1
|
Kamal S, Babar S, Ali W, Rehman K, Hussain A, Akash MSH. Sirtuin insights: bridging the gap between cellular processes and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9315-9344. [PMID: 38976046 DOI: 10.1007/s00210-024-03263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
The greatest challenges that organisms face today are effective responses or detection of life-threatening environmental changes due to an obvious semblance of stress and metabolic fluctuations. These are associated with different pathological conditions among which cancer is most important. Sirtuins (SIRTs; NAD+-dependent enzymes) are versatile enzymes with diverse substrate preferences, cellular locations, crucial for cellular processes and pathological conditions. This article describes in detail the distinct roles of SIRT isoforms, unveiling their potential as either cancer promoters or suppressors and also explores how both natural and synthetic compounds influence the SIRT function, indicating promise for therapeutic applications. We also discussed the inhibitors/activators tailored to specific SIRTs, holding potential for diseases lacking effective treatments. It may uncover the lesser-studied SIRT isoforms (e.g., SIRT6, SIRT7) and their unique functions. This article also offers a comprehensive overview of SIRTs, linking them to a spectrum of diseases and highlighting their potential for targeted therapies, combination approaches, disease management, and personalized medicine. We aim to contribute to a transformative era in healthcare and innovative treatments by unraveling the intricate functions of SIRTs.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sharon Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waqas Ali
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | | |
Collapse
|
2
|
Golla U, Patel S, Shah N, Talamo S, Bhalodia R, Claxton D, Dovat S, Sharma A. From Deworming to Cancer Therapy: Benzimidazoles in Hematological Malignancies. Cancers (Basel) 2024; 16:3454. [PMID: 39456548 PMCID: PMC11506385 DOI: 10.3390/cancers16203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Drug repurposing is a strategy to discover new therapeutic uses for existing drugs, which have well-established toxicity profiles and are often more affordable. This approach has gained significant attention in recent years due to the high costs and low success rates associated with traditional drug development. Drug repositioning offers a more time- and cost-effective path for identifying new treatments. Several FDA-approved non-chemotherapy drugs have been investigated for their anticancer potential. Among these, anthelmintic benzimidazoles (such as albendazole, mebendazole, and flubendazole) have garnered interest due to their effects on microtubules and oncogenic signaling pathways. Blood cancers, which frequently develop resistance and have high mortality rates, present a critical need for effective therapies. This review highlights the recent advances in repurposing benzimidazoles for blood malignancies. These compounds induce cell cycle arrest, differentiation, tubulin depolymerization, loss of heterozygosity, proteasomal degradation, and inhibit oncogenic signaling to exert their anticancer effects. We also discuss current limitations and strategies to overcome them, emphasizing the potential of combining benzimidazoles with standard therapies for improved treatment of hematological cancers.
Collapse
Affiliation(s)
- Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Satyam Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Nyah Shah
- Department of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Stella Talamo
- Department of Medicine, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24502, USA;
| | - Riya Bhalodia
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - Arati Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
3
|
Al-Odat OS, Nelson E, Budak-Alpdogan T, Jonnalagadda SC, Desai D, Pandey MK. Discovering Potential in Non-Cancer Medications: A Promising Breakthrough for Multiple Myeloma Patients. Cancers (Basel) 2024; 16:2381. [PMID: 39001443 PMCID: PMC11240591 DOI: 10.3390/cancers16132381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
MM is a common type of cancer that unfortunately leads to a significant number of deaths each year. The majority of the reported MM cases are detected in the advanced stages, posing significant challenges for treatment. Additionally, all MM patients eventually develop resistance or experience relapse; therefore, advances in treatment are needed. However, developing new anti-cancer drugs, especially for MM, requires significant financial investment and a lengthy development process. The study of drug repurposing involves exploring the potential of existing drugs for new therapeutic uses. This can significantly reduce both time and costs, which are typically a major concern for MM patients. The utilization of pre-existing non-cancer drugs for various myeloma treatments presents a highly efficient and cost-effective strategy, considering their prior preclinical and clinical development. The drugs have shown promising potential in targeting key pathways associated with MM progression and resistance. Thalidomide exemplifies the success that can be achieved through this strategy. This review delves into the current trends, the challenges faced by conventional therapies for MM, and the importance of repurposing drugs for MM. This review highlights a noncomprehensive list of conventional therapies that have potentially significant anti-myeloma properties and anti-neoplastic effects. Additionally, we offer valuable insights into the resources that can help streamline and accelerate drug repurposing efforts in the field of MM.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Emily Nelson
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | | | | | - Dhimant Desai
- Department of Pharmacology, Penn State Neuroscience Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
| |
Collapse
|
4
|
Lu Z, Cao R, Geng F, Pan Y. Persistent infection with Porphyromonas gingivalis increases the tumorigenic potential of human immortalised oral epithelial cells through ZFP36 inhibition. Cell Prolif 2024; 57:e13609. [PMID: 38351596 PMCID: PMC11150143 DOI: 10.1111/cpr.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 06/06/2024] Open
Abstract
The association between Porphyromonas gingivalis infection and oral squamous cell carcinoma (OSCC) has been established by numerous epidemiological studies. However, the underlying mechanism specific to this connection remains unclear. By bioinformatical analysis, we identified ZFP36 as a potentially significant co-expressed gene in both the OSCC gene database and the persistent infection model of P. gingivalis. To further investigate the role of ZFP36, we established a cell model that human immortalized oral epithelial cells (HIOECs) that were sustainedly infected by P. gingivalis (MOI = 1) for a duration of 30 weeks. Our findings indicated that sustained infection with P. gingivalis inhibited the expression of ZFP36 protein and induced changes in the biological behaviour of HIOECs. The mechanism investigation demonstrated the potential role of ZFP36 in regulating the cancer-related biological behaviour of HIOECs. Subsequent studies revealed that highly expressed CCAT1 could serve as a molecular scaffold in the formation of the ZFP36/CCAT1/MK2 complex. This complex formation enhanced the binding abundance of MK2 and ZFP36, thereby promoting the inhibition of ZFP36 protein phosphorylation. To summarize, low expression of ZFP36 protein under persistent P. gingivalis infection enhances the cancer-related biological behaviour of HIOECs.
Collapse
Affiliation(s)
- Ze Lu
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Ruoyan Cao
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Fengxue Geng
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yaping Pan
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| |
Collapse
|
5
|
Fatima I, Ahmad R, Barman S, Gowrikumar S, Pravoverov K, Primeaux M, Fisher KW, Singh AB, Dhawan P. Albendazole inhibits colon cancer progression and therapy resistance by targeting ubiquitin ligase RNF20. Br J Cancer 2024; 130:1046-1058. [PMID: 38278978 PMCID: PMC10951408 DOI: 10.1038/s41416-023-02570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The repurposing of FDA-approved drugs for anti-cancer therapies is appealing due to their established safety profiles and pharmacokinetic properties and can be quickly moved into clinical trials. Cancer progression and resistance to conventional chemotherapy remain the key hurdles in improving the clinical management of colon cancer patients and associated mortality. METHODS High-throughput screening (HTS) was performed using an annotated library of 1,600 FDA-approved drugs to identify drugs with strong anti-CRC properties. The candidate drug exhibiting most promising inhibitory effects in in-vitro studies was tested for its efficacy using in-vivo models of CRC progression and chemoresistance and patient derived organoids (PTDOs). RESULTS Albendazole, an anti-helminth drug, demonstrated the strongest inhibitory effects on the tumorigenic potentials of CRC cells, xenograft tumor growth and organoids from mice. Also, albendazole sensitized the chemoresistant CRC cells to 5-fluorouracil (5-FU) and oxaliplatin suggesting potential to treat chemoresistant CRC. Mechanistically, Albendazole treatment modulated the expression of RNF20, to promote apoptosis in CRC cells by delaying the G2/M phase and suppressing anti-apoptotic-Bcl2 family transcription. CONCLUSIONS Albendazole, an FDA approved drug, carries strong therapeutic potential to treat colon cancers which are aggressive and potentially resistant to conventional chemotherapeutic agents. Our findings also lay the groundwork for further clinical testing.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kristina Pravoverov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
6
|
Wang LJ, Lee YC, Chiou JT, Chen YJ, Chang LS. Effects of SIDT2 on the miR-25/NOX4/HuR axis and SIRT3 mRNA stability lead to ROS-mediated TNF-α expression in hydroquinone-treated leukemia cells. Cell Biol Toxicol 2023; 39:2207-2225. [PMID: 35302183 DOI: 10.1007/s10565-022-09705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/28/2022] [Indexed: 11/02/2022]
Abstract
Our previous studies indicated that the benzene metabolite hydroquinone (HQ) evokes the ROS/p38 MAPK/protein phosphatase 2A/tristetraprolin axis, leading to increased TNF-α expression in human acute myeloid leukemia cell lines U937 and HL-60. In this study, we aimed to identify the upstream pathway involved in ROS-mediated TNF-α expression. HQ treatment increased SIDT2 expression, which subsequently decreased miR-25 and SIRT3 expression in U937 cells. Notably, miR-25 downregulation promoted SIDT2 expression in HQ-treated U937 cells. SIDT2 induced lysosomal degradation of SIRT3 mRNA, but inhibited miR-25 expression through a lysosome-independent pathway. MiR-25 inhibition reduced NOX4 mRNA turnover, resulting in increased NOX4 protein levels. NOX4 induces mitochondrial ROS production and HuR downregulation. Restoration of HuR expression increased SIRT3 expression, suggesting that NOX4-mediated HuR downregulation promotes SIDT2-mediated degradation of SIRT3 mRNA. Inhibition of NOX4 or SIRT3 overexpression abolished HQ-induced ROS production, thereby abolishing TNF-α upregulation. Overall, these results indicate that SIDT2 regulates the miR-25/NOX4/HuR axis and SIRT3 mRNA destabilization, leading to ROS-mediated TNF-α upregulation in HQ-treated U937 cells. HQ-induced increase in TNF-α expression in HL-60 cells was also mediated through a similar pathway.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
7
|
Garg A, Karhana S, Bano A, Khan IA, Reeta, Nidhi, Khan MA. Network pharmacology and molecular docking study-based approach to explore mechanism of benzimidazole-based anthelmintics for the treatment of lung cancer. J Biomol Struct Dyn 2023; 42:10739-10760. [PMID: 37740654 DOI: 10.1080/07391102.2023.2258419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
Emerging studies have reported the potential anticancer activity of benzimidazole-based anthelmintics (BBA) against lung cancer (LC). However, mechanism underlying the anticancer activity of BBA is unclear. Therefore, in the current study, network pharmacology and molecular docking-based approach were used to explore the potential molecular mechanism for the treatment of LC. The potential targets for BBA were obtained from multiple databases including SwissTargetPrediction, Drug Bank, Therapeutic Target Database, and Comparative Toxicogenomics Database while LC targets were collected from DisGeNet gene discovery platform, Integrated Genomic Database of NSCLC, Catalogue of Somatic Mutations in Cancer and Online Mendelian Inheritance in Man database. Protein-protein interaction (PPI) diagram of common targets was constructed using STRING online platform. Topological analysis was performed using Cytoscape and gene enrichment analysis was conducted using FunRich software. Highest degree targets were then confirmed using molecular docking and molecular dynamics simulations. The BBA were prioritized according to their S scores, with ricobendazole ranking highest followed by flubendazole, fenbendazole, mebendazole, triclabendazole, albendazole, oxibendazole, parbendazole, thiabendazole and oxfendazole. The potential targets of BBA identified using topological analysis and molecular docking were found to be CCND1 (cyclin D1), EGFR (Epidermal Growth Factor Receptor), ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2/CD340), PTGS2 (Prostaglandin-endoperoxide synthase 2), and SRC (Proto-oncogene tyrosine-protein kinase). Furthermore, molecular dynamics confirmed that CCND1 and EGFR are the potential targets of ricobendazole for the treatment of LC. BBA can be further explored as a therapeutic strategy for the treatment of lung cancer under in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aakriti Garg
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Aysha Bano
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Imran A Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Reeta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, New Delhi, India
| | - Nidhi
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashif Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Scumaci D, Zheng Q. Epigenetic meets metabolism: novel vulnerabilities to fight cancer. Cell Commun Signal 2023; 21:249. [PMID: 37735413 PMCID: PMC10512595 DOI: 10.1186/s12964-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Histones undergo a plethora of post-translational modifications (PTMs) that regulate nucleosome and chromatin dynamics and thus dictate cell fate. Several evidences suggest that the accumulation of epigenetic alterations is one of the key driving forces triggering aberrant cellular proliferation, invasion, metastasis and chemoresistance pathways. Recently a novel class of histone "non-enzymatic covalent modifications" (NECMs), correlating epigenome landscape and metabolic rewiring, have been described. These modifications are tightly related to cell metabolic fitness and are able to impair chromatin architecture. During metabolic reprogramming, the high metabolic flux induces the accumulation of metabolic intermediate and/or by-products able to react with histone tails altering epigenome homeostasis. The accumulation of histone NECMs is a damaging condition that cancer cells counteracts by overexpressing peculiar "eraser" enzymes capable of removing these modifications preserving histones architecture. In this review we explored the well-established NECMs, emphasizing the role of their corresponding eraser enzymes. Additionally, we provide a parterre of drugs aiming to target those eraser enzymes with the intent to propose novel routes of personalized medicine based on the identification of epi-biomarkers which might be selectively targeted for therapy. Video Abstract.
Collapse
Affiliation(s)
- Domenica Scumaci
- Research Center On Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Li S, Wang Y, Yu D, Zhang Y, Wang X, Shi M, Xiao Y, Li X, Xiao H, Chen L, Xiong X. Triclocarban evoked neutrophil extracellular trap formation in common carp (Cyprinus carpio L.) by modulating SIRT3-mediated ROS crosstalk with ERK1/2/p38 signaling. FISH & SHELLFISH IMMUNOLOGY 2022; 129:85-95. [PMID: 36057428 DOI: 10.1016/j.fsi.2022.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC), an antimicrobial ingredient in personal care products, is associated with immunosuppression and physiological dysfunctions of aquatic organisms. The aim of this study was to investigate whether TCC can induce common carp NETosis (neutrophil death by neutrophil extracellular trap (NET) release) and then to attempt to identify the potential molecular mechanisms. Herein, scanning electron microscopy and flow cytometric assays showed that revealed that TCC triggers DNA-containing web-like structures and increases extracellular DNA content. In the proteomic analysis, we observed that NET-related proteins, extracellular regulated protein kinase (Mapk1, Mapk14, Jak2) and apoptotic protein (caspase3) were significantly increased, and defender against cell death 1 (Dad1) was significantly decreased after TCC treatments. Meanwhile, we confirmed that TCC stress can trigger NETosis in common carp by activating the reactive oxygen species (ROS)/ERK1/2/p38 signaling. We think that the upregulated NDUFS1 expression is closely related to oxidative stress induced by TCC. Importantly, we discovered that SIRT3 expression was significantly decreased in the process of TCC-induced NETs. Importantly, pretreatment with the SIRT3 agonist honokiol (HKL) effectively suppressed TCC-induced NET release. In contrast, the SIRT3 antagonist 3-TYP escalated TCC-induced NET formation. Mechanistically, SIRT3 degradation serves as a potential mediator for regulating oxidative stress crosstalk between ERK1/2/p38 signals in the process of TCC-induced NET formation. These findings unveil new insights into the TCC-evoked health risk of fish and other aquatic organisms and suggest that SIRT3 is a potential pharmacological intervention target to alleviate TCC-induced common carp NETosis.
Collapse
Affiliation(s)
- Siwen Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, PR China
| | - Yanling Wang
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China
| | - Yuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China
| | - Xiali Wang
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China; Department of Child Healthcare, Luzhou Longmatan District Maternal and Child Health Care Hospital, Luzhou, 646000, Sichuan Province, PR China
| | - Mei Shi
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Yanxin Xiao
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Xinlian Li
- College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, The Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610089, Sichuan Province, PR China.
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China.
| | - Xuan Xiong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
10
|
Song B, Park EY, Kim KJ, Ki SH. Repurposing of Benzimidazole Anthelmintic Drugs as Cancer Therapeutics. Cancers (Basel) 2022; 14:cancers14194601. [PMID: 36230527 PMCID: PMC9559625 DOI: 10.3390/cancers14194601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Although non-prescription anthelmintics are often used for cancer treatment, there is a lack of information regarding their anti-cancer effects in clinical settings. The aims of our review are to describe the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. The results of the current review illustrate the potential development of anthelmintics as a useful strategy for cancer treatment based on much preclinical evidence. Furthermore, they suggest that more rigorous studies on whole anti-cancer pathways and development strategies, including formulations, could result in significantly enhanced anti-cancer effects of benzimidazoles as a repurposed cancer therapy in clinical settings. Abstract Benzimidazoles have shown significant promise for repurposing as a cancer therapy. The aims of this review are to investigate the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. This review included studies on the anti-cancer effects of 11 benzimidazoles. Largely divided into three parts, i.e., preclinical anti-cancer effects, clinical anti-cancer effects, and pharmacokinetic properties, we examine the characteristics of each benzimidazole and attempt to elucidate its key properties. Although many studies have demonstrated the anti-cancer effects of benzimidazoles, there is limited evidence regarding their effects in clinical settings. This might be because the clinical trials conducted using benzimidazoles failed to restrict their participants with specific criteria including cancer entities, cancer stages, and genetic characteristics of the participants. In addition, these drugs have limitations including low bioavailability, which results in insufficient plasma concentration levels. Additional studies on whole anti-cancer pathways and development strategies, including formulations, could result significant enhancements of the anti-cancer effects of benzimidazoles in clinical situations.
Collapse
Affiliation(s)
- Bomi Song
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
| | - Kwang Joon Kim
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| | - Sung Hwan Ki
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| |
Collapse
|
11
|
Albendazole-induced autophagy blockade contributes to elevated apoptosis in cholangiocarcinoma cells through AMPK/mTOR activation. Toxicol Appl Pharmacol 2022; 454:116214. [PMID: 36055539 DOI: 10.1016/j.taap.2022.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/09/2022]
Abstract
Albendazole (ABZ) is a broad-spectrum anti-parasitic drug that exhibits antitumor effects against several carcinomas. The effects of ABZ on cholangiocarcinoma (CCA) and its underlying mechanisms are still unclear. Our study aims to investigate the role of ABZ in inducing autophagy-mediated apoptosis of cholangiocarcinoma cells. The antitumor effects of ABZ were evaluated against CCA cells and HIBEC intrahepatic biliary epithelial cells. Furthermore, the apoptosis rates, and autophagy flux in RBE and FRH-0201 cells treated with ABZ were investigated. ABZ inhibited proliferation, induced cell death and apoptosis in CCA cells in vitro. In vivo, tumors from ABZ- treated BALB/c nude mice were significantly smaller than untreated mice. ABZ also induced the initiation of autophagy via AMPK/mTOR pathways, resulting in the formation of autophagosome. In addition, ABZ blocked autophagic flux by inhibiting the fusion of autophagosome-lysosome, which increased the apoptotic death of CCA cells. However, the apoptotic death of CCA cells induced by ABZ was reversed by 3-methyladenine (3-MA), an autophagosome formation inhibitor, but increased by chloroquine (CQ), an autophagosome-lysosome fusion inhibitor.Our work provides novel mechanisms for anti-tumor effects of ABZ on CCA, suggesting that ABZ may be used as a potent autophagy inhibitor in the treatment of CCA.
Collapse
|
12
|
Carboxyl Group-Modified Myoglobin Induces TNF-α-Mediated Apoptosis in Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15091066. [PMID: 36145287 PMCID: PMC9501283 DOI: 10.3390/ph15091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that chemical modification may increase the activity of proteins or confer novel activity to proteins. Some studies have indicated that myoglobin (Mb) is cytotoxic; however, the underlying mechanisms remain unclear. In this study, we investigated whether chemical modification of the carboxyl group by semicarbazide could promote the Mb cytotoxicity in human leukemia U937 cells and the underlying mechanism of semicarbazide-modified myoglobin (SEM-Mb)-induced U937 cell death. The semicarbazide-modified Mb (SEM-Mb) induced U937 cell apoptosis via the production of cleaved caspase-8 and t-Bid, while silencing of FADD abolished this effect. These findings suggest that SEM-Mb can induce U937 cell death by activating the death receptor-mediated pathway. The SEM-Mb inhibited miR-99a expression, leading to increased NOX4 mRNA and protein expression, which promoted SIRT3 degradation, and, in turn, induced ROS-mediated p38 MAPK phosphorylation. Activated p38 MAPK stimulated miR-29a-dependent tristetraprolin (TTP) mRNA decay. Downregulation of TTP slowed TNF-α mRNA turnover, thereby increasing TNF-α protein expression. The SEM-Mb-induced decrease in cell viability and TNF-α upregulation were alleviated by abrogating the NOX4/SIRT3/ROS/p38 MAPK axis or ectopic expression of TTP. Taken together, our results demonstrated that the NOX4/SIRT3/p38 MAPK/TTP axis induces TNF-α-mediated apoptosis in U937 cells following SEM-Mb treatment. A pathway regulating p38 MAPK-mediated TNF-α expression also explains the cytotoxicity of SEM-Mb in the human leukemia cell lines HL-60, THP-1, K562, Jurkat, and ABT-199-resistant U937. Furthermore, these findings suggest that the carboxyl group-modified Mb is a potential structural template for the generation of tumoricidal proteins.
Collapse
|
13
|
Zhao Q, Zhou J, Li F, Guo S, Zhang L, Li J, Qi Q, Shi Y. The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance. Front Oncol 2022; 12:910963. [PMID: 35832551 PMCID: PMC9272524 DOI: 10.3389/fonc.2022.910963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Sirtuin 3 (SIRT3), the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, acts as a metabolic modulator mainly located in mitochondria via regulating the process of the relevant biochemical processes by targeting crucial mediators. Recently, owing to its dual role in cancer, SIRT3 has attracted extensive attention. Cancer cells have different metabolic patterns from normal cells, and SIRT3-mediated metabolism reprogramming could be critical in the cancer context, which is closely related to the mechanism of metabolism reprogramming, metastasis, and chemoresistance in tumor cells. Therefore, it is crucial to elucidate the relevant pathological mechanisms and take appropriate countermeasures for the progression of clinical strategies to inhibit the development of cancer. In this review, existing available data on the regulation of cancer metabolism reprogramming, metastasis, and chemoresistance progression of SIRT3 are detailed, as well as the status quo of SIRT3 small molecule modulators is updated in the application of cancer therapy, aiming to highlight strategies directly targeting SIRT3-mediated tumor-suppressing and tumor-promoting, and provide new approaches for therapy application. Furthermore, we offer an effective evidence-based basis for the evolvement of potential personalized therapy management strategies for SIRT3 in cancer settings.
Collapse
Affiliation(s)
- QingYi Zhao
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Guo
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| |
Collapse
|
14
|
Regulation of apoptosis and autophagy by albendazole in human colon adenocarcinoma cells. Biochimie 2022; 198:155-166. [DOI: 10.1016/j.biochi.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022]
|
15
|
Liang JJ, Yu WL, Yang L, Qin KM, Yin YP, Li D, Ni YH, Yan JJ, Zhong YX, Deng ZX, Hong K. Synthesis and structure-activity relationship study of a potent MHO7 analogue as potential anti-triple negative breast cancer agent. Eur J Med Chem 2022; 236:114313. [DOI: 10.1016/j.ejmech.2022.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/26/2022]
|
16
|
Wang LJ, Chiou JT, Lee YC, Chang LS. Docetaxel-triggered SIDT2/NOX4/JNK/HuR signaling axis is associated with TNF-α-mediated apoptosis of cancer cells. Biochem Pharmacol 2021; 195:114865. [PMID: 34863979 DOI: 10.1016/j.bcp.2021.114865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Previous studies have confirmed that docetaxel (DTX) treatment increases TNF-α production in cancer cells, but its mechanism of action remains unclear. Therefore, this study aimed to determine the signaling axis by which DTX induced the expression of TNF-α in U937 leukemia and MCF-7 breast carcinoma cells. DTX treatment promoted Ca2+-controlled autophagy and SIDT2 expression, resulting in lysosomal degradation of miR-25 in U937 cells. Downregulation of miR-25 increased NOX4 mRNA stability and protein expression. NOX4-stimulated ROS generation led to JNK-mediated phosphorylation of cytosolic HuR at Ser221, thereby increasing TNF-α protein expression by stabilizing TNF-α mRNA. Consequently, DTX induced TNF-α-dependent death in U937 cells. Depletion of HuR using siRNA or abolishment of JNK activation reduced TNF-α expression and eliminated DTX-mediated cytotoxicity. Knockdown of SIDT2 or pretreatment with chloroquine (a lysosome inhibitor) reduced DTX-induced NOX4 and TNF-α expression and mitigated JNK-mediated HuR phosphorylation. Altogether, our data indicate that DTX triggers HuR-mediated TNF-α mRNA stabilization through the Ca2+/SIDT2/NOX4/ROS/JNK axis, thereby inducing TNF-α-dependent apoptosis in U937 cells. In addition, DTX induces apoptosis in MCF-7 cells through SIDT2/NOX4/JNK/HuR axis-mediated TNF-α expression.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
17
|
Targeting Reactive Oxygen Species Capacity of Tumor Cells with Repurposed Drug as an Anticancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8532940. [PMID: 34539975 PMCID: PMC8443364 DOI: 10.1155/2021/8532940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Accumulating evidence shows that elevated levels of reactive oxygen species (ROS) are associated with cancer initiation, growth, and response to therapies. As concentrations increase, ROS influence cancer development in a paradoxical way, either triggering tumorigenesis and supporting the proliferation of cancer cells at moderate levels of ROS or causing cancer cell death at high levels of ROS. Thus, ROS can be considered an attractive target for therapy of cancer and two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to treat cancer. Despite tremendous resources being invested in prevention and treatment for cancer, cancer remains a leading cause of human deaths and brings a heavy burden to humans worldwide. Chemotherapy remains the key treatment for cancer therapy, but it produces harmful side effects. Meanwhile, the process of de novo development of new anticancer drugs generally needs increasing cost, long development cycle, and high risk of failure. The use of ROS-based repurposed drugs may be one of the promising ways to overcome current cancer treatment challenges. In this review, we briefly introduce the source and regulation of ROS and then focus on the status of repurposed drugs based on ROS regulation for cancer therapy and propose the challenges and direction of ROS-mediated cancer treatment.
Collapse
|
18
|
Albendazole inhibits NF-κB signaling pathway to overcome tumor stemness and bortezomib resistance in multiple myeloma. Cancer Lett 2021; 520:307-320. [PMID: 34390764 DOI: 10.1016/j.canlet.2021.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Multiple myeloma (MM) is incurable and the second most common hematologic malignancy in plasma cells. Multiple myeloma stem cell-like cells (MMSCs), a rare population of MM cells, are believed to be the major cause of drug resistance and high recurrence rates in patients with MM. Therefore, developing novel strategies to eradicate MMSCs may favor myeloma treatment. In this study, based on the drug repositioning strategy, we found that albendazole (ABZ), a broad-spectrum antiparasitic drug, selectively suppresses the proliferation of multiple myeloma cells in vitro and in vivo and decreases number of aldehyde dehydrogenase (ALDH)-positive MMSCs in MM. Furthermore, RNA-seq of MM cells after ABZ treatment revealed that inhibition of the nuclear factor kappa-B (NF-κB) pathway is a key mediator of ABZ against MM. Moreover, we demonstrated that ABZ can resensitize cells resistant to bortezomib and overcome MMSCs-induced bortezomib resistance by decreasing ALDH1+ MMSCs numbers. Our findings provide preclinical evidence for utilizing the previously known pharmacologically active drug albendazole for the treatment of multiple myeloma.
Collapse
|
19
|
Chiou JT, Shi YJ, Lee YC, Wang LJ, Chen YJ, Chang LS. Carboxyl group-modified α-lactalbumin induces TNF-α-mediated apoptosis in leukemia and breast cancer cells through the NOX4/p38 MAPK/PP2A axis. Int J Biol Macromol 2021; 187:513-527. [PMID: 34310992 DOI: 10.1016/j.ijbiomac.2021.07.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
To clarify the mechanism of semicarbazide-modified α-lactalbumin (SEM-LA)-mediated cytotoxicity, we investigated its effect on human U937 leukemia cells and MCF-7 breast cancer cells in the current study. SEM-LA induced apoptosis in U937 cells, which showed increased NOX4 expression, procaspase-8 degradation, and t-Bid production. FADD depletion inhibited SEM-LA-elicited caspase-8 activation, t-Bid production, and cell death, indicating that SEM-LA activated death receptor-mediated apoptosis in U937 cells. SEM-LA stimulated Ca2+-mediated Akt activation, which in turn increased Sp1- and p300-mediated NOX4 transcription. The upregulation of NOX4 expression promoted ROS-mediated p38 MAPK phosphorylation, leading to protein phosphatase 2A (PP2A)-regulated tristetraprolin (TTP) degradation. Remarkably, TTP downregulation increased the stability of TNF-α mRNA, resulting in the upregulation of TNF-α protein expression. Abolishment of Ca2+-NOX4-ROS axis-mediated p38 MAPK activation attenuated SEM-LA-induced TNF-α upregulation and protected U937 cells from SEM-LA-mediated cytotoxicity. The restoration of TTP expression alleviated the effect of TNF-α upregulation and cell death induced by SEM-LA. Altogether, the data in this study demonstrate that SEM-LA activates TNF-α-mediated apoptosis in U937 cells through the NOX4/p38 MAPK/PP2A axis. We think that a similar pathway can also explain the death of MCF-7 human breast cancer cells after SEM-LA treatment.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
20
|
Treatment of breast and colon cancer cell lines with anti-helmintic benzimidazoles mebendazole or albendazole results in selective apoptotic cell death. J Cancer Res Clin Oncol 2021; 147:2945-2953. [PMID: 34148157 DOI: 10.1007/s00432-021-03698-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Anti-helmintic drugs mebendazole and albendazole are commonly used to treat a variety of parasitic infections. They have recently shown some promising results in pre-clinical in vitro and in vivo anti-cancer studies. METHODS We compare their efficacy in breast and colon cancer cell lines as well as in non-cancerous cells and elucidate their mechanism of action. The drugs were screened for cytotoxicity in MDA-MB-231, MCF-7 (breast cancer), HT-29 (colorectal cancer), and mesenchymal stromal cells, using the MTT assay. Their effects on the cell cycle, tubulin levels, and cell death mechanisms were analysed using flow cytometry and fluorescent microscopy. RESULTS Mebendazole and albendazole were found to selectively kill cancer cells, being most potent in the colorectal cancer cell line HT-29, with both drugs having IC50 values of less than 1 µM at 48 h. Both mebendazole and albendazole induced classical apoptosis characterised by caspase-3 activation, phosphatidylserine exposure, DNA fragmentation, mitochondrial membrane permeability, and reactive oxygen species production. Cell cycle arrest in the G2/M phase was found, and tubulin polymerisation was disrupted. CONCLUSION Mebendazole and albendazole were shown to cause selective cancer cell death via a mechanism of classical apoptosis and cell cycle arrest, involving the destabilisation of microtubules.
Collapse
|
21
|
Zhang D, Zhou Z, Yang R, Zhang S, Zhang B, Tan Y, Chen L, Li T, Tu J. Tristetraprolin, a Potential Safeguard Against Carcinoma: Role in the Tumor Microenvironment. Front Oncol 2021; 11:632189. [PMID: 34026612 PMCID: PMC8138596 DOI: 10.3389/fonc.2021.632189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP), a well-known RNA-binding protein, primarily affects the expression of inflammation-related proteins by binding to the targeted AU-rich element in the 3' untranslated region after transcription and subsequently mediates messenger RNA decay. Recent studies have focused on the role of TTP in tumors and their related microenvironments, most of which have referred to TTP as a potential tumor suppressor involved in regulating cell proliferation, apoptosis, and metastasis of various cancers, as well as tumor immunity, inflammation, and metabolism of the microenvironment. Elevated TTP expression levels could aid the diagnosis and treatment of different cancers, improving the prognosis of patients. The aim of this review is to describe the role of TTP as a potential safeguard against carcinoma.
Collapse
Affiliation(s)
- Diwen Zhang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhigang Zhou
- The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ruixia Yang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Sujun Zhang
- Department of Experimental Animals, University of South China, Hengyang, China
| | - Bin Zhang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yanxuan Tan
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lingyao Chen
- Pharmacy School of Guilin Medical University, Guilin, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Science, Shanghai, China
| | - Jian Tu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Pharmacy School of Guilin Medical University, Guilin, China
| |
Collapse
|
22
|
Kim U, Shin C, Kim CY, Ryu B, Kim J, Bang J, Park JH. Albendazole exerts antiproliferative effects on prostate cancer cells by inducing reactive oxygen species generation. Oncol Lett 2021; 21:395. [PMID: 33777218 PMCID: PMC7988661 DOI: 10.3892/ol.2021.12656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Benzimidazole derivatives are used for their antihelmintic properties, but have also been reported to exert anticancer effects. In the present study, the anticancer effects of albendazole on prostate cancer cells were assessed using proliferation, clonogenic and migration assays. To investigate the anticancer mechanisms of albendazole, reactive oxygen species (ROS) levels were measured, and the expression of genes associated with oxidative stress and Wnt/β-catenin signaling was confirmed by reverse transcription-quantitative PCR and western blotting. Albendazole selectively inhibited the proliferation of the PC3, DU145, LNCaP and AT2 prostate cancer cell lines at concentrations that did not affect the proliferation of a normal prostate cell line (RWPE-1). Albendazole also inhibited the colony formation and migration of PC3 and DU145 cells, as well as inducing ROS production. Diphenyleneiodonium chloride, an inhibitor of NADPH oxidase (NOX), one of the sources of ROS, decreased basal ROS levels in the PC3 and DU145 cells, but did not reduce albendazole-associated ROS production, suggesting that ROS production following albendazole treatment was NOX-independent. The anticancer effect was decreased when albendazole-induced ROS was reduced by treatment with antioxidants (glutathione and N-acetylcysteine). Furthermore, albendazole decreased the mRNA expression of CDGSH iron sulfur domain 2, which regulates antioxidant activity against ROS, as well as the antioxidant enzymes catalase, and glutathione peroxidase 1 and 3. Albendazole also decreased the mRNA expression of catenin β1 and transcription factor 4, which regulate Wnt/β-catenin signaling and its associated targets, Twist family BHLH transcription factor 1 and BCL2. The albendazole-related decrease in the expression levels of oxidative stress-related genes and Wnt/β-catenin signaling proteins was thought to be associated with ROS production. These results suggest that the antihelmintic drug, albendazole, has inhibitory effects against prostate cancer cells in vitro. Therefore, albendazole may potentially be used as a novel anticancer agent for prostate cancer.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Changsoo Shin
- Department of Energy Resources Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Junpil Bang
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
24
|
Yang MH, Ha IJ, Um JY, Ahn KS. Albendazole Exhibits Anti-Neoplastic Actions against Gastric Cancer Cells by Affecting STAT3 and STAT5 Activation by Pleiotropic Mechanism(s). Biomedicines 2021; 9:biomedicines9040362. [PMID: 33807326 PMCID: PMC8065911 DOI: 10.3390/biomedicines9040362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Albendazole (ABZ) has been reported to display anti-tumoral actions against various maliganncies, but possible impact of ABZ on gastric cancer has not been deciphered. As aberrant phosphorylation of STAT3 and STAT5 proteins can regulate the growth and progression of gastric cancer, we postulated that ABZ may interrupt the activation of these oncogenic transcription factors. We found that ABZ exposure abrogated STAT3/5 activation, inhibited phosphorylation of Janus-activated kinases 1/2 and Src and enhanced the levels of SHP-1 protein. Silencing of SHP-1 gene by small interfering RNA (siRNA) reversed the ABZ-promoted attenuation of STAT3 as well as STAT5 activation and cellular apoptosis. In addition, these effects were noted to be driven by an augmented levels of reactive oxygen species caused by drug-induced GSH/GSSG imbalance. Thus, the data indicates that ABZ can modulate the activation of STAT3 and STAT5 by pleiotropic mechanisms in gastric cancer cells.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Korea;
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-2316
| |
Collapse
|
25
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
26
|
Liu Q, Sun YM, Huang H, Chen C, Wan J, Ma LH, Sun YY, Miao HH, Wu YQ. Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation. J Neuroinflammation 2021; 18:41. [PMID: 33541361 PMCID: PMC7863360 DOI: 10.1186/s12974-021-02089-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. METHODS SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. RESULTS Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. CONCLUSION The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
Collapse
Affiliation(s)
- Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Yin-Ying Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Hui-Hui Miao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P.R. China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China.
| |
Collapse
|
27
|
Nath J, Paul R, Ghosh SK, Paul J, Singha B, Debnath N. Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sci 2020; 258:118189. [DOI: 10.1016/j.lfs.2020.118189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
|
28
|
Son DS, Lee ES, Adunyah SE. The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs. Immune Netw 2020; 20:e29. [PMID: 32895616 PMCID: PMC7458798 DOI: 10.4110/in.2020.20.e29] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The development of refractory tumor cells limits therapeutic efficacy in cancer by activating mechanisms that promote cellular proliferation, migration, invasion, metastasis, and survival. Benzimidazole anthelmintics have broad-spectrum action to remove parasites both in human and veterinary medicine. In addition to being antiparasitic agents, benzimidazole anthelmintics are known to exert anticancer activities, such as the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, anti-angiogenesis, and blockage of glucose transport. These antitumorigenic effects even extend to cancer cells resistant to approved therapies and when in combination with conventional therapeutics, enhance anticancer efficacy and hold promise as adjuvants. Above all, these anthelmintics may offer a broad, safe spectrum to treat cancer, as demonstrated by their long history of use as antiparasitic agents. The present review summarizes central literature regarding the anticancer effects of benzimidazole anthelmintics, including albendazole, parbendazole, fenbendazole, mebendazole, oxibendazole, oxfendazole, ricobendazole, and flubendazole in cancer cell lines, animal tumor models, and clinical trials. This review provides valuable information on how to improve the quality of life in patients with cancers by increasing the treatment options and decreasing side effects from conventional therapy.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
29
|
Li B, Hu J, He D, Chen Q, Liu S, Zhu X, Yu M. PPM1D Knockdown Suppresses Cell Proliferation, Promotes Cell Apoptosis, and Activates p38 MAPK/p53 Signaling Pathway in Acute Myeloid Leukemia. Technol Cancer Res Treat 2020; 19:1533033820942312. [PMID: 32691668 PMCID: PMC7375723 DOI: 10.1177/1533033820942312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study was to explore the effect of protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown on proliferation and apoptosis as well as p38 MAPK/p53 signaling pathway in acute myeloid leukemia. METHODS The expression of protein phosphatase, Mg2+/Mn2+ dependent 1D was detected in acute myeloid leukemia cell lines including SKM-1, KG-1, AML-193, and THP-1 cells, and normal bone marrow mononuclear cells isolated from healthy donors. The knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D was conducted by transfecting small interfering RNA into AML-193 cells and KG-1 cells. RESULTS The relative messenger RNA/protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were higher in SKM-1, KG-1, AML-193, and THP-1 cells compared with control cells (normal bone marrow mononuclear cells). After transfecting protein phosphatase, Mg2+/Mn2+ dependent 1D small interfering RNA into AML-193 cells and KG-1 cells, both messenger RNA and protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were significantly reduced, indicating the successful transfection. Most importantly, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D suppressed cell proliferation and promoted cell apoptosis in AML-193 cells and KG-1 cells. In addition, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D enhanced the expressions of p-p38 and p53 in AML-193 cells and KG-1 cells. The above observation suggested that protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown suppressed cell proliferation, promoted cell apoptosis, and activated p38 MAPK/p53 signaling pathway in acute myeloid leukemia cells. CONCLUSION Protein phosphatase, Mg2+/Mn2+ dependent 1D is implicated in acute myeloid leukemia carcinogenesis, which illuminates its potential role as a treatment target for acute myeloid leukemia.
Collapse
Affiliation(s)
- Bin Li
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Jie Hu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Di He
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Qi Chen
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Suna Liu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Xiaoling Zhu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Meijia Yu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| |
Collapse
|
30
|
Zhang J, Xiang H, Liu J, Chen Y, He RR, Liu B. Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics 2020; 10:8315-8342. [PMID: 32724473 PMCID: PMC7381741 DOI: 10.7150/thno.45922] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
Sirtuin 3 (SIRT3) is one of the most prominent deacetylases that can regulate acetylation levels in mitochondria, which are essential for eukaryotic life and inextricably linked to the metabolism of multiple organs. Hitherto, SIRT3 has been substantiated to be involved in almost all aspects of mitochondrial metabolism and homeostasis, protecting mitochondria from a variety of damage. Accumulating evidence has recently documented that SIRT3 is associated with many types of human diseases, including age-related diseases, cancer, heart disease and metabolic diseases, indicating that SIRT3 can be a potential therapeutic target. Here we focus on summarizing the intricate mechanisms of SIRT3 in human diseases, and recent notable advances in the field of small-molecule activators or inhibitors targeting SIRT3 as well as their potential therapeutic applications for future drug discovery.
Collapse
|
31
|
The Tristetraprolin Family of RNA-Binding Proteins in Cancer: Progress and Future Prospects. Cancers (Basel) 2020; 12:cancers12061539. [PMID: 32545247 PMCID: PMC7352335 DOI: 10.3390/cancers12061539] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 3′-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines. Finally, we highlight the potential of the TTP family RBPs as prognostic indicators and discuss the possibility of targeting these TTP family RBPs for therapeutic benefits.
Collapse
|
32
|
Albendazole-Induced SIRT3 Upregulation Protects Human Leukemia K562 Cells from the Cytotoxicity of MCL1 Suppression. Int J Mol Sci 2020; 21:ijms21113907. [PMID: 32486166 PMCID: PMC7312678 DOI: 10.3390/ijms21113907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that MCL1 stabilization confers cancer cells resistance to microtubule targeting agents (MTAs) and functionally extends the lifespan of MTA-triggered mitotically arrested cells. Albendazole (ABZ), a benzimidazole anthelmintic, shows microtubule-destabilizing activity and has been repositioned for cancer therapies. To clarify the role of MCL1 in ABZ-induced apoptosis, we investigated the cytotoxicity of ABZ on human leukemia K562 cells. Treatment with ABZ for 24 h did not appreciably induce apoptosis or mitochondrial depolarization in K562 cells, though it caused the mitotic arrest of K562 cells. ABZ-evoked p38 MAPK activation concurrently suppressed Sp1-mediated MCL1 expression and increased SIRT3 mRNA stability and protein expression. ABZ and A-1210477 (an MCL1 inhibitor) enhanced the cytotoxicity of ABT-263 (a BCL2/BCL2L1 inhibitor) to their effect on MCL1 suppression. Unlike ABZ, A-1210477 did not affect SIRT3 expression and reduced the survival of K562 cells. Overexpression of SIRT3 attenuated the A-1210477 cytotoxicity on K562 cells. ABZ treatment elicited marked apoptosis and ΔΨm loss in ABT-263-resistant K562 (K562/R) cells, but did not alter SIRT3 expression. Ectopic expression of SIRT3 alleviated the cytotoxicity of ABZ on K562/R cells. Collectively, our data demonstrate that ABZ-induced SIRT3 upregulation delays the apoptosis-inducing effect of MCL1 suppression on apoptosis induction in K562 cells.
Collapse
|
33
|
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Zhijun Min
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, China
| |
Collapse
|
34
|
Fan J, Ren D, Wang J, Liu X, Zhang H, Wu M, Yang G. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Dis 2020; 11:126. [PMID: 32071301 PMCID: PMC7028916 DOI: 10.1038/s41419-020-2317-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
Worldwide, lung cancer remains a leading cause of cancer mortality. Bruceine D (BD) has been shown to induce pancreatic cancer cell death via several different mechanisms. In this study, we demonstrated that BD inhibited lung cancer cell proliferation. Apoptosis and autophagy were the most important mechanisms involved in BD-induced lung cancer cell death, and complete autophagic flux was observed in A549 and NCI-H292 cells. In addition, BD significantly improved intracellular reactive oxygen species (ROS) levels. BD-mediated cell apoptosis and autophagy were almost inhibited in cells pretreated with N-acetylcysteine (NAC), an ROS scavenger. Furthermore, MAPK signaling pathway activation contributed to BD-induced cell proliferation inhibition and NAC could eliminate p-ERK and p-JNK upregulation. Finally, an in vivo study indicated that BD inhibited the growth of lung cancer xenografts. Overall, BD is a promising candidate for the treatment of lung cancer owing to its multiple mechanisms and low toxicity.
Collapse
Affiliation(s)
- Jiangjiang Fan
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, P. R. China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, P. R. China
| | - Jinxia Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, P. R. China
| | - Huaran Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, P. R. China
| | - Mingsheng Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, P. R. China
| | - Guotao Yang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, P. R. China.
| |
Collapse
|
35
|
Wang LJ, Chiou JT, Lee YC, Huang CH, Shi YJ, Chang LS. SIRT3, PP2A and TTP protein stability in the presence of TNF-α on vincristine-induced apoptosis of leukaemia cells. J Cell Mol Med 2020; 24:2552-2565. [PMID: 31930676 PMCID: PMC7028858 DOI: 10.1111/jcmm.14949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023] Open
Abstract
The contribution of vincristine (VCR)-induced microtubule destabilization to evoke apoptosis in cancer cells remains to be resolved. Thus, we investigated the cytotoxic mechanism of VCR on U937 and HL-60 human leukaemia cell lines. We discovered that VCR treatment resulted in the up-regulation of TNF-α expression and activation of the death receptor pathway, which evoked apoptosis of U937 cells. Moreover, VCR induced microtubule destabilization and mitotic arrest. VCR treatment down-regulated SIRT3, and such down-regulation caused mitochondrial ROS to initiate phosphorylation of p38 MAPK. p38 MAPK suppressed MID1-modulated degradation of the protein phosphatase 2A (PP2A) catalytic subunit. The SIRT3-ROS-p38 MAPK-PP2A axis inhibited tristetraprolin (TTP)-controlled TNF-α mRNA degradation, consequently, up-regulating TNF-α expression. Restoration of SIRT3 and TTP expression, or inhibition of the ROS-p38 MAPK axis increased the survival of VCR-treated cells and repressed TNF-α up-regulation. In contrast to suppression of the ROS-p38 MAPK axis, overexpression of SIRT3 modestly inhibited the effect of VCR on microtubule destabilization and mitotic arrest in U937 cells. Apoptosis of HL-60 cells, similarly, went through the same pathway. Collectively, our data indicate that the SIRT3-ROS-p38 MAPK-PP2A-TTP axis modulates TNF-α expression, which triggers apoptosis of VCR-treated U937 and HL-60 cells. We also demonstrate that the apoptotic signalling is not affected by VCR-elicited microtubule destabilization.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Zhang QL, Lian DD, Zhu MJ, Li XM, Lee JK, Yoon TJ, Lee JH, Jiang RH, Kim CD. Antitumor Effect of Albendazole on Cutaneous Squamous Cell Carcinoma (SCC) Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3689517. [PMID: 31281836 PMCID: PMC6590486 DOI: 10.1155/2019/3689517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Drug repurposing and/or repositioning is an alternative method to develop new treatment for certain diseases. Albendazole was originally developed as an anthelmintic medication, and it has been used to treat a variety of parasitic infestations. In this study, we investigated the antitumor effect of albendazole and putative action mechanism. Results showed that albendazole dramatically decreased the cell viability of SCC cell lines (SCC12 and SCC13 cells). Albendazole increased apoptosis-related signals, including cleaved caspase-3 and PARP-1 in a dose-dependent fashion. The mechanistic study showed that albendazole induced endoplasmic reticulum (ER) stress, evidenced by increase of CHOP, ATF-4, caspase-4, and caspase-12. Pretreatment with ER stress inhibitor 4-PBA attenuated albendazole-induced apoptosis of SCC cells. In addition, albendazole decreased the colony-forming ability of SCC cells, together with inhibition of Wnt/β-catenin signaling. These results indicate that albendazole shows an antitumor effect via regulation of ER stress and cancer stemness, suggesting that albendazole could be repositioned for cutaneous SCC treatment.
Collapse
Affiliation(s)
- Qing-Ling Zhang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - De-De Lian
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ming Ji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xue Mei Li
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Kyung Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Jin Yoon
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Skin Med Company, Daejeon, Republic of Korea
| | - Ri-Hua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Huang D, Liu M, Jiang Y. Mitochonic acid-5 attenuates TNF-α-mediated neuronal inflammation via activating Parkin-related mitophagy and augmenting the AMPK-Sirt3 pathways. J Cell Physiol 2019; 234:22172-22182. [PMID: 31062359 DOI: 10.1002/jcp.28783] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction has been found to be associated with neuronal inflammation; however, no effective drug is available to attenuate neuroinflammation via sustaining mitochondrial function. In the current study, experiments were performed to understand the beneficial effects of mitochonic acid 5 (MA-5) on tumor necrosis factor-α (TNF-α)-mediated neuronal injury and mitochondrial damage. Our data illustrated that MA-5 pretreatment reduced inflammation response induced by TNF-α in CATH.a cells. Molecular investigations demonstrated that MA-5 pretreatment repressed oxidative stress, inhibited endoplasmic reticulum stress, sustained cellular energy metabolism, and blocked cell apoptosis induced by TNF-α stress. Further, we found that MA-5 treatment elevated the expression of Sirtuin 3 (Sirt3) and this effect was dependent on the activation of AMP-activated protein kinase (AMPK) pathway. Blockade of AMPK abolished the promotive action of MA-5 on Sirt3 and thus mediated mitochondrial damage and cell death. Besides, we also found that MA-5 treatment augmented Parkin-related mitophagy and increased mitophagy promoted CATH.a cells survival via improving mitochondrial function. Knockdown of Parkin abolished the beneficial action of MA-5 on mitochondrial homeostasis and CATH.a cell survival. Altogether, our results confirm that MA-5 is an effective drug to attenuate neuroinflammation via sustaining mitochondrial damage and promoting CATH.a cell survival. The protective action of MA-5 on neuronal damage is associated with Parkin-related mitophagy and the activation of AMPK-Sirt3 pathways.
Collapse
Affiliation(s)
- Dezhi Huang
- Department of Neurosurgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Liu
- Department of Neurosurgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|