1
|
Tam S, Umashankar B, Rahman MK, Choucair H, Rawling T, Murray M. The Novel Anticancer Aryl-Ureido Fatty Acid CTU Increases Reactive Oxygen Species Production That Impairs Mitochondrial Fusion Mechanisms and Promotes MDA-MB-231 Cell Death. Int J Mol Sci 2024; 25:10577. [PMID: 39408906 PMCID: PMC11476390 DOI: 10.3390/ijms251910577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer cell mitochondria are functionally different from those in normal cells and could be targeted to develop novel anticancer agents. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of targeted agents that enhance the production of reactive oxygen species (ROS) that disrupt the outer mitochondrial membrane (OMM) and kill cancer cells. However, the mechanism by which CTU disrupts the inner mitochondrial membrane (IMM) and activates apoptosis is not clear. Here, we show that CTU-mediated ROS selectively dysregulated the OMA1/OPA1 fusion regulatory system located in the IMM. The essential role of ROS was confirmed in experiments with the lipid peroxyl scavenger α-tocopherol, which prevented the dysregulation of OMA1/OPA1 and CTU-mediated MDA-MB-231 cell killing. The disruption of OMA1/OPA1 and IMM fusion by CTU-mediated ROS accounted for the release of cytochrome c from the mitochondria and the activation of apoptosis. Taken together, these findings demonstrate that CTU depolarises the mitochondrial membrane, activates ROS production, and disrupts both the IMM and OMM, which releases cytochrome c and activates apoptosis. Mitochondrial-targeting agents like CTU offer a novel approach to the development of new therapeutics with anticancer activity.
Collapse
Affiliation(s)
- Stanton Tam
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (S.T.); (B.U.); (M.K.R.); (H.C.)
| |
Collapse
|
2
|
Gowda K, Raza A, Vangala V, Lone NA, Lin JM, Singh JK, Srivastava SK, Schell TD, Robertson GP, Amin S, Sharma AK. Identification of Novel Isatin Derivative Bearing a Nitrofuran Moiety as Potent Multi-Isoform Aldehyde Dehydrogenase Inhibitor. Molecules 2024; 29:3114. [PMID: 38999066 PMCID: PMC11243058 DOI: 10.3390/molecules29133114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are a family of enzymes that aid in detoxification and are overexpressed in several different malignancies. There is a correlation between increased expression of ALDH and a poor prognosis, stemness, and resistance to several drugs. Several ALDH inhibitors have been generated due to the crucial role that ALDH plays in cancer stem cells. All of these inhibitors, however, are either ineffective, very toxic, or have yet to be subjected to rigorous testing on their effectiveness. Although various drug-like compounds targeting ALDH have been reported in the literature, none have made it to routine use in the oncology clinic. As a result, new potent, non-toxic, bioavailable, and therapeutically effective ALDH inhibitors are still needed. In this study, we designed and synthesized potent multi-ALDH isoform inhibitors based on the isatin and indazole pharmacophore. Molecular docking studies and enzymatic tests revealed that among all of the synthesized analogs, compound 3 is the most potent inhibitor of ALDH1A1, ALDH3A1, and ALDH1A3, exhibiting 51.32%, 51.87%, and 36.65% inhibition, respectively. The ALDEFLUOR assay further revealed that compound 3 acts as an ALDH broad spectrum inhibitor at 500 nM. Compound 3 was also the most cytotoxic to cancer cells, with an IC50 in the range of 2.1 to 3.8 µM for ovarian, colon, and pancreatic cancer cells, compared to normal and embryonic kidney cells (IC50 7.1 to 8.7 µM). Mechanistically, compound 3 increased ROS activity due to potent multi-ALDH isoform inhibition, which increased apoptosis. Taken together, this study identified a potent multi-isoform ALDH inhibitor that could be further developed as a cancer therapeutic.
Collapse
Affiliation(s)
- Krishne Gowda
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Venugopal Vangala
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nazir Ahmad Lone
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jyh Ming Lin
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State College of Medicine Hershey, Hershey, PA 17033, USA
| | - Jaikee Kumar Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, India (S.K.S.)
| | | | - Todd D. Schell
- Department of Microbiology and Immunology, Penn State Cancer Institute, Penn State College of Medicine Hershey, Hershey, PA 17033, USA
| | - Gavin P. Robertson
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
- Departments of Pathology, Dermatology, Surgery, Melanoma Skin Cancer Center, Penn State Cancer Institute, Penn State College of Medicine Hershey, Hershey, PA 17033, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Kuryk L, Mathlouthi S, Wieczorek M, Gad B, Rinner B, Malfanti A, Mastrotto F, Salmaso S, Caliceti P, Garofalo M. Priming with oncolytic adenovirus followed by anti-PD-1 and paclitaxel treatment leads to improved anti-cancer efficacy in the 3D TNBC model. Eur J Pharm Biopharm 2024; 199:114300. [PMID: 38697488 DOI: 10.1016/j.ejpb.2024.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is considered one of the most incurable malignancies due to its clinical characteristics, including high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Therefore, it remains a critical unmet medical need. On the other hand, poor delivery efficiency continues to reduce the efficacy of anti-cancer therapeutics developed against solid tumours using various strategies, such as genetically engineered oncolytic vectors used as nanocarriers. The study was designed to evaluate the anti-tumour efficacy of a novel combinatorial therapy based on oncolytic adenovirus AdV5/3-D24-ICOSL-CD40L with an anti-PD-1 (pembrolizumab) and paclitaxel (PTX). Here, we first tested the antineoplastic effect in two-dimensional (2D) and three-dimensional (3D) breast cancer models in MDA-MB-231, MDA-MB-468 and MCF-7 cells. Then, to further evaluate the efficacy of combinatorial therapy, including immunological aspects, we established a three-dimensional (3D) co-culture model based on MDA-MB-231 cells with peripheral blood mononuclear cells (PBMCs) to create an integrated system that more closely mimics the complexity of the tumour microenvironment and interacts with the immune system. Treatment with OV as a priming agent, followed by pembrolizumab and then paclitaxel, was the most effective in reducing the tumour volume in TNBC co-cultured spheroids. Further, T-cell phenotyping analyses revealed significantly increased infiltration of CD8+, CD4+ T and Tregs cells. Moreover, the observed anti-tumour effects positively correlated with the level of CD4+ T cell infiltrates, suggesting the development of anti-cancer immunity. Our study demonstrated that combining different immunotherapeutic agents (virus, pembrolizumab) with PTX reduced the tumour volume of the TNBC co-cultured spheroids compared to relevant controls. Importantly, sequential administration of the investigational agents (priming with the vector) further enhanced the anti-cancer efficacy in 3D culture over other groups tested. Taken together, these results support further evaluation of the virus in combination with anti-PD-1 and PTX for the treatment of triple-negative breast cancer patients. Importantly, further studies with in vivo models should be conducted to better understand the translational aspects of tested therapy.
Collapse
Affiliation(s)
- Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland.
| | - Sara Mathlouthi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8036 Graz, Austria
| | - Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy.
| |
Collapse
|
4
|
Dos Santos JM, Joiakim A, Putt DA, Scherrer-Crosbie M, Kim H. 14,15-Dihydroxyeicosatrienoic acid, a soluble epoxide hydrolase metabolite in blood, is a predictor of anthracycline-induced cardiotoxicity - a hypothesis generating study. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:47. [PMID: 38102716 PMCID: PMC10722875 DOI: 10.1186/s40959-023-00198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Early identification of patients susceptible to chemotherapy-induced cardiotoxicity could lead to targeted treatment to reduce cardiac dysfunction. Rats treated with doxorubicin (DOX), a chemotherapeutic agent, have increased cardiac expression of 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), a bioactive lipid implicated in hypertension and coronary artery disease. However, the utility of 14,15-DHET as plasma biomarkers was not defined. The aim of this study is to investigate if levels of 14,15-DHET are an early blood biomarker to predict the subsequent occurrence of cardiotoxicity in cancer patients after chemotherapy. METHODS H9c2 rat cardiomyocytes were treated with DOX (1 μM) for 2 h and levels of 14,15-DHET in cell media was quantified at 2, 6 or 24 h in media after DOX treatment. Similarly, female Sprague-Dawley rats were treated with DOX for two weeks and levels of 14,15-DHET was assessed in plasma at 48 h and 2 weeks after DOX treatment. Changes in brain natriuretic peptide (BNP) mRNA, an early cardiac hypertrophy process, were determined in the H9c2 cells and rat cardiac tissue. Results were confirmed in human subjects by assessment of levels of 14,15-DHET in plasma of breast cancer patients before and after DOX treatment and left ventricular ejection fraction (LVEF), a clinical marker of cardiotoxicity. RESULTS Levels of 14,15-DHET in cell media and rat plasma increased ~ 3-fold and was accompanied with increase in BNP mRNA in H9c2 cells and rat cardiac tissue after DOX treatment. In matched plasma samples from breast cancer patients, levels of 14,15-DHET were increased in patients that developed cardiotoxicity at 3 months before occurrence of LVEF decrease. CONCLUSIONS Together, these results indicate that levels of 14,15-DHET are elevated prior to major changes in cardiac structure and function after exposure to anthracyclines. Increased levels of 14,15-DHET in plasma may be an important clinical biomarker for early detection of anthracycline-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Julia Matzenbacher Dos Santos
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Aby Joiakim
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
| | - David A Putt
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA
| | - Marielle Scherrer-Crosbie
- Cardiac Ultrasound Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyesook Kim
- Detroit R&D, Inc., 2727 2nd Ave, Suite 4113, Detroit, MI, 48201, USA.
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
5
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
7
|
Xia J, Li S, Liu S, Zhang L. Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (Beijing) 2023; 4:e195. [PMID: 36694633 PMCID: PMC9842923 DOI: 10.1002/mco2.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
The family of aldehyde dehydrogenases (ALDHs) contains 19 isozymes and is involved in the oxidation of endogenous and exogenous aldehydes to carboxylic acids, which contributes to cellular and tissue homeostasis. ALDHs play essential parts in detoxification, biosynthesis, and antioxidants, which are of important value for cell proliferation, differentiation, and survival in normal body tissues. However, ALDHs are frequently dysregulated and associated with various diseases like Alzheimer's disease, Parkinson's disease, and especially solid tumors. Notably, the involvement of the ALDHs in tumor progression is responsible for the maintenance of the stem-cell-like phenotype, triggering rapid and aggressive clinical progressions. ALDHs have captured increasing attention as biomarkers for disease diagnosis and prognosis. Nevertheless, these require further longitudinal clinical studies in large populations for broad application. This review summarizes our current knowledge regarding ALDHs as potential biomarkers in tumors and several non-tumor diseases, as well as recent advances in our understanding of the functions and underlying molecular mechanisms of ALDHs in disease development. Finally, we discuss the therapeutic potential of ALDHs in diseases, especially in tumor therapy with an emphasis on their clinical implications.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Kalın ŞN, Altay A, Budak H. Inhibition of thioredoxin reductase 1 by vulpinic acid suppresses the proliferation and migration of human breast carcinoma. Life Sci 2022; 310:121093. [DOI: 10.1016/j.lfs.2022.121093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
|
9
|
Zhu H, Zhou W, Wan Y, Lu J, Ge K, Jia C. Light-activatable multifunctional paclitaxel nanoprodrug for synergistic chemo-photodynamic therapy in liver cancer. Biofactors 2022; 48:918-925. [PMID: 35254679 DOI: 10.1002/biof.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Paclitaxel (Ptx) is widely utilized to treat liver cancer, and the treatment benefit of reactive oxygen species (ROS)-responsive Ptx nanoprodrug is investigated in this study. The one-step nano-precipitation method was utilized to self-assembly DSPE-PEG2000 -thioketal linker (TK)-Ptx with pyropheophorbide acid nanoparticles (PPa NPs) to form PPa/Ptx NPs. Dynamic light scattering and transmission electron microscopy were used for characterization, and 2'-7'dichlorofluorescin diacetate staining was utilized for intracellular ROS detection. HepG2 cells viability and tumor growth rate of HepG2 bearing mice were assayed. Hematoxylin and eosin staining, proliferating cell nuclear antigen detection, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay were utilized for histology assessment. PPa/Ptx NPs incubation with light irradiation showed superior cytotoxicity to HepG2 cells with increased intracellular ROS production than PPa/Ptx NPs incubation without light irradiation or PPa NPs incubation with light irradiation. At the same time, PPa/Ptx NPs with light irradiation could significantly decrease the tumor growth in vivo as indicated by diminished tumor volume with the largest necrotic area, the highest rate of apoptotic cells, and the least proliferating cells. PPa/Ptx NPs show synergistic chemo-photodynamic characteristics, which could be considered as a promising treatment option for liver cancer.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Weijiang Zhou
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Yafeng Wan
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y, Zhou Y. ALDH1A1 in Cancers: Bidirectional Function, Drug Resistance, and Regulatory Mechanism. Front Oncol 2022; 12:918778. [PMID: 35814382 PMCID: PMC9256994 DOI: 10.3389/fonc.2022.918778] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenases 1 family member A1(ALDH1A1) gene codes a cytoplasmic enzyme and shows vital physiological and pathophysiological functions in many areas. ALDH1A1 plays important roles in various diseases, especially in cancers. We reviewed and summarized representative correlative studies and found that ALDH1A1 could induce cancers via the maintenance of cancer stem cell properties, modification of metabolism, promotion of DNA repair. ALDH1A1 expression is regulated by several epigenetic processes. ALDH1A1 also acted as a tumor suppressor in certain cancers. The detoxification of ALDH1A1 often causes chemotherapy failure. Currently, ALDH1A1-targeted therapy is widely used in cancer treatment, but the mechanism by which ALDH1A1 regulates cancer development is not fully understood. This review will provide insight into the status of ALDH1A1 research and new viewpoint for cancer therapy.
Collapse
Affiliation(s)
- Hanxun Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zenan Hu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zeying Guo
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| |
Collapse
|
11
|
Qu Y, Cao J, Wang D, Wang S, Li Y, Zhu Y. 14,15-Epoxyeicosatrienoic Acid Protect Against Glucose Deprivation and Reperfusion-Induced Cerebral Microvascular Endothelial Cells Injury by Modulating Mitochondrial Autophagy via SIRT1/FOXO3a Signaling Pathway and TSPO Protein. Front Cell Neurosci 2022; 16:888836. [PMID: 35558879 PMCID: PMC9086968 DOI: 10.3389/fncel.2022.888836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular system plays a vital role in controlling the blood flow into brain parenchymal tissues. Additionally, it also facilitates the metabolism in neuronal biological activities. Cerebral microvascular endothelial cells (MECs) are involved in mediating progression of the diseases related to cerebral vessels, including stroke. Arachidonic acid can be transformed into epoxyeicosatrienoic acids (EETs) under the catalysis by cytochrome P450 epoxygenase. We have reported that EETs could protect neuronal function. In our research, the further role of 14,15-EET in the protective effects of cerebral MECs and the potential mechanisms involved in oxygen glucose deprivation and reperfusion (OGD/R) were elucidated. In our study, we intervened the SIRT1/FOXO3a pathway and established a TSPO knock down model by using RNA interference technique to explore the cytoprotective role of 14,15-EET in OGD/R injury. Cerebral MECs viability was remarkably reduced after OGD/R treatment, however, 14,15-EET could reverse this effect. To further confirm whether 14,15-EET was mediated by SIRT1/FOXO3a signaling pathway and translocator protein (TSPO) protein, we also detected autophagy-related proteins, mitochondrial membrane potential, apoptosis indicators, oxygen free radicals, etc. It was found that 14,15-EET could regulate the mitophagy induced by OGD/R. SIRT1/FOXO3a signaling pathway and TSPO regulation were related to the protective role of 14,15-EET in cerebral MECs. Moreover, we also explored the potential relationship between SIRT1/FOXO3a signaling pathway and TSPO protein. Our study revealed the protective role and the potential mechanisms of 14,15-EET in cerebral MECs under OGD/R condition.
Collapse
Affiliation(s)
- Youyang Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinlu Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Zhao T, Wang X, Fu L, Yang K. Fusobacterium nucleatum: a new player in regulation of cancer development and therapeutic response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:436-450. [PMID: 35800370 PMCID: PMC9255244 DOI: 10.20517/cdr.2021.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
A dysbiosis in microbial diversity or functionality can promote disease development. Emerging preclinical and clinical evidence emphasizes the interplay between microbiota and both disease evolution and the treatment response of different cancers. One bacterium that has garnered much attention in a few cancer microbiota studies is Fusobacterium nucleaum (Fn). To provide updated knowledge of the functional role of Fn in cancer prevention and management, this review summarizes the relationship among Fn, cancer, and chemoimmunotherapy response, with the potential mechanisms of action also intensively discussed, which will benefit the development of strategies to prevent or treat cancer via Fn-based therapeutic interventions.
Collapse
Affiliation(s)
- Tengda Zhao
- Department of Oral and Maxillofacial Surgery, Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xueping Wang
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Liwu Fu
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Ke Yang
- Department of Oral and Maxillofacial Surgery, Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
13
|
Zhu X, Yang M, Song Z, Yao G, Shi Q. Artemether inhibits proliferation, invasion and migration of hepatocellular carcinoma cells via targeting of CYP2J2. Oncol Lett 2022; 23:180. [PMID: 35464300 PMCID: PMC9021866 DOI: 10.3892/ol.2022.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xionglin Zhu
- Department of Infectious Disease, People's Hospital of Xinzhou District, Wuhan, Hubei 431400, P.R. China
| | - Mei Yang
- Department of Obstetrics and Gynecology, Xinzhou District Maternity and Child Health Hospital, Wuhan, Hubei 431400, P.R. China
| | - Zhiling Song
- Department of Infectious Disease, People's Hospital of Xinzhou District, Wuhan, Hubei 431400, P.R. China
| | - Guangbing Yao
- Department of Infectious Disease, People's Hospital of Xinzhou District, Wuhan, Hubei 431400, P.R. China
| | - Qifeng Shi
- Department of Thoracic Surgery, Xinzhou District People's Hospital, Wuhan, Hubei 431400, P.R. China
| |
Collapse
|
14
|
Lim HM, Lee J, Yu SH, Nam MJ, Cha HS, Park K, Yang YH, Jang KY, Park SH. Acetylshikonin, A Novel CYP2J2 Inhibitor, Induces Apoptosis in RCC Cells via FOXO3 Activation and ROS Elevation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9139338. [PMID: 35308176 PMCID: PMC8926475 DOI: 10.1155/2022/9139338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 01/04/2023]
Abstract
Acetylshikonin is a shikonin derivative originated from Lithospermum erythrorhizon roots that exhibits various biological activities, including granulation tissue formation, promotion of inflammatory effects, and inhibition of angiogenesis. The anticancer effect of acetylshikonin was also investigated in several cancer cells; however, the effect against renal cell carcinoma (RCC) have not yet been studied. In this study, we aimed to investigate the anticarcinogenic mechanism of acetylshikonin in A498 and ACHN, human RCC cell lines. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), cell counting, and colony forming assay showed that acetylshikonin induced cytotoxic and antiproliferative effects in a dose- and time-dependent manner. Cell cycle analysis and annexin V/propidium iodide (PI) double staining assay indicated the increase of subG1 phase and apoptotic rates. Also, DNA fragmentation was observed by using the TUNEL and comet assays. The intracellular ROS level in acetylshikonin-treated RCC was evaluated using DCF-DA. The ROS level was increased and cell viability was decreased in a dose- and time-dependent manner, while those were recovered when cotreated with NAC. Western blotting analysis showed that acetylshikonin treatment increased the expression of FOXO3, cleaved PARP, cleaved caspase-3, -6, -7, -8, -9, γH2AX, Bim, Bax, p21, and p27 while decreased the expressions of CYP2J2, peroxiredoxin, and thioredoxin-1, Bcl-2, and Bcl-xL. Simultaneously, nuclear translocation of FOXO3 and p27 was observed in cytoplasmic and nuclear fractionated western blot analysis. Acetylshikonin was formerly identified as a novel inhibitor of CYP2J2 protein in our previous study and it was evaluated that CYP2J2 was downregulated in acetylshikonin-treated RCC. CYP2J2 siRNA transfection augmented that apoptotic effect of acetylshikonin in A498 and ACHN via up-regulation of FOXO3 expression. In conclusion, we showed that the apoptotic potential of acetylshikonin against RCC is mediated via increase of intracellular ROS level, activation of FOXO3, and inhibition of CYP2J2 expressions. This study offers that acetylshikonin may be a considerable alternative therapeutic option for RCC treatment by targeting FOXO3 and CYP2J2.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon Hak Yu
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyo Sun Cha
- Department of Biological Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Kyungmoon Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju 54896, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
15
|
Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep 2022; 49:3321-3331. [PMID: 35028852 DOI: 10.1007/s11033-021-07073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The expression and activity of enzymes that belong to the aldehyde dehydrogenases is a characteristic of both normal and malignant stem cells. ALDH1A1 is an enzyme critical in cancer stem cells. In acute myeloid leukemia (AML), ALDH1A1 protects leukemia-initiating cells from a number of antineoplastic agents, which include inhibitors of protein tyrosine kinases. Furthermore, ALDH1A1 proves vital for the establishment of human AML xenografts in mice. We review here important studies characterizing the role of ALDH1A1 in AML and its potential as a therapeutic target. We also analyze datasets from leading studies, and show that decreased ALDH1A1 RNA expression consistently characterizes the AML patient risk group with a favorable prognosis, while there is a consistent association of high ALDH1A1 RNA expression with high risk and poor overall survival. Our review and analysis reinforces the notion to employ both novel as well as existing inhibitors of the ALDH1A1 protein against AML.
Collapse
|
16
|
Bose C, Hindle A, Lee J, Kopel J, Tonk S, Palade PT, Singhal SS, Awasthi S, Singh SP. Anticancer Activity of Ω-6 Fatty Acids through Increased 4-HNE in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246377. [PMID: 34944997 PMCID: PMC8699056 DOI: 10.3390/cancers13246377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epidemiological evidence suggests that breast cancer risk is lowered by Ω-3 and increased by Ω-6 polyunsaturated fatty acids (PUFAs). Paradoxically, the Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE) inhibits cancer cell growth. This duality prompted us to study whether arachidonic acid (AA) would enhance doxorubicin (dox) cytotoxicity towards breast cancer cells. We found that supplementing AA or inhibiting 4-HNE metabolism potentiated doxorubicin (dox) toxicity toward Her2-dependent breast cancer but spared myocardial cells. Our results suggest that Ω-6 PUFAs could improve outcomes of dox chemotherapy in Her2-overexpressing breast cancer. Abstract Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.
Collapse
Affiliation(s)
- Chhanda Bose
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Ashly Hindle
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jihyun Lee
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jonathan Kopel
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Sahil Tonk
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Medical Oncology Service, Doctors Hospital, 16 Middle Rd., George Town, Grand Cayman KY1-1104, Cayman Islands, UK
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
17
|
Kong C, Yan X, Zhu Y, Zhu H, Luo Y, Liu P, Ferrandon S, Kalady MF, Gao R, He J, Yin F, Qu X, Zheng J, Gao Y, Wei Q, Ma Y, Liu JY, Qin H. Fusobacterium Nucleatum Promotes the Development of Colorectal Cancer by Activating a Cytochrome P450/Epoxyoctadecenoic Acid Axis via TLR4/Keap1/NRF2 Signaling. Cancer Res 2021; 81:4485-4498. [PMID: 34162680 DOI: 10.1158/0008-5472.can-21-0453] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Emerging research has revealed regulation of colorectal cancer metabolism by bacteria. Fusobacterium nucleatum (Fn) plays a crucial role in the development of colorectal cancer, however, whether Fn infection modifies metabolism in patients with colorectal cancer remains unknown. Here, LC-MS/MS-based lipidomics identified the upregulation of cytochrome P450 monooxygenases, primarily CYP2J2, and their mediated product 12,13-EpOME in patients with colorectal cancer tumors and mouse models, which increased the invasive and migratory ability of colorectal cancer cells in vivo and in vitro by regulating the epithelial-mesenchymal transition (EMT). Metagenomic sequencing indicated a positive correlation between increased levels of fecal Fn and serum 12,13-EpOME in patients with colorectal cancer. High levels of CYP2J2 in tumor tissues also correlated with high Fn levels and worse overall survival in patients with stage III/IV colorectal cancer. Moreover, Fn was found to activate TLR4/AKT signaling, downregulating Keap1 and increasing NRF2 to promote transcription of CYP2J2. Collectively, these data identify that Fn promotes EMT and metastasis in colorectal cancer by activating a TLR4/Keap1/NRF2 axis to increase CYP2J2 and 12,13-EpOME, which could serve as clinical biomarkers and therapeutic targets for Fn-infected patients with colorectal cancer. SIGNIFICANCE: This study uncovers a mechanism by which Fusobacterium nucleatum regulates colorectal cancer metabolism to drive metastasis, suggesting the potential biomarker and therapeutic utility of the CYP2J2/12,13-EpOME axis in Fn-infected patients.
Collapse
Affiliation(s)
- Cheng Kong
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.,Division of Colon and Rectal Surgery, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, Ohio
| | - Xuebing Yan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yefei Zhu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Huiyuan Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ying Luo
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Peipei Liu
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sylvain Ferrandon
- Division of Colon and Rectal Surgery, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, Ohio
| | - Matthew F Kalady
- Division of Colon and Rectal Surgery, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, Ohio
| | - Renyuan Gao
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jide He
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Fang Yin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Xiao Qu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Yan Liu
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China. .,Center for Novel Target & Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China. .,Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Ulker OC, Panieri E, Suzen S, Jaganjac M, Zarkovic N, Saso L. Short overview on the relevance of microRNA-reactive oxygen species (ROS) interactions and lipid peroxidation for modulation of oxidative stress-mediated signalling pathways in cancer treatment. J Pharm Pharmacol 2021; 74:503-515. [PMID: 33769543 DOI: 10.1093/jpp/rgab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Modulation of oxidative stress-mediated signalling pathways is constantly getting more attention as a valuable therapeutic strategy in cancer treatment. Although complexity of redox signalling pathways might represent a major hurdle, the development of advanced -omics technologies allow thorough studies on cancer-specific biology, which is essential to elucidate the impact of these signalling pathways in cancer cells. The scope of our review is to provide updated information about recent developments in cancer treatment. KEY FINDINGS In recent years identifying oxidative stress-mediated signalling pathways is a major goal of cancer research assuming it may provide novel therapeutic approaches through the development of agents that may have better tissue penetration and therefore affect specific redox signalling pathways. In this review, we discuss some recent studies focussed on the modulation of oxidative stress-related signalling pathways as a novel anti-cancer treatment, with a particular emphasis on the induction of lipid peroxidation. CONCLUSIONS Characterization and modulation of oxidative stress-mediated signalling pathways and lipid peroxidation products will continue to foster novel interest and further investigations, which may pave the way for more effective, selective, and personalized integrative biomedicine treatment strategies.
Collapse
Affiliation(s)
- Ozge Cemiloglu Ulker
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 482] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
20
|
Fleisher B, Lezeau J, Werkman C, Jacobs B, Ait-Oudhia S. In vitro to Clinical Translation of Combinatorial Effects of Doxorubicin and Abemaciclib in Rb-Positive Triple Negative Breast Cancer: A Systems-Based Pharmacokinetic/Pharmacodynamic Modeling Approach. BREAST CANCER-TARGETS AND THERAPY 2021; 13:87-105. [PMID: 33628047 PMCID: PMC7899308 DOI: 10.2147/bctt.s292161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022]
Abstract
Background Doxorubicin (DOX) and its pegylated liposomal formulation (L_DOX) are the standard of care for triple-negative breast cancer (TNBC). However, resistance to DOX often occurs, motivating the search for alternative treatment approaches. The retinoblastoma protein (Rb) is a potential pharmacological target for TNBC treatment since its expression has been associated with resistance to DOX-based therapy. Methods DOX (0.01–20 μM) combination with abemaciclib (ABE, 1–6 μM) was evaluated over 72 hours on Rb-positive (MDA-MB-231) and Rb-negative (MDA-MB-468) TNBC cells. Combination indices (CI) for DOX+ABE were calculated using Compusyn software. The TNBC cell viability time-course and fold-change from the control of phosphorylated-Rb (pRb) protein expression were measured with CCK8-kit and enzyme-linked immunosorbent assay. A cell-based pharmacodynamic (PD) model was developed, where pRb protein dynamics drove cell viability response. Clinical pharmacokinetic (PK) models for DOX, L_DOX, and ABE were developed using data extracted from the literature. After scaling cancer cell growth to clinical TNBC tumor growth, the time-to-tumor progression (TTP) was predicted for human dosing regimens of DOX, ABE, and DOX+ABE. Results DOX and ABE combinations were synergistic (CI<1) in MDA-MB-231 and antagonistic (CI>1) in MDA-MB-468. The maximum inhibitory effects (Imax) for both drugs were set to one. The drug concentrations producing 50% of Imax for DOX and ABE were 0.565 and 2.31 μM (MDA-MB-231) and 0.121 and 1.61 μM (MDA-MB-468). The first-orders rate constants of abemaciclib absorption (ka) and doxorubicin release from L_DOX (kRel) were estimated at 0.31 and 0.013 h−1. Their linear clearances were 21.7 (ABE) and 32.1 L/h (DOX). The estimated TTP for intravenous DOX (75 mg/m2 every 21 days), intravenous L_DOX (50 mg/m2 every 28 days), and oral ABE (200 mg twice a day) were 125, 31.2, and 8.6 days shorter than drug-free control. The TTP for DOX+ABE and L_DOX+ABE were 312 days and 47.5 days shorter than control, both larger than single-agent DOX, suggesting improved activity with the DOX+ABE combination. Conclusion The developed translational systems-based PK/PD model provides an in vitro-to-clinic modeling platform for DOX+ABE in TNBC. Although model-based simulations suggest improved outcomes with combination over monotherapy, tumor relapse was not prevented with the combination. Hence, DOX+ABE may not be an effective treatment combination for TNBC.
Collapse
Affiliation(s)
- Brett Fleisher
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jovin Lezeau
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carolin Werkman
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Brehanna Jacobs
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co, Inc, Kenilworth, New Jersey, USA
| |
Collapse
|
21
|
6,8-Diprenylorobol Induces Apoptosis in Human Hepatocellular Carcinoma Cells via Activation of FOXO3 and Inhibition of CYP2J2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8887251. [PMID: 33312341 PMCID: PMC7721496 DOI: 10.1155/2020/8887251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
6,8-Diprenylorobol is a phytochemical derived from the roots of Glycyrrhiza uralensis Fisch. 6,8-Diprenylorobol exhibits several biological activities, but the effects of 6,8-diprenylorobol on cancers have been hardly investigated. This study is aimed at elucidating the anticancer effect and working mechanism of 6,8-diprenylorobol in HepG2 and Huh-7, two kinds of human hepatocellular carcinoma (HCC) cell lines. WST-1, cell counting, and colony formation assays and morphological change analysis showed that 6,8-diprenylorobol treatment decreased the cell viability and proliferation rate. Cell cycle analysis indicated that 6,8-diprenylorobol treatment increased the population of the G1/0 stage. Annexin V/PI double staining and TUNEL analysis showed that 6,8-diprenylorobol treatment increased the apoptotic cell population and DNA fragmentation. Western blot analysis showed that 6,8-diprenylorobol treatment increased the expression of cleaved PARP1, cleaved caspase-3, FOXO3, Bax, Bim, p21, and p27 but decreased the expression of Bcl2 and BclXL. Interestingly, 6,8-diprenylorobol inhibited CYP2J2-mediated astemizole O-demethylation and ebastine hydroxylase activities with Ki values of 9.46 and 2.61 μM, respectively. CYP2J2 siRNA transfection enhanced the anticancer effect of 6,8-diprenylorobol in HepG2 and Huh-7 cells through the downregulation of CYP2J2 protein expression and upregulation of FOXO3. Taken together, this study proposes that 6,8-diprenylorobol treatment may be a useful therapeutic option against HCC by targeting CYP2J2 and FOXO3.
Collapse
|
22
|
Dinavahi SS, Gowda R, Gowda K, Bazewicz CG, Chirasani VR, Battu MB, Berg A, Dokholyan NV, Amin S, Robertson GP. Development of a Novel Multi-Isoform ALDH Inhibitor Effective as an Antimelanoma Agent. Mol Cancer Ther 2020; 19:447-459. [PMID: 31754071 PMCID: PMC10763724 DOI: 10.1158/1535-7163.mct-19-0360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/22/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
The aldehyde dehydrogenases (ALDH) are a major family of detoxifying enzymes that contribute to cancer progression and therapy resistance. ALDH overexpression is associated with a poor prognosis in many cancer types. The use of multi-ALDH isoform or isoform-specific ALDH inhibitors as anticancer agents is currently hindered by the lack of viable candidates. Most multi-ALDH isoform inhibitors lack bioavailability and are nonspecific or toxic, whereas most isoform-specific inhibitors are not effective as monotherapy due to the overlapping functions of ALDH family members. The present study details the development of a novel, potent, multi-isoform ALDH inhibitor, called KS100. The rationale for drug development was that inhibition of multiple ALDH isoforms might be more efficacious for cancer compared with isoform-specific inhibition. Enzymatic IC50s of KS100 were 207, 1,410, and 240 nmol/L toward ALDH1A1, 2, and 3A1, respectively. Toxicity of KS100 was mitigated by development of a nanoliposomal formulation, called NanoKS100. NanoKS100 had a loading efficiency of approximately 69% and was stable long-term. NanoKS100 was 5-fold more selective for killing melanoma cells compared with normal human fibroblasts. NanoKS100 administered intravenously at a submaximal dose (3-fold lower) was effective at inhibiting xenografted melanoma tumor growth by approximately 65% without organ-related toxicity. Mechanistically, inhibition by KS100 significantly reduced total cellular ALDH activity to increase reactive oxygen species generation, lipid peroxidation, and accumulation of toxic aldehydes leading to apoptosis and autophagy. Collectively, these data suggest the successful preclinical development of a nontoxic, bioavailable, nanoliposomal formulation containing a novel multi-ALDH isoform inhibitor effective in the treatment of cancer.
Collapse
Affiliation(s)
- Saketh S Dinavahi
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher G Bazewicz
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Venkat R Chirasani
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Madhu Babu Battu
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| | - Arthur Berg
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nikolay V Dokholyan
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
23
|
Dinavahi SS, Gowda R, Bazewicz CG, Battu MB, Lin JM, Chitren RJ, Pandey MK, Amin S, Robertson GP, Gowda K. Design, synthesis characterization and biological evaluation of novel multi-isoform ALDH inhibitors as potential anticancer agents. Eur J Med Chem 2019; 187:111962. [PMID: 31887569 DOI: 10.1016/j.ejmech.2019.111962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022]
Abstract
The aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes that are overexpressed in various cancers. Increased expression of ALDH is associated with poor prognosis, stemness, and drug resistance. Because of the critical role of ALDH in cancer stem cells, several ALDH inhibitors have been developed. Nonetheless, all these inhibitors either lack efficacy or are too toxic or have not been tested extensively. Thus, the continued development of ALDH inhibitors is warranted. In this study, we designed and synthesized potent multi-ALDH isoform inhibitors based on the isatin backbone. The early molecular docking studies and enzymatic tests revealed that 3(a-l) and 4(a-l) are the potent ALDH1A1, ALDHA2, and ALDH3A1 inhibitors. ALDH inhibitory IC50s of 3(a-l) and 4(a-l) were 230 nM to >10,000 nM for ALDH1A1, 939 nM to >10,000 nM for ALDH2 and 193 nM to >10,000 nM for ALDH3A1. The most potent compounds 3(h-l) had IC50s for killing melanoma cells ranged from 2.1 to 5.7 μM, while for colon cancer cells, it ranged from 2.5 to 5.8 μM and for multiple myeloma cells ranging from 0.3 to 4.7 μM. Toxicity studies of 3(h-l) revealed that 3h to be the least toxic multi-ALDH isoform inhibitor. Mechanistically, 3(h-l) caused increased ROS activity, lipid peroxidation, and toxic aldehyde accumulation, secondary to potent multi-ALDH isoform inhibition leading to increased apoptosis and G2/M cell cycle arrest. Together, the study details the design, synthesis, and evaluation of potent, multi-isoform ALDH inhibitors to treat cancers.
Collapse
Affiliation(s)
- Saketh S Dinavahi
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States
| | - Christopher G Bazewicz
- Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; College of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States
| | - Madhu Babu Battu
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India
| | - Jyh Ming Lin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States
| | - Robert J Chitren
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, United States
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, United States
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States; Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, United States.
| |
Collapse
|
24
|
Dinavahi SS, Bazewicz CG, Gowda R, Robertson GP. Aldehyde Dehydrogenase Inhibitors for Cancer Therapeutics. Trends Pharmacol Sci 2019; 40:774-789. [DOI: 10.1016/j.tips.2019.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
|
25
|
Samson JM, Ravindran Menon D, Smith DE, Baird E, Kitano T, Gao D, Tan AC, Fujita M. Clinical implications of ALDH1A1 and ALDH1A3 mRNA expression in melanoma subtypes. Chem Biol Interact 2019; 314:108822. [PMID: 31580832 DOI: 10.1016/j.cbi.2019.108822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Aldehyde dehydrogenase (ALDH) activity is not only a valuable marker for cancer cells with stem-like features, but also plays a vital role in drug resistance and disease progression in many tumors including melanoma. However, the precise role of ALDH activity in patient prognosis remains unclear. In this study, using the Cancer Genome Atlas (TCGA) RNA-sequencing expression data, we analyzed gene expression of ALDH isozymes in melanoma tumors to define the expression patterns and the prognostic and predictive values of these enzymes. We found that ALDH1A1 and ALDH1A3 had both higher and broader expression ranges in melanoma patients, and that ALDH1A3 expression correlated with better overall survival in metastatic melanoma. Further, stratification of the TCGA cohorts by the mutational subtypes of melanoma specifically revealed that expression of ALDH1A3 correlated with better prognosis in metastatic BRAF-mutant melanoma while expression of ALDH1A1 correlated with better prognosis in BRAF wild-type melanoma. Gene set enrichment analysis (GSEA) of these cohorts identified upregulation in oxidative phosphorylation, adipogenesis, and fatty acid metabolism signaling in ALDH1Alo patients, suggesting BRAF/MEK inhibitor resistance in that subset of patients. On the other hand, GSEA of ALDH1A3hi cohorts revealed upregulation in glycolysis, hypoxia and angiogenesis, suggesting BRAF/MEK inhibitor sensitivity in that subset of patients. Gene expression analysis using pre-treatment tumor samples supports high ALDH1A3 expression before BRAF/MEK inhibitor treatment as predictive of better treatment response in BRAF-mutant melanoma patients. Our study provides evidence that high ALDH1A3 mRNA expression is not only a prognostic marker but also a predictive marker for BRAF/MEK inhibitor treatment response in BRAF-mutant metastatic melanoma patients.
Collapse
Affiliation(s)
- Jenny Mae Samson
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States
| | - Derek E Smith
- Department of Biostatistics & Informatics, University of Colorado Denver, Aurora, CO 80045, United States
| | - Erika Baird
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States
| | - Takayuki Kitano
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States; School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Dexiang Gao
- Department of Biostatistics & Informatics, University of Colorado Denver, Aurora, CO 80045, United States
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, United States.
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Aurora, CO, 80045, United States; Denver VA Medical Center, Denver, CO, 80220, United States; Department of Immunology & Microbiology, University of Colorado Denver, Aurora, CO, 80045, United States.
| |
Collapse
|
26
|
He W, Xia Y, Cao P, Hong L, Zhang T, Shen X, Zheng P, Shen H, Liang G, Zou P. Curcuminoid WZ35 synergize with cisplatin by inducing ROS production and inhibiting TrxR1 activity in gastric cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:207. [PMID: 31113439 PMCID: PMC6528260 DOI: 10.1186/s13046-019-1215-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Background Cisplatin is one of the most widely used chemotherapeutic agents, but its efficacy is limited by its side effects. Hence, it is of great significance to develop novel agents to synergize with cisplatin and decrease side effects. In our previous study, we demonstrated that WZ35, a novel curcumin analogue, exhibited potent anti-cancer effects in vitro and in vivo. Here, we investigated whether WZ35 synergize to potentiate cisplatin activity in gastric cancer cells. Methods Cell apoptosis and cellular ROS levels were analyzed by flow cytometry. TrxR1 activity in gastric cells or tumor tissues was determined by the endpoint insulin reduction assay. Western blot was used to analyze the levels of indicated molecules. Nude mice xenograft model was used to test the effects of WZ35 and cisplatin combination on gastric cancer cell growth in vivo. Results We found that WZ35 significantly enhanced cisplatin-induced cell growth inhibition and apoptosis in gastric cancer cells. Further mechanism study showed that WZ35 synergized the anti-tumor effects of cisplatin by inhibiting TrxR1 activity. By inhibiting TrxR1 activity, WZ35 combined with cisplatin markedly induced the production of ROS, activated p38 and JNK signaling pathways, and eventually induced apoptosis of gastric cancer cells. In vivo, WZ35 combined with cisplatin significantly suppressed tumor growth in a gastric cancer xenograft model, and effectively reduced the activity of TrxR1 in tumor tissues. Remarkably, WZ35 attenuated the body weight loss evoked by cisplatin treatment. Conclusion This study elucidated the underlying mechanisms of synergistic effect of WZ35 and cisplatin, and suggest that such a combinational treatment might potentially become a more effective regimen in gastric cancer therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1215-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiqun Xia
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Peihai Cao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lin Hong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tingting Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Peisen Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huanpei Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
27
|
Rodríguez-Zavala JS, Calleja LF, Moreno-Sánchez R, Yoval-Sánchez B. Role of Aldehyde Dehydrogenases in Physiopathological Processes. Chem Res Toxicol 2019; 32:405-420. [PMID: 30628442 DOI: 10.1021/acs.chemrestox.8b00256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many different diseases are associated with oxidative stress. One of the main consequences of oxidative stress at the cellular level is lipid peroxidation, from which toxic aldehydes may be generated. Below their toxicity thresholds, some aldehydes are involved in signaling processes, while others are intermediaries in the metabolism of lipids, amino acids, neurotransmitters, and carbohydrates. Some aldehydes ubiquitously distributed in the environment, such as acrolein or formaldehyde, are extremely toxic to the cell. On the other hand, aldehyde dehydrogenases (ALDHs) are able to detoxify a wide variety of aldehydes to their corresponding carboxylic acids, thus helping to protect from oxidative stress. ALDHs are located in different subcellular compartments such as cytosol, mitochondria, nucleus, and endoplasmic reticulum. The aim of this review is to analyze, and highlight, the role of different ALDH isoforms in the detoxification of aldehydes generated in processes that involve high levels of oxidative stress. The ALDH physiological relevance becomes evident by the observation that their expression and activity are enhanced in different pathologies that involve oxidative stress such as neurodegenerative disorders, cardiopathies, atherosclerosis, and cancer as well as inflammatory processes. Furthermore, ALDH mutations bring about several disorders in the cell. Thus, understanding the mechanisms by which these enzymes participate in diverse cellular processes may lead to better contend with the damage caused by toxic aldehydes in different pathologies by designing modulators and/or protocols to modify their activity or expression.
Collapse
Affiliation(s)
| | | | - Rafael Moreno-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| | - Belem Yoval-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| |
Collapse
|
28
|
He PJ, Ge RF, Mao WJ, Chung PS, Ahn JC, Wu HT. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol Lett 2018; 16:7131-7138. [PMID: 30546448 PMCID: PMC6256460 DOI: 10.3892/ol.2018.9563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/07/2018] [Indexed: 12/16/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is currently a serious public health problem in China; thus, it is urgent to identify effective treatment strategies for this disease. Previous studies demonstrated that reactive oxygen species (ROS) serve important roles in the apoptosis of LSCC cells. It has also been indicated that carboplatin (CBDCA), a second-generation platinum compound with broad antineoplastic properties, is able to induce oxidative stress to produce ROS, which in turn promotes apoptosis. Thus, the present study investigated if CBDCA is cytotoxic in LSCC cells due to the oxidative stress caused by ROS. Therefore, an MTT assay was performed to determine the cell viability of HN-3 LSCC cells following treatment with different doses of CBDCA. Subsequently, the expression levels of ROS and the rate of apoptosis/necrosis were evaluated in the cells. Following this, the HN-3 cells were co-treated with CBDCA and glutathione (GSH) or H2O2, followed by an MTT assay, a cell migration assay and western blot analysis. The results demonstrated that CBDCA reduced the viability of HN-3 cells in a time- and dose-dependent manner and promoted the production of ROS and apoptosis at certain doses. Additionally, the combination treatment of CBDCA and H2O2 enhanced the inhibitory effects of CBDCA on cell viability and migration ability, and promoted apoptosis in HN-3 cells; whereas the combined treatment of CBDCA and GSH exerted opposite effects. The results of the present study demonstrated that CBDCA promotes the apoptosis of HN-3 cells through accumulation of ROS, which may provide a novel treatment strategy for treating LSCC.
Collapse
Affiliation(s)
- Pei-Jie He
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China.,Department of Otolaryngology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Rui-Feng Ge
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wen-Jing Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Phil-Sang Chung
- Department of Otolaryngology-Head and Neck Surgery, Beckman Laser Institute Korea, Dankook University, Cheonan, South Chungcheong 330-715, Republic of Korea
| | - Jin-Chul Ahn
- Department of Otolaryngology-Head and Neck Surgery, Beckman Laser Institute Korea, Dankook University, Cheonan, South Chungcheong 330-715, Republic of Korea
| | - Hai-Tao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
29
|
Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, McGarrah P, Potter DA. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev 2018; 37:409-423. [DOI: 10.1007/s10555-018-9749-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|