1
|
Ashraf RA, Bureik M, Marchisio MA. Design and engineering of logic genetic-enzymatic gates based on the activity of the human CYP2C9 enzyme in permeabilized Saccharomyces cerevisiae cells. Synth Syst Biotechnol 2024; 9:406-415. [PMID: 38590712 PMCID: PMC10999488 DOI: 10.1016/j.synbio.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
Gene circuits allow cells to carry out complex functions such as the precise regulation of biological metabolic processes. In this study, we combined, in the yeast S. cerevisiae, genetic regulatory elements with the enzymatic reactions of the human CYP2C9 and its redox partner CPR on luciferin substrates and diclofenac. S. cerevisiae cells were permeabilized and used as enzyme bags in order to host these metabolic reactions. We engineered three different (genetic)-enzymatic basic Boolean gates (YES, NOT, and N-IMPLY). In the YES and N-IMPLY gates, human CYP2C9 was expressed under the galactose-inducible GAL1 promoter. The carbon monoxide releasing molecule CORM-401 was used as an input in the NOT and N-IMPLY gates to impair CYP2C9 activity through inhibition of the Fe+2- heme prosthetic group in the active site of the human enzyme. Our study provides a new approach in designing synthetic bio-circuits and optimizing experimental conditions to favor the heterologous expression of human drug metabolic enzymes over their endogenous counterparts. This new approach will help study precise metabolic attributes of human P450s.
Collapse
Affiliation(s)
- Rana Azeem Ashraf
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
2
|
Kowalski JP, Rettie AE. There and Back Again: A Perspective on 20 Years of CYP4Z1. Drug Metab Dispos 2024; 52:498-507. [PMID: 38604728 DOI: 10.1124/dmd.124.001670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Cytochrome P450 (CYP)4Z1, a highly expressed CYP gene in breast cancer, was one of the last CYPs to be identified in the human genome, some 20 years ago. CYP4 enzymes typically catalyze ω-hydroxylation and metabolize ω3 and ω6 polyunsaturated fatty acids to bioactive lipid metabolites that can influence tumor growth and metastasis. These attributes of CYP4Z1 make it an attractive target for new chemotherapeutic drug design, as a potential biomarker for selection of patients that might respond favorably to drugs and for developing enzyme inhibitors as potential therapeutic agents. This review summarizes the current state of knowledge regarding the advancing biochemistry of CYP4Z1, its role in breast cancer, and the recent synthesis of selective chemical inhibitors of the enzyme. We identify gaps that need to be filled to further advance this field and present new experimental data on recombinant CYP4Z1 expression and purification of the active catalytic form. SIGNIFICANCE STATEMENT: In breast cancer, an unmet need is the availability of highly effective therapeutic agents, especially for triple negative breast cancer. The relevance of the work summarized in this mini-review is that it identifies a new potential drug target, CYP4Z1, and discusses ways in which the gene product's catalytic activity might be modulated in order to combat this malignancy and limit its spread.
Collapse
Affiliation(s)
- John P Kowalski
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Ashraf RA, Liu S, Wolf CA, Wolber G, Bureik M. Identification of New Substrates and Inhibitors of Human CYP2A7. Molecules 2024; 29:2191. [PMID: 38792050 PMCID: PMC11123773 DOI: 10.3390/molecules29102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
CYP2A7 is one of the most understudied human cytochrome P450 enzymes and its contributions to either drug metabolism or endogenous biosynthesis pathways are not understood, as its only known enzymatic activities are the conversions of two proluciferin probe substrates. In addition, the CYP2A7 gene contains four single-nucleotide polymorphisms (SNPs) that cause missense mutations and have minor allele frequencies (MAFs) above 0.5. This means that the resulting amino acid changes occur in the majority of humans. In a previous study, we employed the reference standard sequence (called CYP2A7*1 in P450 nomenclature). For the present study, we created another CYP2A7 sequence that contains all four amino acid changes (Cys311, Glu169, Gly479, and Arg274) and labeled it CYP2A7-WT. Thus, it was the aim of this study to identify new substrates and inhibitors of CYP2A7 and to compare the properties of CYP2A7-WT with CYP2A7*1. We found several new proluciferin probe substrates for both enzyme variants (we also performed in silico studies to understand the activity difference between CYP2A7-WT and CYP2A7*1 on specific substrates), and we show that while they do not act on the standard CYP2A6 substrates nicotine, coumarin, or 7-ethoxycoumarin, both can hydroxylate diclofenac (as can CYP2A6). Moreover, we found ketoconazole, 1-benzylimidazole, and letrozole to be CYP2A7 inhibitors.
Collapse
Affiliation(s)
- Rana Azeem Ashraf
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China;
| | - Sijie Liu
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Free University Berlin, 14195 Berlin, Germany; (S.L.); (C.A.W.); (G.W.)
| | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Free University Berlin, 14195 Berlin, Germany; (S.L.); (C.A.W.); (G.W.)
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Free University Berlin, 14195 Berlin, Germany; (S.L.); (C.A.W.); (G.W.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
4
|
Qin H, Zhou Y, Liu H, Yuan Y, Guo Q, Yuan M, Xi T, Zhang Y. 1-Benzylimidazole attenuates the stemness of breast cancer cells through partially targeting CYP4Z1. ENVIRONMENTAL TOXICOLOGY 2024; 39:1505-1520. [PMID: 37994574 DOI: 10.1002/tox.24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Cytochrome P450 (CYP) 4Z1 (CYP4Z1) has recently garnered much interest as its expression predicts a poor prognosis and as a oncogene in breast cancer, and overexpressed in other many cancers. We previously showed that CYP4Z1 acts as a promoter of cancer stem cells (CSCs) to facilitate the occurrence and development of breast cancer. Here, RNA sequencing found that 1-benzylimidazole (1-Benzy) held a preferable correlation with breast cancer and suppressed the expression of CSC makers. Further functional experiments, including mammary spheroid formation, wound-healing, transwell-invasion, detection of tumor initiation, and metastatic ability, showed that 1-Benzy suppressed the stemness and metastasis of breast cancer cells. Additionally, we further demonstrated that CYP4Z1 is necessary for 1-Benzy-mediated suppression on breast cancer stemness and 1-Benzy exerted a weaker effect in breast cancer cells with CYP4Z1 knockdown. Taken together, our data suggest that 1-Benzy might be a potential drug suppressing breast cancer stemness via targeting CYP4Z1.
Collapse
Affiliation(s)
- Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou, China
| | - Yi Zhou
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hai Liu
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yaqin Yuan
- Microbiological Laboratory, Guizhou Center For Medical Device Testing, Guiyang, Guizhou, China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Manqin Yuan
- Department of Clinical Laboratory Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Xi
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yujie Zhang
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou, China
| |
Collapse
|
5
|
Shi Y, Li J, Wolf CA, Liu S, Sharma SS, Wolber G, Bureik M, Clark BR. Expected and Unexpected Products from the Biochemical Oxidation of Bacterial Alkylquinolones with CYP4F11. JOURNAL OF NATURAL PRODUCTS 2023; 86:2502-2513. [PMID: 37939299 DOI: 10.1021/acs.jnatprod.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Jianye Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056005, Hebei Province, People's Republic of China
| | - Clemens Alexander Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sijie Liu
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| |
Collapse
|
6
|
Yang F, Sharma SS, Bureik M, Parr MK. Mutual Modulation of the Activities of Human CYP2D6 and Four UGTs during the Metabolism of Propranolol. Curr Issues Mol Biol 2023; 45:7130-7146. [PMID: 37754235 PMCID: PMC10527876 DOI: 10.3390/cimb45090451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Cytochromes P450 (CYP) and UDP-glucuronosyltransferases (UGT) are two enzyme families that play an important role in drug metabolism, catalyzing either the functionalization or glucuronidation of xenobiotics. However, their mutual interactions are poorly understood. In this study, the functional interactions of human CYP2D6 with four human UGTs (UGT1A7, UGT1A8, UGT1A9, and UGT2A1) were investigated using our previously established co-expression model system in the fission yeast Schizosaccharomyces pombe. The substrate employed was propranolol because it is well metabolized by CYP2D6. Moreover, the CYP2D6 metabolite 4-hydroxypropranolol is a known substrate for the four UGTs included in this study. Co-expression of either UGT1A7, UGT1A8, or UGT1A9 was found to increase the activity of CYP2D6 by a factor of 3.3, 2.1 or 2.8, respectively, for the conversion of propranolol to 4-hydroxypropranolol. In contrast, UGT2A1 co-expression did not change CYP2D6 activity. On the other hand, the activities of all four UGTs were completely suppressed by co-expression of CYP2D6. This data corroborates our previous report that CYP2D6 is involved in functional CYP-UGT interactions and suggest that such interactions can contribute to both adverse drug reactions and changes in drug efficacy.
Collapse
Affiliation(s)
- Fan Yang
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (S.S.S.); (M.B.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (S.S.S.); (M.B.)
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
7
|
Li X, Lin L, Li Z, Hadiatullah H, Sharma S, Du H, Yang X, Chen W, You S, Bureik M, Yuchi Z. Development of an efficient insecticide substrate and inhibitor screening system of insect P450s using fission yeast. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103958. [PMID: 37182814 DOI: 10.1016/j.ibmb.2023.103958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Metabolic resistance is one of the most frequent mechanisms of insecticide resistance, characterized by an increased expression of several important enzymes and transporters, especially cytochrome P450s (CYPs). Due to the large number of P450s in pests, determining the precise relationship between these enzymes and the insecticide substrates is a challenge. Herein, we developed a luminescence-based screening system for efficient identification of insecticide substrates and insect P450 inhibitors. We recombinantly expressed Bemisia tabaci CYP6CM1vQ (Bt CYP6CM1vQ) in the fission yeast Schizosaccharomyces pombe and subsequently permeabilized the yeast cells to convert them into "enzyme bags". We exploited these enzyme bags to screen the activity of twelve luciferin substrates and identified Luciferin-FEE as the optimal competing probe that was further used to characterize the metabolism of eight candidate commercial insecticides. Among them, Bt CYP6CM1vQ exhibited notable activity against pymetrozine and imidacloprid. Their binding modes were predicted by homology modeling and molecular docking, revealing the mechanisms of the metabolism. We also tested the inhibitory effect of eight known P450 inhibitors using our system and identified letrozole and 1-benzylimidazole as showing significant activity against Bt CYP6CM1vQ, with IC50 values of 23.74 μM and 1.30 μM, respectively. Their potential to be developed as an insecticide synergist was further proven by an in vitro toxicity assay using imidacloprid-resistant Bemisia tabaci. Overall, our luciferin-based enzyme bag method is capable of providing a robust and efficient screening of insect P450 substrates and, more importantly, inhibitors to overcome the resistance.
Collapse
Affiliation(s)
- Xiang Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhi Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shishir Sharma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - He Du
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Matthias Bureik
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; College of Life Sciences, Gannan Normal University, Ganzhou, China; Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
8
|
Zhou M, Li J, Xu J, Zheng L, Xu S. Exploring human CYP4 enzymes: physiological roles, function in diseases and focus on inhibitors. Drug Discov Today 2023; 28:103560. [PMID: 36958639 DOI: 10.1016/j.drudis.2023.103560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The cytochrome P450 (CYP)4 family of enzymes are monooxygenases responsible for the ω-oxidation of endogenous fatty acids and eicosanoids and play a crucial part in regulating numerous eicosanoid signaling pathways. Recently, CYP4 gained attention as a potential therapeutic target for several human diseases, including cancer, cardiovascular diseases and inflammation. Small-molecule inhibitors of CYP4 could provide promising treatments for these diseases. The aim of the present review is to highlight the advances in the field of CYP4, discussing the physiology and pathology of the CYP4 family and compiling CYP4 inhibitors into groups based on their chemical classes to provide clues for the future discovery of drug candidates targeting CYP4. Teaser: This review provides an updated view of the physiology and pathology of CYP4 enzymes. CYP4 inhibitors are compiled based on their skeletons to provide clues for the future discovery of drug candidates targeting CYP4.
Collapse
Affiliation(s)
- Manzhen Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Junda Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, 215300, China.
| |
Collapse
|
9
|
Zhao J, Zhang X, Wang Y, Huang H, Sharma S, Sharma SS, Wolf CA, Liu S, Wolber G, Sorensen EJ, Bureik M. Exploring the Chemical Space of Proluciferins as Probe Substrates for Human Cytochrome P450 Enzymes. Appl Biochem Biotechnol 2023; 195:1042-1058. [PMID: 36287330 DOI: 10.1007/s12010-022-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
We report the synthesis of 21 new proluciferin compounds that bear a small aliphatic ether group connected to the 6' hydroxy function of firefly luciferin and either contain an acid or methyl ester function at the dihydrothiazole ring. Each of these compounds was found to be a substrate for some members of the human CYP1 and CYP3 families; a total of 92 new enzyme-substrate pairs were identified. In a screen of the whole human P450 complement (CYPome) with three selected proluciferin acid substrates, another 13 enzyme-substrate pairs were detected, which involve enzymes belonging to the CYP2, CYP4, CYP7, CYP21, and CYP27 families. All in all, we identified new probe substrates for members of seven out of 18 human CYP families.
Collapse
Affiliation(s)
- Jie Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yueyin Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Huimin Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Shishir Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | | | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Sijie Liu
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Erik J Sorensen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
10
|
Shi Y, Wolf CA, Lotfy R, Sharma SS, Tesfa AF, Wolber G, Bureik M, Clark BR. Deciphering the biotransformation mechanism of dialkylresorcinols by CYP4F11. Bioorg Chem 2023; 131:106330. [PMID: 36565673 DOI: 10.1016/j.bioorg.2022.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Clemens A Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Rowaa Lotfy
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Abel Fekadu Tesfa
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China.
| |
Collapse
|
11
|
Sharma SS, Sharma S, Zhao J, Bureik M. Mutual Influence of Human Cytochrome P450 Enzymes and UDP-Glucuronosyltransferases on Their Respective Activities in Recombinant Fission Yeast. Biomedicines 2023; 11:biomedicines11020281. [PMID: 36830817 PMCID: PMC9953201 DOI: 10.3390/biomedicines11020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) are the most important human drug metabolizing enzymes, but their mutual interactions are poorly understood. In this study, we recombinantly co-expressed of each one of the 19 human members of the UGT families 1 and 2 with either CYP2C9, CYP2D6, or CYP4Z1 in fission yeast. Using these strains, we monitored a total of 72 interactions: 57 cases where we tested the influence of UGT co-expression on CYP activity and 15 cases of the opposite approach. In the majority of cases (88%), UGT co-expression had a statistically significant (p < 0.05) effect on P450 activity (58% positive and 30% negative). Strong changes were observed in nine cases, including one case with an activity increase by a factor of 23 (CYP2C9 activity in the presence of UGT2A3) but also four cases with a complete loss of activity. When monitoring the effect of CYP co-expression on the activity of five UGTs, activity changes were generally not so pronounced and, if observed, always detrimental. UGT2B7 activity was not influenced by CYP co-expression, while the other UGTs were affected to varying degrees. These data suggest the notion that mutual influence of CYPs and UGTs on each other's activity is a widespread phenomenon.
Collapse
|
12
|
D MO, C TZ, R SP. Human orphan cytochromes P450: An update. Curr Drug Metab 2022; 23:CDM-EPUB-128186. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Molina-Ortiz D
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Torres-Zárate C
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Santes-Palacios R
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| |
Collapse
|
13
|
Yuan Y, Yao H, Zhou M, Ma X, Zhou Y, Xu J, Niu M, Yin J, Zheng L, Xu S. Identification of a Novel Potent CYP4Z1 Inhibitor Attenuating the Stemness of Breast Cancer Cells through Lead Optimization. J Med Chem 2022; 65:15749-15769. [PMID: 36414390 DOI: 10.1021/acs.jmedchem.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pharmacological targeting cancer stem cells are emerging as a novel therapeutic modality for cancer treatment and prevention. Human cytochrome P450 enzyme CYP4Z1 represents a promising target for its potential role in attenuating the stemness of breast cancer cells. In order to develop potent and selective CYP4Z1 inhibitors, a series of novel N-hydroxyphenylformamidines were rationally designed and synthesized from a pan-CYP inhibitor HET0016. CYP4Z1 inhibitory activities of the newly synthesized derivatives were evaluated, and the structure-activity relationships (SARs) were summarized. Among them, compound 7c exhibited the best inhibitory activity with an IC50 value of 41.8 nM. Furthermore, it was found that 7c decreased the expression of stemness markers, spheroid formation, and metastatic ability as well as tumor-initiation capability in a concentration-dependent manner in vitro and in vivo. Altogether, compound 7c might be a potential lead compound to develop CYP4Z1 inhibitor with more favorable druggability for clinical application to treat breast cancer.
Collapse
Affiliation(s)
- Yin Yuan
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Hong Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Manzhen Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Xiaoqian Ma
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yi Zhou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Miaomiao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jun Yin
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China.,Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215132, P. R. China
| |
Collapse
|
14
|
Al-saraireh YM, Alshammari FOFO, Satari AO, Al-mahdy YS, Almuhaisen GH, Abu-azzam OH, Uwais AN, Abufraijeh SM, Al-Kharabsheh AM, Al-dalain SM, Al-Qtaitat A, Al-Tarawneh F, Al Shuneigat JM, Al-Sarayreh SA. Cytochrome 4Z1 Expression Connotes Unfavorable Prognosis in Ovarian Cancers. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091263. [PMID: 36143940 PMCID: PMC9502355 DOI: 10.3390/medicina58091263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023]
Abstract
Background and Objective: Ovarian cancer is a leading cause of death in females. Since its treatment is challenging and causes severe side effects, novel therapies are urgently needed. One of the potential enzymes implicated in the progression of cancers is Cytochrome 4Z1 (CYP4Z1). Its expression in ovarian cancer remains unknown. Therefore, the current study aims to assess CYP4Z1 expression in different subtypes of ovarian cancers. Materials and Methods: Immunohistochemistry was used to characterize CYP4Z1 expression in 192 cases of ovarian cancers along with eight normal ovarian tissues. The enzyme’s association with various clinicopathological characteristics and survival was determined. Results: CYP4Z1 was strongly expressed in 79% of ovarian cancers, compared to negative expression in normal ovarian samples. Importantly, significantly high CYP4Z1 expres-sion was determined in patients with advanced-stage cancer and a high depth of invasion (p < 0.05). Surprisingly, CYP4Z1 expression was significantly associated with a low patient survival rate. Univariate analysis revealed that patient survival was strongly associated with CYP4Z1 expression, tumor stage, depth of invasion, and lymph node metastasis (p < 0.05). Multivariate analysis showed that only CYP4Z1 expression was significantly associated with patient survival (p < 0.05). Conclusions: CYP4Z1 expression is correlated with shorter patient survival and has been identified as an independent indicator of a poor prognosis for ovarian cancer patients.
Collapse
Affiliation(s)
- Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
- Correspondence:
| | - Fatemah O. F. O. Alshammari
- Department of Medical Lab Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh 15432, Kuwait
| | - Anas O. Satari
- Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Yanal S. Al-mahdy
- Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ghadeer H. Almuhaisen
- Department of Microbiology and Pathology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Omar H. Abu-azzam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ala N. Uwais
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Seham M. Abufraijeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ahlam M. Al-Kharabsheh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Sa’ed M. Al-dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Aiman Al-Qtaitat
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
- Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Fatima Al-Tarawneh
- Department of Allied Medical Sciences, Faculty of Al-Karak, Al-Balqa Applied University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Jehad M. Al Shuneigat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Sameeh A. Al-Sarayreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| |
Collapse
|
15
|
Yang F, Liu S, Wolber G, Bureik M, Parr MK. Complete Reaction Phenotyping of Propranolol and 4-Hydroxypropranolol with the 19 Enzymes of the Human UGT1 and UGT2 Families. Int J Mol Sci 2022; 23:ijms23137476. [PMID: 35806479 PMCID: PMC9267274 DOI: 10.3390/ijms23137476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Propranolol is a competitive non-selective beta-receptor antagonist that is available on the market as a racemic mixture. In the present study, glucuronidation of propranolol and its equipotent phase I metabolite 4-hydroxypropranolol by all 19 members of the human UGT1 and UGT2 families was monitored. UGT1A7, UGT1A9, UGT1A10 and UGT2A1 were found to glucuronidate propranolol, with UGT1A7, UGT1A9 and UGT2A1 mainly acting on (S)-propranolol, while UGT1A10 displays the opposite stereoselectivity. UGT1A7, UGT1A9 and UGT2A1 were also found to glucuronidate 4-hydroxypropranolol. In contrast to propranolol, 4-hydroxypropranolol was found to be glucuronidated by UGT1A8 but not by UGT1A10. Additional biotransformations with 4-methoxypropanolol demonstrated different regioselectivities of these UGTs with respect to the aliphatic and aromatic hydroxy groups of the substrate. Modeling and molecular docking studies were performed to explain the stereoselective glucuronidation of the substrates under study.
Collapse
Affiliation(s)
- Fan Yang
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Sijie Liu
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (S.L.); (G.W.)
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; (S.L.); (G.W.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
- Correspondence:
| |
Collapse
|
16
|
Zhao J, Machalz D, Liu S, Wolf CA, Wolber G, Parr MK, Bureik M. Metabolism of the antipsychotic drug olanzapine by CYP3A43. Xenobiotica 2022; 52:413-425. [PMID: 35582917 DOI: 10.1080/00498254.2022.2078751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Olanzapine is an atypical antipsychotic primarily used to treat schizophrenia and bipolar disorder. An intronic single nucleotide polymorphism (SNP) that highly significantly predicts increased olanzapine clearance (rs472660) was previously identified in the CYP3A43 gene, which encodes a cytochrome P450 enzyme. But until now there was no experimental evidence for the metabolism of olanzapine by the CYP3A43 enzyme.2. In the present study we provide this evidence, together with a thorough analysis of olanzapine metabolism by all human CYP3A enzymes. We also rationalize our findings by molecular docking experiments. Moreover, we describe the activities of several CYP3A43 mutants and present the first enzymatic activity data for the CYP3A43.3 variant; with respect to prostate cancer, this polymorphic variant is associated with both increased risk and increased mortality. The catalytic properties of the wild type enzyme and the tumor mutant were analyzed by molecular dynamics simulations, which fit very well with the observed experimental results.3. Our finding suggests that the SNP rs472660 likely causes an increased CYP3A43 expression level and demonstrate that, depending on the substrate under study, the tumor mutant CYP3A43.3 can have increased activity in comparison to the wild type enzyme CYP3A43.1.
Collapse
Affiliation(s)
- Jie Zhao
- Tianjin University, School of Pharmaceutical Science and Technology, 92 Weijin Road, Nankai District, Tianjin, 300072, China.,Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analysis), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - David Machalz
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Sijie Liu
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Clemens Alexander Wolf
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Gerhard Wolber
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Maria Kristina Parr
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analysis), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- Tianjin University, School of Pharmaceutical Science and Technology, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
17
|
Al-Saraireh YM, Alshammari FOFO, Youssef AMM, Al-Sarayreh S, Almuhaisen GH, Alnawaiseh N, Al-Shuneigat JM, Alrawashdeh HM. Cytochrome 4Z1 Expression is Associated with Poor Prognosis in Colon Cancer Patients. Onco Targets Ther 2021; 14:5249-5260. [PMID: 34803385 PMCID: PMC8595061 DOI: 10.2147/ott.s332037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose Colon cancer is a leading cause of mortality worldwide. It has a relatively poor prognosis; therefore, new therapies are needed. One of the tumour-related enzymes that has gained considerable interest is CYP4Z1. This enzyme has been expressed in many tumours and has been hypothesized as a potential biomarker or target for novel anticancer therapies. Patients and Methods CYP4Z1 overexpression was immunohistochemically examined in a large panel of colon tissue types including normal, benign, primary and metastatic ones, and the enzyme’s relation to histopathological features and patient survival was evaluated. Results A high CYP4Z1 expression was observed in benign, primary and metastatic colon tissues compared to a weak or lack of expression in normal tissues. Importantly, there was a significant differential in CYP4Z1 expression where it was stronger in metastatic, primary and benign, respectively (p < 0.05). A significantly high rate of CYP4Z1 expression was found in high histological grades and late stages of the disease, where its expression was more evident in patients with metastasis in the lymph nodes (p < 0.05). Interestingly, CYP4Z1 expression was identified an independent prognostic predictor of poor overall survival of colon cancer patients (p = 0.003). Conclusion CYP4Z1 was distinctly overexpressed in benign, primary and metastatic colon tissues compared to corresponding normal tissues. This differential in CYP4Z1 expression across different types of colon tissues strongly supports CYP4Z1 as potential biomarker and target for novel anticancer therapy development.
Collapse
Affiliation(s)
- Yousef M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Fatemah O F O Alshammari
- Department of Medical Laboratory Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh, Kuwait
| | - Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Sameeh Al-Sarayreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Ghadeer H Almuhaisen
- Department of Microbiology and Pathology, Faculty of Medicine, Mutah University, Al- Karak, Jordan
| | - Nedal Alnawaiseh
- Department of Public Health, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Jehad M Al-Shuneigat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | | |
Collapse
|
18
|
Al-Saraireh YM, Alshammari FOFO, Youssef AMM, Al-Tarawneh F, Al-Sarayreh S, Almuhaisen GH, Satari AO, Al-Shuneigat J, Alrawashdeh HM. Cytochrome 4Z1 Expression is Associated with Unfavorable Survival in Triple-Negative Breast Cancers. BREAST CANCER-TARGETS AND THERAPY 2021; 13:565-574. [PMID: 34675653 PMCID: PMC8502010 DOI: 10.2147/bctt.s329770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022]
Abstract
Purpose Triple-negative breast cancer (TNBC) is characterized by high mortality rate, and its clinical management is difficult and complex. Therefore, there is a need for extensive efforts aimed at accelerating the discovery of novel therapies for TNBC. CYP4Z1 has been implicated in the development of breast cancer. The current study aimed at characterizing the expression of CYP4Z1 on TNBC. Materials and Methods Using immunohistochemistry, CYP4Z1 expression was evaluated on 122 TNBC samples, four samples of breast cancers expressing ER, PR, and HER-2, and four samples of normal breast tissues. The association between the enzyme and various histopathological features and survival of patients were determined. Results CYP4Z1 was strongly expressed in 83.3% of various histopathological subtypes of TNBC, when compared to negative expression in normal breast tissues. Interestingly, there were marked variations in CYP4Z1 expression with respect to histopathology subtype, histological grade, histological stage and tumor diameter. There was a high incidence of CYP4Z1 expression in patients with advanced grades, late stages and larger tumor sizes. Importantly, CYP4Z1 expression was correlated with the survival of TNBC patients, but it was an independent determinant of the poor prognosis of TNBC (p< 0.05). Conclusion CYP4ZI may be a potential biomarker or target for evolving new CYP4Z1-targeted treatments.
Collapse
Affiliation(s)
- Yousef M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Fatemah O F O Alshammari
- Department of Medical Laboratory Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh, Kuwait
| | - Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Fatima Al-Tarawneh
- Department of Allied Medical Sciences, Faculty of Al-Karak, Al-Balqa Applied University, Al-Karak, Jordan
| | - Sameeh Al-Sarayreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Ghadeer H Almuhaisen
- Department of Microbiology and Pathology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Anas O Satari
- Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Jehad Al-Shuneigat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | | |
Collapse
|
19
|
Cytochrome 4Z1 Expression Is Correlated with Poor Prognosis in Patients with Cervical Cancer. ACTA ACUST UNITED AC 2021; 28:3573-3584. [PMID: 34590601 PMCID: PMC8482276 DOI: 10.3390/curroncol28050306] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022]
Abstract
Background: cervical cancer is one of the most common malignancies in women worldwide and its management remains challenging and complex. As Cytochrome4Z1 (CYP4Z1) is overexpressed in many tumours, its expression in cervical cancer is unknown. Therefore, the present study aimed to evaluate CYP4Z1 expression in cervical cancers. Methods: CYP4Z1 expression was immunohistochemically assessed in 100 cases of cervical cancers along with ten normal cervix tissues, and the enzyme’s relationship to several clinicopathological features and survival was explored. Results: CYP4Z1 was strongly expressed in 55% of cervical cancer patients. Normal cervix samples were negative for CYP4Z1 expression. Importantly, this expression was significantly found in patients with the late stage of the disease, lymph node metastasis, and high tumour invasion (p < 0.05). Interestingly, CYP4Z1 expression was significantly correlated with shorter survival times of cervical cancer patients. Univariate analysis showed that CYP4Z1 expression, tumour stage, lymph node metastasis, and tumour invasion were significantly correlated with patient survival (p < 0.05). The multivariate analysis revealed that only CYP4Z1 expression and tumour stage were significantly correlated with patient survival (p < 0.05). Conclusions: CYP4Z1 expression is associated with cervical cancer patients’ survival and may serve as an independent predictor of poor prognosis in cervical cancer patients.
Collapse
|
20
|
Riecan M, Paluchova V, Lopes M, Brejchova K, Kuda O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol Ther 2021; 231:107972. [PMID: 34453998 DOI: 10.1016/j.pharmthera.2021.107972] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) represent a complex lipid class that contains both signaling mediators and structural components of lipid biofilms in humans. The majority of endogenous FAHFAs share a common chemical architecture, characterized by an estolide bond that links the hydroxy fatty acid (HFA) backbone and the fatty acid (FA). Two structurally and functionally distinct FAHFA superfamilies are recognized based on the position of the estolide bond: omega-FAHFAs and in-chain branched FAHFAs. The existing variety of possible HFAs and FAs combined with the position of the estolide bond generates a vast quantity of unique structures identified in FAHFA families. In this review, we discuss the anti-diabetic and anti-inflammatory effects of branched FAHFAs and the role of omega-FAHFA-derived lipids as surfactants in the tear film lipid layer and dry eye disease. To emphasize potential pharmacological targets, we recapitulate the biosynthesis of the HFA backbone within the superfamilies together with the degradation pathways and the FAHFA regioisomer distribution in human and mouse adipose tissue. We propose a theoretical involvement of cytochrome P450 enzymes in the generation and degradation of saturated HFA backbones and present an overview of small-molecule inhibitors used in FAHFA research. The FAHFA lipid class is huge and largely unexplored. Besides the unknown biological effects of individual FAHFAs, also the enigmatic enzymatic machinery behind their synthesis could provide new therapeutic approaches for inflammatory metabolic or eye diseases. Therefore, understanding the mechanisms of (FA)HFA synthesis at the molecular level should be the next step in FAHFA research.
Collapse
Affiliation(s)
- Martin Riecan
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Veronika Paluchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Magno Lopes
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
| |
Collapse
|
21
|
Single-Agent and Fixed-Dose Combination HIV-1 Protease Inhibitor Drugs in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2021; 10:pathogens10070804. [PMID: 34202872 PMCID: PMC8308830 DOI: 10.3390/pathogens10070804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Successful combination antiretroviral therapies (cART) eliminate active replicating HIV-1, slow down disease progression, and prolong lives. However, cART effectiveness could be compromised by the emergence of viral multidrug resistance, suggesting the need for new drug discoveries. The objective of this study was to further demonstrate the utility of the fission yeast cell-based systems that we developed previously for the discovery and testing of HIV protease (PR) inhibitors (PIs) against wild-type or multi-PI drug resistant M11PR that we isolated from an infected individual. All thirteen FDA-approved single-agent and fixed-dose combination HIV PI drugs were tested. The effect of these drugs on HIV PR activities was tested in pure compounds or formulation drugs. All FDA-approved PI drugs, except for a prodrug FPV, were able to suppress the wild-type PR-induced cellular and enzymatic activities. Relative drug potencies measured by EC50 in fission yeast were discussed in comparison with those measured in human cells. In contrast, none of the FDA-approved drugs suppressed the multi-PI drug resistant M11PR activities. Results of this study show that fission yeast is a reliable cell-based system for the discovery and testing of HIV PIs and further demonstrate the need for new PI drugs against viral multi-PI resistance.
Collapse
|
22
|
Machalz D, Pach S, Bermudez M, Bureik M, Wolber G. Structural insights into understudied human cytochrome P450 enzymes. Drug Discov Today 2021; 26:2456-2464. [PMID: 34161845 DOI: 10.1016/j.drudis.2021.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
Human cytochrome P450 (CYP) enzymes are widely known for their pivotal role in the metabolism of drugs and other xenobiotics as well as of endogenous chemicals. In addition, CYPs are involved in numerous pathophysiological pathways and, hence, are therapeutically relevant. Remarkably, a portion of promising CYP targets is still understudied and, as a consequence, untargeted, despite their huge therapeutic potential. An increasing number of X-ray and cryo-electron microscopy (EM) structures for CYPs have recently provided new insights into the structural basis of CYP function and potential ligand binding. This structural knowledge of CYP functionality is essential for both understanding metabolism and exploiting understudied CYPs as drug targets. In this review, we summarize and highlight structural knowledge about this enzyme class, with a focus on understudied CYPs and resulting opportunities for structure-based drug design. Teaser: This review summarizes recent structural insights into understudied cytochrome P450 enzymes. We highlight the impact of molecular modeling for mechanistically explaining pathophysiological effects establishing understudied CYPs as promising drug targets.
Collapse
Affiliation(s)
- David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Szymon Pach
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marcel Bermudez
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, China.
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
23
|
Liu H, Qin H, Zhou Y, Yuan Y, Liu Y, Chen Y, Yang Y, Ni H, Xi T, Zheng L. HET0016 attenuates the stemness of breast cancer cells through targeting CYP4Z1. Mol Carcinog 2021; 60:413-426. [PMID: 33866606 DOI: 10.1002/mc.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/06/2023]
Abstract
Ours and other previous studies have shown that CYP4Z1 is specifically and highly expressed in breast cancer, and acts as a promoter for the stemness of breast cancer cells. Here, we explored whether targeting CYP4Z1 could attenuate the stemness of breast cancer cells using HET0016, which has been confirmed to be an inhibitor of CYP4Z1 by us and others. Using the transcriptome-sequencing analysis, we found that HET0016 suppressed the expression of cancer stem cell (CSC) markers and stem cell functions. Additionally, HET0016 indeed reduced the stemness of breast cancer cells, as evident by the decrease of stemness marker expression, CD44+ /CD24- subpopulation with stemness, mammary-spheroid formation, and tumor-initiating ability. Moreover, HET0016 suppressed the metastatic capability through in vitro and in vivo experiments. Furthermore, we confirmed that HET0016 suppressed CYP4Z1 activity, and HET0016-induced inhibition on the stemness and metastasis of breast cancer cells was rescued by CYP4Z1 overexpression. Thus, our results demonstrate that HET0016 can attenuate the stemness of breast cancer cells through targeting CYP4Z1.
Collapse
Affiliation(s)
- Hai Liu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hai Qin
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Zhou
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yin Yuan
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yichen Liu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ying Chen
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yue Yang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Haiwei Ni
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Xi
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lufeng Zheng
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Sharma S, Sharma SS, Zhang X, Bureik JP, Sorensen EJ, Bureik M. Conversion of five proluciferin esters by human cytochrome P450 enzymes. Biotechnol J 2021; 16:e2100007. [PMID: 33909340 DOI: 10.1002/biot.202100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Probe substrates are an important tool for activity monitoring of human drug metabolizing enzymes such as cytochromes P450 (CYPs). BRIEF METHODS In the present study we have tested human CYPs for metabolization of five proluciferin ester substrates which had previously only been known to be hydroxylated by CYP26A1. MAJOR RESULTS It was found that these substrates were converted by another 21 human CYPs, which belong to the CYP families 1 to 4, 7, and 26. Thus, 66 new pairs of enzyme and substrate were identified. Correlation analysis indicated the presence of three distinct sets of enzymes with high similarity in their activity profiles that encompass a total of 16 individual enzymes. CONCLUSIONS Some of these newly identified correlations may serve as a starting point for further study of those human CYPs whose activities are not yet satisfactorily understood.
Collapse
Affiliation(s)
- Shishir Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| | - Xue Zhang
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| | - Jan-Philipp Bureik
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris Saclay, Palaiseau cedex, France
| | - Erik J Sorensen
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China.,Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| |
Collapse
|
25
|
Fan H, Zaman MAU, Chen W, Ali T, Campbell A, Zhang Q, Setu NI, Saxon E, Zahn NM, Benko AM, Arnold LA, Peng X. Assessment of Phenylboronic Acid Nitrogen Mustards as Potent and Selective Drug Candidates for Triple-Negative Breast Cancer. ACS Pharmacol Transl Sci 2021; 4:687-702. [PMID: 33860194 PMCID: PMC8033613 DOI: 10.1021/acsptsci.0c00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) has limited treatment options and the worst prognosis among all types of breast cancer. We describe two prodrugs, namely, CWB-20145 (1) and its methyl analogue FAN-NM-CH3 (2) that reduced the size of TNBC-derived tumors. The DNA cross-linking of nitrogen mustard prodrugs 1 and 2 was superior to that of chlorambucil and melphalan once activated in the presence of H2O2. The cellular toxicity of 1 and 2 was demonstrated in seven human cancer cell lines. The TNBC cell line MDA-MB-468 was particularly sensitive toward 1 and 2. Compound 2 was 10 times more cytotoxic than chlorambucil and 16 times more active than melphalan. An evaluation of the gene expression demonstrated an upregulation of the tumor suppressor genes p53 and p21 supporting a transcriptional mechanism of a reduced tumor growth. Pharmacokinetic studies with 1 showed a rapid conversion of the prodrug. The introduction of a methyl group generated 2 with an increased half-life. An in vivo toxicity study in mice demonstrated that both prodrugs were less toxic than chlorambucil. Compounds 1 and 2 reduced tumor growth with an inhibition rate of more than 90% in athymic nude mice xenografted with MDA-MB-468 cells. Together, the in vivo investigations demonstrated that treatment with 1 and 2 suppressed tumor growth without affecting normal tissues in mice. These phenylboronic acid nitrogen mustard prodrugs represent promising drug candidates for the treatment of TNBC. However, the mechanisms underlying their superior in vivo activity and selectivity as well as the correlation between H2O2 level and in vivo efficacy are not yet fully understood.
Collapse
Affiliation(s)
| | | | | | - Taufeeque Ali
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Anahit Campbell
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Qi Zhang
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Nurul Islam Setu
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Eron Saxon
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Nicolas M. Zahn
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Anna M. Benko
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Leggy A. Arnold
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
26
|
Discovery of a novel potent cytochrome P450 CYP4Z1 inhibitor. Eur J Med Chem 2021; 215:113255. [PMID: 33611185 DOI: 10.1016/j.ejmech.2021.113255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Human cytochrome P450 enzyme CYP4Z1 represents a promising target for the treatment of a multitude of malignancies including breast cancer. The most active known non-covalent inhibitor (1-benzylimidazole) only shows low micromolar affinity to CYP4Z1. We report a new, highly active inhibitor for CYP4Z1 showing confirmed binding in an enzymatic assay and an IC50 value of 63 ± 19 nM in stably transfected MCF-7 cells overexpressing CYP4Z1. The new inhibitor was identified by a systematically developed virtual screening protocol. Binding was rationalized using a carefully elaborated 3D pharmacophore hypothesis and thoroughly characterized using extensive molecular dynamics simulations and dynamic 3D pharmacophore (dynophore) analyses. This novel inhibitor represents a valuable pharmacological tool to accelerate characterization of the still understudied CYP4Z1 and might pave the way for a new treatment strategy in CYP4Z1-associated malignancies. The presented in silico model for predicting CYP4Z1 interaction provides novel mechanistic insights and revealed that the drug ozagrel interacts with CYP4Z1.
Collapse
|
27
|
Molecular probes for human cytochrome P450 enzymes: Recent progress and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213600] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Sharma S, Liu J, Zhang X, Sharma SS, Sorensen EJ, Bureik M. New luciferin-based probe substrates for human CYP26A1. Biochem Biophys Rep 2020; 24:100861. [PMID: 33294638 PMCID: PMC7695906 DOI: 10.1016/j.bbrep.2020.100861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Activity of human CYP26A1 towards six proluciferin probe substrates and their ester derivatives was monitored. These included three monofluorobenzyl ether isomers and three five-membered heterocycles. Overall, luciferin substrates with a free acid group gave higher activities than the ester compounds. Also, luciferin derivatives with six-ring structures were better metabolized than those with five-rings. The best substrates identified in this study are Luciferin 6′ 3-fluorobenzyl ether (Luciferin-3FBE) and its methyl ester (Luciferin-3FBEME). Taken together, we describe eleven new probe substrates for CYP26A1 and demonstrate for the first time that CYP26A1 does not only accept acid substrates but can also metabolize esters. Eleven new probe substrates for CYP26A1 were identified. CYP26A1 is shown to metabolize ester substrates. The best probe substrate identified is Luciferin 6′ 3-fluorobenzyl ether.
Collapse
Affiliation(s)
- Shishir Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Jingyao Liu
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Xue Zhang
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Erik J. Sorensen
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
- Corresponding author.
| |
Collapse
|
29
|
Sun Y, Machalz D, Wolber G, Parr MK, Bureik M. Functional Expression of All Human Sulfotransferases in Fission Yeast, Assay Development, and Structural Models for Isoforms SULT4A1 and SULT6B1. Biomolecules 2020; 10:E1517. [PMID: 33171978 PMCID: PMC7694633 DOI: 10.3390/biom10111517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) catalyze phase II (conjugation) reactions of drugs and endogenous compounds. A complete set of recombinant fission yeast strains each expressing one of the 14 human SULTs was generated, including SULT4A1 and SULT6B1. Sulfation of test substrates by whole-cell biotransformation was successfully demonstrated for all enzymes for which substrates were previously known. The results proved that the intracellular production of the cofactor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) necessary for SULT activity in fission yeast is sufficiently high to support metabolite production. A modified variant of sulfotransferase assay was also developed that employs permeabilized fission yeast cells (enzyme bags). Using this approach, SULT4A1-dependent sulfation of 1-naphthol was observed. Additionally, a new and convenient SULT activity assay is presented. It is based on the sulfation of a proluciferin compound, which was catalyzed by SULT1E1, SULT2A1, SULT4A1, and SULT6B1. For the latter two enzymes this study represents the first demonstration of their enzymatic functionality. Furthermore, the first catalytically competent homology models for SULT4A1 and SULT6B1 in complex with PAPS are reported. Through mechanistic molecular modeling driven by substrate docking, we pinned down the increased activity levels of these two isoforms to optimized substrate binding.
Collapse
Affiliation(s)
- Yanan Sun
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China;
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany; (D.M.); (G.W.)
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany; (D.M.); (G.W.)
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
30
|
Liu J, Machalz D, Wolber G, Sorensen EJ, Bureik M. New Proluciferin Substrates for Human CYP4 Family Enzymes. Appl Biochem Biotechnol 2020; 193:218-237. [PMID: 32869209 DOI: 10.1007/s12010-020-03388-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023]
Abstract
We report the synthesis of seven new proluciferins for convenient activity determination of enzymes belonging to the cytochrome P450 (CYP) 4 family. Biotransformation of these probe substrates was monitored using each of the twelve human CYP4 family members, and eight were found to act at least on one of them. For all substrates, activity of CYP4Z1 was always highest, while that of CYP4F8 was always second highest. Site of metabolism (SOM) predictions involving SMARTCyp and docking experiments helped to rationalize the observed activity trends linked to substrate accessibility and reactivity. We further report the first homology model of CYP4F8 including suggested substrate recognition residues in a catalytically competent conformation accessed by replica exchange solute tempering (REST) simulations.
Collapse
Affiliation(s)
- Jingyao Liu
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Erik J Sorensen
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China. .,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
31
|
Sharma S, Durairaj P, Bureik M. Rapid and convenient biotransformation procedure for human drug metabolizing enzymes using permeabilized fission yeast cells. Anal Biochem 2020; 607:113704. [PMID: 32697953 DOI: 10.1016/j.ab.2020.113704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
The development of convenient assays for the in vitro study of drug metabolizing enzymes (DMEs) such as cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) greatly facilitates metabolism studies of candidate drug compounds and other xenobiotics. We have developed and optimized an experimental approach that combines the advantages of recombinant expression in yeast with a microsomal-like biotransformation and thus allows for rapid and convenient enzymatic assays. Recombinant strains of the fission yeast Schizosaccharomyces pombe have previously been demonstrated to functionally express human CYPs and UGTs. Permeabilization of such cells with Triton X-100 results in the formation of enzyme bags, which can be used as biocatalysts. This protocol describes the preparation of such enzyme bags (3 h) and their application in enzyme activity assays (4 h) utilizing either pro-luminescent substrates and luminescence measurements or non-luminescent substrates and liquid chromatography coupled to mass spectrometry (LC-MS). Both applications provide practical tools for investigating CYP and UGT reactions in vitro without the need for additional sophisticated instrumentation or expertise.
Collapse
Affiliation(s)
- Shishir Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
32
|
Sharma SS, Sharma S, Bureik M. Screening of the whole human cytochrome P450 complement (CYPome) with enzyme bag cocktails. J Pharm Anal 2020; 10:271-276. [PMID: 32612874 PMCID: PMC7322738 DOI: 10.1016/j.jpha.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
We have previously introduced the use of permeabilized fission yeast cells (enzyme bags) that recombinantly express full-length CYPs for drug metabolism studies. Such enzyme bags are cells with pores that function as enzymes in situ. They can easily be prepared without a need for ultracentrifugation and may be used in similar protocols as microsomes. In this study we report the preparation of enzyme bag cocktails that permit the testing of multiple CYPs in a single enzyme bag reaction. Moreover, we established a convenient testing scheme that permits a rapid screen of all human CYPs for activity towards any given candidate substrate. An important aspect of this approach is the reduction of individual CYP test assays. If a cocktail containing many CYPs tests negative, it follows that all CYPs included in that cocktail need not be tested individually, thus saving time and resources. The new protocol was validated using two probe substrates.
Collapse
Affiliation(s)
- Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Shishir Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
33
|
Kowalski JP, McDonald MG, Pelletier RD, Hanenberg H, Wiek C, Rettie AE. Design and Characterization of the First Selective and Potent Mechanism-Based Inhibitor of Cytochrome P450 4Z1. J Med Chem 2020; 63:4824-4836. [DOI: 10.1021/acs.jmedchem.0c00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- John P. Kowalski
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Matthew G. McDonald
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Robert D. Pelletier
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children’s Hospital Essen, University of Duisburg−Essen, 45122 Essen, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Allan E. Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
34
|
Durairaj P, Fan L, Sharma SS, Jie Z, Bureik M. Identification of new probe substrates for human CYP20A1. Biol Chem 2020; 401:361-365. [DOI: 10.1515/hsz-2019-0307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
AbstractCYP20A1 is a well-conserved member of the human cytochrome P450 enzyme family for which no endogenous or xenobiotic substrate is known. We have recently shown that this enzyme has moderate activity towards two proluciferin probe substrates. In order to facilitate the search for physiological substrates we have tested nine additional proluciferins in this study and identified three such probe substrates that give much higher product yields. Using one of these probes, we demonstrate inhibition of CYP20A1 activity by 1-benzylimidazole, ketoconazole and letrozole. Finally, we show that the combination of two common single nucleotide polymorphisms (SNPs) ofCYP20A1leads to an enzyme (CYP20A1Leu97Phe346) with reduced activity.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Linbing Fan
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Zhao Jie
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| |
Collapse
|
35
|
Du W, Machalz D, Yan Q, Sorensen EJ, Wolber G, Bureik M. Importance of asparagine-381 and arginine-487 for substrate recognition in CYP4Z1. Biochem Pharmacol 2020; 174:113850. [PMID: 32044355 DOI: 10.1016/j.bcp.2020.113850] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
The human cytochrome P450 enzyme CYP4Z1 remains an understudied enzyme despite its association with poor prognosis and overexpression in breast cancer. Hence, CYP4Z1 has previously been suggested as an anti-breast cancer target. In the present study we employed extended mutation analysis to increase our understanding of the substrate binding mode of this enzyme. In a combined in vitro and in silico approach we show for the first time that residue Arg487 plays an important role in substrate recognition and binding of CYP4Z1. Using a large array of recombinant CYP4Z1 mutants we show that, apart from Asn381, all other postulated binding residues only play an auxiliary role in substrate recognition and binding. Different substrate interaction motifs were identified via dynamic pharmacophores (dynophores) and their impact on catalytically competent substrate binding was classified. These new insights on the substrate recognition and binding mode represent an important step towards the rational design of CYP4Z1 prodrugs and guide further investigations into the so far poorly understood physiological role of CYP4Z1.
Collapse
Affiliation(s)
- Wei Du
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 30072, China
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Qi Yan
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 30072, China
| | - Erik J Sorensen
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 30072, China; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Germany.
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 30072, China.
| |
Collapse
|
36
|
Fan L, Joseph JF, Durairaj P, Parr MK, Bureik M. Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1. Biol Chem 2019; 400:625-628. [PMID: 30465713 DOI: 10.1515/hsz-2018-0379] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
The human cytochrome P450 enzyme CYP8B1 is a crucial regulator of the balance of cholic acid (CA) and chenodeoxycholic acid (CDCA) in the liver. It was previously shown to catalyze the conversion of 7α-hydroxycholest-4-en-3-one, a CDCA precursor, to 7α,12α-dihydroxycholest-4-en-3-one, which is an intermediate of CA biosynthesis. In this study we demonstrate that CYP8B1 can also convert CDCA itself to CA. We also show that five derivatives of luciferin are metabolized by CYP8B1 and established a rapid and convenient inhibitor test system. In this way we were able to identify four new CYP8B1 inhibitors, which are aminobenzotriazole, exemestane, ketoconazole and letrozole.
Collapse
Affiliation(s)
- Linbing Fan
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 30072, China
| | - Jan Felix Joseph
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Berlin, Germany
- Freie Universitaet Berlin, Department of Biology, Chemistry, Pharmacy, Core Facility BioSupraMol, Berlin, Germany
| | - Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 30072, China
| | - Maria Kristina Parr
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 30072, China
| |
Collapse
|
37
|
Durairaj P, Fan L, Machalz D, Wolber G, Bureik M. Functional characterization and mechanistic modeling of the human cytochrome P450 enzyme CYP4A22. FEBS Lett 2019; 593:2214-2225. [DOI: 10.1002/1873-3468.13489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Linbing Fan
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry Computer‐Aided Drug Design Institute of Pharmacy Freie University Berlin Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry Computer‐Aided Drug Design Institute of Pharmacy Freie University Berlin Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| |
Collapse
|
38
|
Durairaj P, Fan L, Du W, Ahmad S, Mebrahtu D, Sharma S, Ashraf RA, Liu J, Liu Q, Bureik M. Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett 2019; 593:1372-1380. [DOI: 10.1002/1873-3468.13441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Linbing Fan
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Wei Du
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Shabir Ahmad
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Dawit Mebrahtu
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Shishir Sharma
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Rana Azeem Ashraf
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Jiaxin Liu
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Qian Liu
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| |
Collapse
|
39
|
Combined chemical and biotechnological production of 20βOH-NorDHCMT, a long-term metabolite of Oral-Turinabol (DHCMT). J Inorg Biochem 2018; 183:165-171. [DOI: 10.1016/j.jinorgbio.2018.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
|
40
|
Yang F, Machalz D, Wang S, Li Z, Wolber G, Bureik M. A common polymorphic variant of
UGT
1A5 displays increased activity due to optimized cofactor binding. FEBS Lett 2018; 592:1837-1846. [DOI: 10.1002/1873-3468.13072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Fan Yang
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry Computer‐Aided Drug Design Institute of Pharmacy Free University Berlin Germany
| | - Sisi Wang
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Zhengyi Li
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry Computer‐Aided Drug Design Institute of Pharmacy Free University Berlin Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| |
Collapse
|