007/s13205-021-02665-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the six most common cancer globally and most common cancer in men in India. The metabolic regulation is highly altered and is considered as a hall mark of HNSCC. TP53-induced glycolysis and apoptosis regulator (TIGAR) plays very important role in the development and progression of HNSCC. The aim of our study is to identify a novel FDA approved anticancer inhibitor against mutated TP53-induced glycolysis and apoptosis regulator (TIGAR) through drug repurposing approach. A library of 105 FDA approved anticancer compounds were screened using molecular docking approach against TIGAR (PDB: 3DCY) both Wild-Type (WT) and mutated (Mut). Specific mutations in TIGAR were identified using cBioPortal, a cancer genomics database and mutated structure was modelled using SWISS-MODEL. Out of 510 sequenced cases/patients samples, 17(3%) patients showed alteration in TIGAR [TIGARWT and TIGARMut (R88W)]. The virtual drug screening showed 45 drugs out of 105 high binding affinity with TIGAR, Trabectedin showed highest binding affinity with both TIGARWT (- 13.3 kcal/mol) as well as TIGARMut (R88W) (- 13.8 kcal/mol). The molecular docking studies were validated using molecular dynamics simulation (MD Simulation) of protein-ligand complex of TIGAR and Trabectedin for 100 ns. The MD Simulation of Trabectedin complex showed more stable with TIGARMut (R88W) compared to TIGARWT. Moreover, the string analysis revealed that metabolic-related genes, HK2, PFKFB1, PFKM, PFKP, PFKL, FBP1 are closely associated with TIGAR in HNSCC. Our findings suggest that Trabectedin can be proposed as an inhibitor for [TIGARMut (R88W)] which can be used to target metabolic signalings in HNSCC. However, further investigation and in vitro and in vivo validation our findings required to understand the molecular mechanisms of regulation of Trabectedin in HNSCC.
Collapse
|
21
|
Decitabine Downregulates TIGAR to Induce Apoptosis and Autophagy in Myeloid Leukemia Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8877460. [PMID: 33532040 PMCID: PMC7836025 DOI: 10.1155/2021/8877460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Decitabine (DAC) is a well-known DNA methyltransferase inhibitor, which has been widely used for the treatment of acute myeloid leukemia (AML). However, in addition to hypomethylation, DAC in AML is also involved in cell metabolism, apoptosis, and immunity. The TP53-induced glycolysis and apoptosis regulator (TIGAR) functions to inhabit glycolysis and protect cancer cells from reactive oxygen species- (ROS-) associated apoptosis. Our previous study revealed that TIGAR is highly expressed in myeloid leukemia cell lines and AML primary cells and associated with poor prognosis in adult patients with cytogenetically normal AML. In the present study, it was found that in a time- and concentration-dependent manner, DAC downregulates the TIGAR expression, induces ROS production, and promotes apoptosis in HL-60 and K562 cells. However, blocking the glycolytic pathway partially reversed the combined effects of DAC and TIGAR knockdown on apoptosis, ROS production, and cell cycle arrest, indicating that DAC induced apoptosis through the glycolytic pathway. Furthermore, TIGAR also has a negative impact on autophagy, while DAC treatment upregulates autophagy-related proteins LC3, Beclin-1, ATG3, and ATG-5, downregulates p62, and promotes the formation of autophagosomes, indicating that DAC may activate autophagy by downregulating TIGAR. Taken together, DAC plays an unmethylated role in inducing apoptosis and activating autophagy in myeloid leukemia by downregulating TIGAR.
Collapse
|
22
|
Thiosemicarbazone-based lead optimization to discover high-efficiency and low-toxicity anti-gastric cancer agents. Eur J Med Chem 2020; 199:112349. [PMID: 32438199 DOI: 10.1016/j.ejmech.2020.112349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
In this paper, a series of thiosemicarbazone derivatives containing different aromatic heterocyclic groups were synthesized and the tridentate donor system of the lead compound was optimized. Most of the target compounds showed improved antiproliferative activity against MGC803 cells. SAR studies revealed that compound 5d displayed significant advantages in inhibition effect with an IC50 value of 0.031 μM, and better selectivity between cancer and normal cells than 3-AP and DpC (about 15- and 5-fold improved respectively). Besides, compound 5d showed selective antiproliferative activity in not only other cancer cells but also different gastric cancer cell lines. In-depth mechanism studies showed that compound 5d could induce mitochondria-related apoptosis which might be related to the elevation of intracellular ROS level, and cause cell cycle arrest at S phase. Moreover, 5d could evidently suppress the cell migration and invasion by blocking the EMT (epithelial-mesenchymal transition) process. Consequently, our studies provided a lead optimization strategy of thiosemicarbazone derivatives which would contribute to discover high-efficiency and low-toxicity agents for the treatment of gastric cancer.
Collapse
|
23
|
Hou G, Bai Y, Jia A, Ren Y, Wang Y, Lu J, Wang P, Zhang J, Lu Z. Inhibition of autophagy improves resistance and enhances sensitivity of gastric cancer cells to cisplatin. Can J Physiol Pharmacol 2020; 98:449-458. [PMID: 32058824 DOI: 10.1139/cjpp-2019-0477] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autophagy plays critical roles in tumorigenesis, while the effects of autophagy on chemoresistance of cancer cells had great disparity. This study aims to explore the impacts of autophagy on the sensitivity and resistance of gastric cancer cells to cisplatin (DDP). We firstly demonstrated that there was stronger autophagy activity in gastric cancer SGC-7901 cells than that in DDP-resisting SGC-7901/DDP cells. Then, we discovered that inhibiting autophagy by chloroquine (CQ) significantly enhanced the proliferation-inhibiting and apoptosis-inducing effects of DDP to SGC-7901 and SGC-7901/DDP cells. Moreover, CQ could partially reverse the resistance of SGC-7901/DDP cells to DDP in a concentration-dependent manner. However, the autophagy inducer everolimus (RAD001) had no obvious effects on the sensitivity of gastric cells to DDP. Mechanistically, we demonstrated that CQ might enhance the sensitivity of SGC-7901cells and improve the resistance of SGC-7901/DDP cells to DDP through inhibiting the mTORC1 pathway, especially to SGC-7901/DDP cells. Additionally, we found interfering Beclin-1 using Beclin-1 shRNA also enhanced the proliferation-inhibiting and apoptosis-inducing effects of DDP on gastric cancer cells by inhibiting phosphorylation of Akt. Our study shows that inhibiting autophagy could improve the chemoresistance and enhanced sensitivity of gastric cancer cells to DDP and provide a rationale for the administration of cisplatin combined with CQ for treating patients with gastric cancer.
Collapse
Affiliation(s)
- Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yiru Bai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, People's Republic of China
| | - Ang Jia
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jie Lu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
24
|
Huang M, He JX, Hu HX, Zhang K, Wang XN, Zhao BB, Lou HX, Ren DM, Shen T. Withanolides from the genus Physalis: a review on their phytochemical and pharmacological aspects. J Pharm Pharmacol 2019; 72:649-669. [DOI: 10.1111/jphp.13209] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Withanolides are a group of modified C28 ergostane-type steroids with a C-22, C-26 δ-lactone side chain or a C-23, C-26 γ-lactone side chain. They enjoy a limited distribution in the plant kingdom and predominantly occur in several genera of Solanaceae. Of which, the genus Physalis is an important resource for this type of natural molecules. The present review aims to comprehensively illustrate the structural characteristics and classification of withanolides, and particularly focus on the progression on phytochemical and pharmacological aspects of withanolides from Physalis ranging from January 2015 to June 2019.
Key findings
Approximately 351 natural withanolides with novel and unique structures have so far been identified from genus Physalis, mainly isolated from the species of P. angulata and P. peruviana. Withanolides demonstrated diverse biological activity, such as anticancer, anti-inflammatory, antimicrobial, immunoregulatory, trypanocidal and leishmanicidal activity. Their observed pharmacological functions supported the uses of Physalis species in traditional or folk medicines.
Summary
Due to their unique structure skeleton and potent bioactivities, withanolides are regarded to be promising drug candidates, particularly for developing anticancer and anti-inflammatory agents. Further investigations for discovering novel withanolides of genus Physalis, exploiting their pharmacological values and evaluating their potency as therapeutic agents are significant work.
Collapse
Affiliation(s)
- Min Huang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Kan Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bao-Bing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
25
|
Li Z, Shao Z, Chen S, Huang D, Peng Y, Chen S, Ma K. TIGAR impedes compression-induced intervertebral disc degeneration by suppressing nucleus pulposus cell apoptosis and autophagy. J Cell Physiol 2019; 235:1780-1794. [PMID: 31317559 DOI: 10.1002/jcp.29097] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
To investigate whether TP53-induced glycolysis and apoptosis regulator (TIGAR) participates in compression-induced intervertebral disc (IVD) degeneration, and to determine the regulatory effect of TIGAR on nucleus pulposus (NP) cell autophagy and apoptosis following compression-induced injuries. IVD tissues were collected from human patients undergoing surgery (n = 20) and skeletally mature Sprague-Dawley rats (n = 15). Initially, the effect of compression on the expression of TIGAR was evaluated with in vivo and in vitro models. In addition, TIGAR was silenced to investigate the regulatory effect of TIGAR on compression-induced intracellular reactive oxygen species (ROS) levels, autophagy, and apoptosis in rat NP cells. Furthermore, the P53 inhibitor pifithrin-α (PFTα) and SP1 inhibitor mithramycin A were employed to detect expression level changes of TIGAR and autophagy-associated target molecules. TIGAR expression of NP cells increased gradually in human degenerative IVDs and in rat NP cells under compression both in vivo and in vitro. TIGAR knockdown enhanced compression-induced intracellular ROS generation and the NADPH/NADP+ and GSH/GSSG ratios. Moreover, TIGAR knockdown amplified the compression-induced caspase-3 activation and the apoptosis rate of rat NP cells. Likewise, knockdown of TIGAR significantly accelerated LC3B expression and autophagosome formation in rat NP cells during compression-induced injuries. The results also established that mithramycin A could inhibit TIGAR expression and autophagy levels in NP cells under compression conditions, while PFTα had no similar effect. Our data demonstrated that TIGAR acted as an important endogenous negative regulator of ROS levels, which might inhibit compression-induced apoptosis and autophagy through SP1-dependent mechanisms.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Donghua Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Ma T, Ma QS, Yu B, Liu HM. Discovery of the theobromine derivative MQS-14 that induces death of MGC-803 cells mainly through ROS-mediated mechanisms. Eur J Med Chem 2019; 174:76-86. [DOI: 10.1016/j.ejmech.2019.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
|
27
|
Geng J, Wei M, Yuan X, Liu Z, Wang X, Zhang D, Luo L, Wu J, Guo W, Qin ZH. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle. FASEB J 2019; 33:6082-6098. [PMID: 30726106 DOI: 10.1096/fj.201802209r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR), a glycolytic inhibitor, plays vital roles in regulating cellular metabolism and oxidative stress. However, the role of highly expressed TIGAR in skeletal muscle remains unexplored. In the present study, TIGAR levels varied in different skeletal muscles and fibers. An exhaustive swimming test with a load corresponding to 5% of body weight was utilized in mice to assess the effects of TIGAR on exercise-induced fatigue and muscle damage. The running time and metabolic indicators were significantly greater in wild-type (WT) mice compared with TIGAR knockout (KO) mice. Poor exercise capacity was accompanied by decreased type IIA fibers in TIGAR KO mice. Decreased mitochondrial number and mitochondrial oxidative phosphorylation were observed more in TIGAR KO mice than in WT mice, which were involved in sirtuin 1 (SIRT1)-mediated deacetylation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and resveratrol treatment in TIGAR KO mice can increase mitochondrial content and exercise time. Much more TIGAR was also detected in mitochondria during exhaustive exercise. In addition, TIGAR, rather than mitochondria-targeted TIGAR achieved by in vitro plasmid transfection, promoted SIRT1-PGC1α pathway. Glutathione S-transferase-TIGAR pull-down assay followed by liquid chromatography mass spectrometry found that TIGAR interacted with ATP synthase F1 subunit α (ATP5A1), and its binding to ATP5A1 increased during exhaustive exercise. Overexpression of mitochondrial-TIGAR enhanced ATP generation, maintained mitochondrial membrane potential and reduced mitochondrial oxidative stress under hypoxia condition. Taken together, our results uncovered a novel role for TIGAR in mitochondrial regulation in fast-twitch oxidative skeletal muscle through SIRT1-PGC1α and translocation into mitochondria, which contribute to the increase in exercise endurance of mice.-Geng, J., Wei, M., Yuan, X., Liu, Z., Wang, X., Zhang, D., Luo, L., Wu, J., Guo, W., Qin, Z.-H. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle.
Collapse
Affiliation(s)
- Ji Geng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Mingzhen Wei
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiao Yuan
- Pathology Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqi Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinxin Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Dingmei Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Zhuo FF, Zhang C, Zhang H, Xia Y, Xue GM, Yang L, Kong LY. Chrysanthemulide A induces apoptosis through DR5 upregulation via JNK-mediated autophagosome accumulation in human osteosarcoma cells. J Cell Physiol 2018; 234:13191-13208. [PMID: 30556589 DOI: 10.1002/jcp.27991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is the most frequent malignant primary bone tumor, and it generally develops a multidrug resistance. Chrysanthemulide A (CA) is a sesquiterpenoid from the herb Chrysanthemum indicum that has demonstrated a great anti-osteosarcoma potential. In this study, CA-induced apoptotic cell death resulted in the activation of the caspase-8-mediated caspase cascade, as evidenced by the cleavage of the substrate protein Bid and the caspase-8 inhibitor Z-VAD-FMK. The CA treatment upregulated the expression of death receptor 5 (DR5) in both whole cells and the cell membrane. Blocking DR5 expression by the small interfering RNA (siRNA) treatment decreased the caspase-8-mediated caspase cascade and efficiently attenuated CA-induced apoptosis, suggesting the critical role of DR5 in CA-induced apoptotic cell death. CA-induced upregulation of the DR5 protein was accompanied by the accumulation of LC3B-II, indicating the formation of autophagosomes. Importantly, DR5 upregulation was mediated by transcriptionally controlled autophagosome accumulation, as blockade of autophagosomes by LC3B or ATG-5 siRNA substantially decreased DR5 upregulation. Furthermore, CA activated the c-Jun N-terminal kinase (JNK) signaling pathway, and treatment with JNK siRNAs or inhibitor SP600125 significantly attenuated CA-mediated autophagosome accumulation and DR5-mediated cell apoptosis. Finally, CA sensitized the osteosarcoma cells to the DR5 ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic cell death. Above all, these results suggest that CA induces apoptosis through upregulating DR5 via JNK-mediated autophagosome accumulation and that combined treatment with CA and TRAIL might be a promising therapy for osteosarcoma.
Collapse
Affiliation(s)
- Fang-Fang Zhuo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Gui-Min Xue
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
29
|
Wei M, Peng J, Wu P, Chen P, Yang H, Cui Y, Yang L. Prognostic value of TIGAR and LC3B protein expression in nasopharyngeal carcinoma. Cancer Manag Res 2018; 10:5605-5616. [PMID: 30519107 PMCID: PMC6237137 DOI: 10.2147/cmar.s175501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose Autophagy, the process responsible for degrading cytoplasmic organelles to sustain cellular metabolism, has been associated with cancer initiation and progression. As TP53-induced glycolysis and apoptosis regulator (TIGAR) is among the important genes that can regulate autophagy, we aimed to investigate the correlation between the expression levels of TIGAR and the autophagy-related protein microtubule-associated protein 1 light chain 3 (LC3B), as well as their association with clinical outcomes, in nasopharyngeal carcinoma (NPC) patients. Methods We detected the expressions of TIGAR and LC3B in 182 NPC tissue samples via immunohistochemical staining. Results A significant correlation between TIGAR and LC3B expressions was identified (P=0.045). Moreover, survival analysis showed that TIGAR− or LC3B+ expression was associated with improved overall survival, local regional failure-free survival, distant failure-free survival, and failure-free survival rates, compared with TIGAR+ or LC3B− expression, respectively. Meanwhile, when combining TIGAR with LC3B expression in terms of prognostic value, patients with TIGAR+/LC3B− expression were significantly disadvantaged with regard to overall survival, local regional failure-free survival, distant failure-free survival, and failure-free survival compared with other groups based on the log-rank test and Cox regression analyses (all P<0.05). Conclusion TIGAR and LC3B may be novel biomarkers for predicting the prognosis of NPC patients and could be utilized as potential targets for future therapeutics aimed at treating NPC patients.
Collapse
Affiliation(s)
- Min Wei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China, ;
| | - Jinxia Peng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China, ;
| | - Peng Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China, ;
| | - Ping Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China, ;
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China, ;
| | - Yongxia Cui
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China, ;
| | - Linglin Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, People's Republic of China, ;
| |
Collapse
|
30
|
Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, Zubor P, Zulli A, Valentova V, Kwon TK, Solar P, Kello M, Kajo K, Busselberg D, Pec M, Danko J. Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J 2018; 9:403-419. [PMID: 30538792 DOI: 10.1007/s13167-018-0154-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
In contrast to the genetic component in mammary carcinogenesis, epigenetic alterations are particularly important for the development of sporadic breast cancer (BC) comprising over 90% of all BC cases worldwide. Most of the DNA methylation processes are physiological and essential for human cellular and tissue homeostasis, playing an important role in a number of key mechanisms. However, if dysregulated, DNA methylation contributes to pathological processes such as cancer development and progression. A global hypomethylation of oncogenes and hypermethylation of tumor-suppressor genes are characteristic of most cancer types. Moreover, histone chemical modifications and non-coding RNA-associated multi-gene controls are considered as the key epigenetic mechanisms governing the cellular homeostasis and differentiation states. A number of studies demonstrate dietary plant products as actively affecting the development and progression of cancer. "Nutri-epigenetics" focuses on the influence of dietary agents on epigenetic mechanisms. This approach has gained considerable attention; since in contrast to genetic alterations, epigenetic modifications are reversible affect early carcinogenesis. Currently, there is an evident lack of papers dedicated to the phytochemicals/plant extracts as complex epigenetic modulators, specifically in BC. Our paper highlights the role of plant natural compounds in targeting epigenetic alterations associated with BC development, progression, as well as its potential chemoprevention in the context of preventive medicine. Comprehensive measures are stated with a great potential to advance the overall BC management in favor of predictive, preventive, and personalized medical services and can be considered as "proof-of principle" model, for their potential application to other multifactorial diseases.
Collapse
Affiliation(s)
- Sona Uramova
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- 2Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia.,3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Dankova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Barbora Zolakova
- 3Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Anthony Zulli
- 4Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | | | - Taeg Kyu Kwon
- 6Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Peter Solar
- 7Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia
| | - Martin Kello
- 8Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Dietrich Busselberg
- 10Qatar Foundation, Weill Cornell Medical College in Qatar, Education City, Doha Qatar
| | - Martin Pec
- 2Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Jan Danko
- 1Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
31
|
Chen C, Zhu D, Zhang H, Han C, Xue G, Zhu T, Luo J, Kong L. YAP-dependent ubiquitination and degradation of β-catenin mediates inhibition of Wnt signalling induced by Physalin F in colorectal cancer. Cell Death Dis 2018; 9:591. [PMID: 29789528 PMCID: PMC5964149 DOI: 10.1038/s41419-018-0645-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/01/2018] [Accepted: 04/20/2018] [Indexed: 01/27/2023]
Abstract
Aberrant activation of Wnt/β-catenin signalling is critical in the progression of human cancers, especially colorectal cancer (CRC). Therefore, inhibition of Wnt/β-catenin signalling is a significant potential target for CRC therapy. Here, we identified for the first time that Physalin F (PF), a steroid derivative isolated from Physalis angulate, acts as an antagonist of Wnt/β-catenin signalling. In vitro, PF decreased Wnt3a-induced TOPFlash reporter activity in HEK293T cells and promoted the formation of the β-catenin destruction complex. Importantly, PF also inhibited Wnt/β-catenin signalling and accelerated the degradation of β-catenin in CRC cells. However, PF did not affect the stabilization of Axin or the interaction of β-catenin with E-cadherin. Interestingly, we further found that PF promoted YAP binding to the β-catenin destruction complex, which facilitated the ubiquitination and degradation of β-catenin. Silencing and pharmacological inhibition of YAP reversed the formation of the β-catenin destruction complex induced by PF, implying that YAP binding to the β-catenin destruction complex was responsible for PF-mediated inhibition of Wnt/β-catenin signalling. Furthermore, PF observably inhibited tumour growth by down-regulating β-catenin in tumour-bearing mice. Collectively, our findings indicated that PF inhibited Wnt/β-catenin signalling by accelerating the ubiquitination and degradation of β-catenin in a YAP-dependent manner and therefore PF could be a novel potential candidate for CRC therapy.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Dongrong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Guimin Xue
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Tianyu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
32
|
Hu Y, Yu K, Wang G, Zhang D, Shi C, Ding Y, Hong D, Zhang D, He H, Sun L, Zheng JN, Sun S, Qian F. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell. Biochem Pharmacol 2018; 150:280-292. [DOI: 10.1016/j.bcp.2018.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
|
33
|
Wang Q, Wei LW, Zhou WT, Wang ZT, Xie XL. PCB28 and PCB52 induce hepatotoxicity by impairing the autophagic flux and stimulating cell apoptosis in vitro. Toxicol Lett 2018. [PMID: 29518472 DOI: 10.1016/j.toxlet.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatotoxicity is one of the adverse health effects induced by polychlorinated biphenyls (PCBs). Recently, autophagy was revealed to play an important role in PCBs-induced toxicology, however, its precise role in PCBs-induced hepatotoxicity is as yet unknown. In this study, treatment of PCB28/PCB52 for 48 h dose-dependently induced hepatotoxicity at doses of 10, 20, 40 and 80 μM in homo and rattus hepatocytes. Expressions of proteins of BECN1, LC3-II and ULK1 significantly increased in PCB28/PCB52-treated cells at a dose of 40 μM, implying initiation of autophagy. Over-expression of p62 suggested deficient clearance of autophagosome. Consistently, accumulation of autophagosome was observed by transmission-electron microscopy and confocal fluorescence microscopy using adenovirus expressing mRFP-GFP-LC3, which may initiate apoptosis. Furthermore, increased reactive oxygen species levels might also induce autophagy and apoptosis. Consistently, cell apoptosis was evoked by the treatment of PCB28/PCB52 compared to the respective controls, which coincided with obvious hepatotoxicity. Subsequently, an inhibitor (3-methlyadenine) and an initiator (rapamycin) of autophagy were used. Compared to PCB28/PCB52 alone-treated cells, initiation of autophagy, blocked autophagic flux, cell apoptosis and hepatotoxicity were alleviated by 3-methlyadenine and aggravated by rapamycin, respectively. Taken together, PCB28 and PCB52 induced hepatotoxicity by impairing autophagic flux and stimulating cell apoptosis in vitro.
Collapse
Affiliation(s)
- Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Li-Wen Wei
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Zheng-Tao Wang
- The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|