1
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges. Natural products targeting RAS by multiple mechanisms.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing, 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing, 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, Chongqing, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, Chongqing, China.
| |
Collapse
|
2
|
Khan A, Khan B, Hussain S, Wang Y, Mai W, Hou Y. Permethrin exposure impacts zebrafish lipid metabolism via the KRAS-PPAR-GLUT signaling pathway, which is mediated by oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107021. [PMID: 38996480 DOI: 10.1016/j.aquatox.2024.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Permethrin (Per) is a widely used and frequently detected pyrethroid pesticide in agricultural products and the environment. It may pose potential toxicity to non-target organisms. Per has been reported to affect lipid homeostasis, although the mechanism is undefined. This study aims to explore the characteristic transcriptomic profiles and clarify the underlying signaling pathways of Per-induced lipid metabolism disorder in zebrafish liver. The results showed that environmental exposure to Per caused changes in the liver index, histopathology, and oxidative stress in zebrafish. Moreover, transcriptome results showed that Per heavily altered the pathways involved in metabolism, the immune system, and the endocrine system. We conducted a more in-depth analysis of the genes associated with lipid metabolism. Our findings revealed that exposure to Per led to a disruption in lipid metabolism by activating the KRAS-PPAR-GLUT signaling pathways through oxidative stress. The disruption of lipid homeostasis caused by exposure to Per may also contribute to obesity, hepatitis, and other diseases. The results may provide new insights for the risk of Permethrin to aquatic organisms and new horizons for the pathogenesis of hepatotoxicity.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Bibimaryam Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Yuhan Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Weijun Mai
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| |
Collapse
|
3
|
Kim SM, Kim YH, Han GU, Kim SG, Kim BJ, Moon SH, Shin SH, Ryu BY. Elucidating the mechanisms and mitigation strategies for six-phthalate-induced toxicity in male germ cells. Front Cell Dev Biol 2024; 12:1398176. [PMID: 39050888 PMCID: PMC11266291 DOI: 10.3389/fcell.2024.1398176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Phthalate esters (PAEs) are primary plasticizers and endocrine-disrupting chemicals (EDCs) that are extensively used in numerous everyday consumer products. Although the adverse effects of single PAEs have been studied, our understanding of the effect of multiple phthalate exposure on male germ cell vitality remains limited. Therefore, this study aimed to investigate the collective effects of a mixture of PAEs (MP) comprising diethyl-, bis (2-ethylhexyl)-, dibutyl-, diisononyl-, diisobutyl-, and benzyl butyl-phthalates in the proportions of 35, 21, 15, 15, 8, and 5%, respectively, on differentiated male germ cells using GC-1 spermatogonia (spg) cells. As a mixture, MP substantially hindered GC-1 spg cell proliferation at 3.13 μg/mL, with a half-maximal inhibitory concentration of 16.9 μg/mL. Treatment with 25 μg/mL MP significantly induced reactive oxygen species generation and promoted apoptosis. Furthermore, MP activated autophagy and suppressed phosphorylation of phosphoinositide 3-kinase, protein kinase B, and mammalian target of rapamycin (mTOR). The triple inhibitor combination treatment comprising parthenolide, N-acetylcysteine, and 3-methyladenine effectively reversed MP-induced GC-1 spg cell proliferation inhibition, mitigated apoptosis and autophagy, and restored mTOR phosphorylation. This study is the first to elucidate the mechanism underlying MP-induced male germ cell toxicity and the restoration of male germ cell proliferation mediated by chemical inhibitors. Therefore, it provides valuable insights into the existing literature by proposing a combinatorial toxicity mitigation strategy to counteract male germ cell toxicity induced by various EDCs exposure.
Collapse
Affiliation(s)
- Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Yong-Hee Kim
- AttisLab Inc., Anyang-Si, Gyeonggi-Do, Republic of Korea
| | - Gil Un Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Bang-Jin Kim
- Department of Surgery, Division of Surgical Sciences, Columbia University Irving Medical Center, New York, NY, United States
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
4
|
Lin X, Lin T, Liu M, Chen D, Chen J. Liensinine diperchlorate and artemisitene synergistically attenuate breast cancer progression through suppressing PI3K-AKT signaling and their efficiency in breast cancer patient-derived organoids. Biomed Pharmacother 2024; 176:116871. [PMID: 38861856 DOI: 10.1016/j.biopha.2024.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Breast cancer (BC) is the most prevalent cancer among women around the world. Finding new and efficient drugs has become a crucial aspect of BC treatment. Liensinine diperchlorate (LIN) and artemisitene (ATT) are natural compounds with potential anti-cancer activities extracted from lotus (Nelumbo nucifera Gaertn) seeds and Artemisia annua, respectively. However, the synergistic anti-breast cancer effectiveness and mechanism of LIN and ATT remain unknown. This study intended to reveal the biological functions and underlying mechanism of combined LIN and ATT treatment in BC. Herein, we first reported that LIN and ATT synergistically mitigated the proliferation, migration as well as invasion of BC cells. Besides, LIN boosted the stimulatory effect of ATT on reactive oxygen species (ROS)-mediated apoptosis in BC cells. Interestingly, LIN and ATT synergistically attenuated the growth of BC patient-derived organoids. Moreover, LIN augmented the inhibitory efficacy of ATT on BC growth in vivo without obvious side effects. Furthermore, the inactivation of PI3K-AKT pathway and its regulated proteins contributed to the therapeutic role of LIN and ATT treatment in BC. Intriguingly, a prediction model constructed as per RNA sequencing data indicated that the combination of LIN and ATT treatment might ameliorate the prognosis of BC patients. In conclusion, our present investigation demonstrated that LIN and ATT synergistically inhibited BC cell proliferation, migration as well as invasion and enhanced ROS-mediated apoptosis via suppressing the PI3K-AKT signaling, and suggested that combining LIN and ATT treatment might be a promising choice for BC therapy.
Collapse
Affiliation(s)
- Xian Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Tengyu Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Meng Liu
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Jian Chen
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
5
|
Liu Y, Zhang J, Wu C, Lai Y, Fan H, Wang Q, Lin Z, Chen J, Zhao X, Jiang X. Nanoplatform based on carbon nanoparticles loaded with doxorubicin enhances apoptosis by generating reactive oxygen species for effective cancer therapy. Oncol Lett 2024; 27:288. [PMID: 38736745 PMCID: PMC11083999 DOI: 10.3892/ol.2024.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
At present, due to its wide application and relatively low cost, chemotherapy remains a clinically important cancer treatment option; however, a number of chemotherapeutic drugs have important limitations, such as lack of specificity, high toxicity and side effects, and multi-drug resistance. The emergence of nanocarriers has removed numerous clinical application limitations of certain antitumor chemotherapy drugs and has been widely used in the treatment of tumors with nanodrugs. The present study used carbon nanoparticles (CNPs) as a nanocarrier for doxorubicin (DOX) to form the novel nanomedicine delivery system (CNPs@DOX)was demonstrated by UV-vis and fluorescence spectrophotometry, ζ potential and TEM characterization experiments. The results confirmed the successful preparation of CNPs@DOX nanoparticles with a particle size of 96±17 nm, a wide range of absorption and a negatively charged surface. Furthermore, CNPs@DOX produced more reactive oxygen species and induced apoptosis, and thus exhibited higher cytotoxicity than DOX, which is a small molecule anticancer drug without a nanocarrier delivery system.. The present study provides a strategy for the treatment of tumors with nanomedicine.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junfeng Zhang
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Chunying Wu
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Yigui Lai
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Zhaolin Lin
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Jishang Chen
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuefeng Jiang
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong 529500, P.R. China
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
6
|
Wang L, Gong W. NOX4 regulates gastric cancer cell invasion and proliferation by increasing ferroptosis sensitivity through regulating ROS. Int Immunopharmacol 2024; 132:112052. [PMID: 38593505 DOI: 10.1016/j.intimp.2024.112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE We assessed NOX4 expression in gastric cancer (GC), its prognostic significance, and underlying mechanisms, focusing on promoting ferroptosis through increased ROS production. METHODS We evaluated NOX4 expression in GC tissues via immunohistochemistry and analyzed correlations with clinicopathological characteristics using TCGA and clinical data. Impacts of manipulating NOX4 levels on GC cell invasiveness, proliferation, and sensitivity to ferroptosis inducers were investigated. RESULTS Significantly higher NOX4 expression in GC tissues versus normal adjacent tissues correlated with decreased overall survival and increased tumor aggressiveness. NOX4 was an independent predictor of poor prognosis. Functionally, NOX4 manipulation influenced ROS levels, with overexpression enhancing production. Inhibition of NOX4 or application of antioxidants reduced cancer cell invasion and proliferation. Importantly, NOX4-overexpressing cells showed increased sensitivity to ferroptosis inducers, indicating synergistic effects between NOX4 and ferroptosis in suppressing GC progression. CONCLUSION Our findings highlight NOX4's potential as a therapeutic target in GC, where modulation can enhance efficacy of ferroptosis-inducing treatments, offering a promising strategy for combating this malignancy.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency Medicine, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Weihua Gong
- Department of Surgery, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
7
|
Li M, Cao F, Wang W, Ma Y, Yu Z, Wang K, Chen Y, Liu H. Coumarin-Furoxan Hybrid Suppressed the Proliferation and Metastasis of Triple-Negative Breast Cancer by Activating Mitochondrial Stress and Cell Apoptosis. ACS Pharmacol Transl Sci 2024; 7:1278-1290. [PMID: 38751639 PMCID: PMC11091983 DOI: 10.1021/acsptsci.3c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
Triple-negative breast cancer (TNBC) typically manifests as higher invasive carcinoma correlated with a worse prognosis that primarily relies on chemotherapy. There is growing evidence that nitric oxide (NO) donor drugs have the potential for anticancer therapy. On this basis, we constructed and evaluated a novel coumarin-furoxan hybrid 4A93 as an effective antitumor candidate drug. 4A93 exhibits low IC50 values in three TNBC cell lines and inhibits colony formation and DNA synthesis, probably due to the release of high concentrations of NO in mitochondria, which induces oxidative stress, mitochondrial dysfunction, and apoptosis. Further research suggests that 4A93 might destroy mitochondria by opening the mitochondrial permeability transition pore (mPTP), depolarizing the mitochondrial membrane potential (MMP), and promoting the release of cytochrome c into the cytoplasm. Intrinsic apoptosis is induced finally, along with Akt/Erk signaling suppression. Additionally, 4A93 underregulates the Epithelial-mesenchymal transition process to inhibit cell migration and invasion. In 4T1 subcutaneous and hematogenous models of mice, 4A93 therapy suppresses the tumor growth and prevented lung metastasis with favorable biosafety. Our results provide insights into 4A93 in TNBC treatment and validate the contribution of NO donors in tumor therapy.
Collapse
Affiliation(s)
- Mengru Li
- Department
of Pharmacology, School of Pharmacy, Fudan
University, Shanghai 201203, China
| | - Fan Cao
- Department
of Pharmacology, School of Pharmacy, Fudan
University, Shanghai 201203, China
| | - Weijie Wang
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yulei Ma
- Department
of Pharmacology, School of Pharmacy, Fudan
University, Shanghai 201203, China
| | - Zhihui Yu
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ke Wang
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ying Chen
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongrui Liu
- Department
of Pharmacology, School of Pharmacy, Fudan
University, Shanghai 201203, China
| |
Collapse
|
8
|
Chaisupasakul P, Pekthong D, Wangteeraprasert A, Kaewkong W, Somran J, Kaewpaeng N, Parhira S, Srisawang P. Combination of ethyl acetate fraction from Calotropis gigantea stem bark and sorafenib induces apoptosis in HepG2 cells. PLoS One 2024; 19:e0300051. [PMID: 38527038 PMCID: PMC10962855 DOI: 10.1371/journal.pone.0300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
The cytotoxicity of the ethyl acetate fraction of the Calotropis gigantea (L.) Dryand. (C. gigantea) stem bark extract (CGEtOAc) has been demonstrated in many types of cancers. This study examined the improved cancer therapeutic activity of sorafenib when combined with CGEtOAc in HepG2 cells. The cell viability and cell migration assays were applied in HepG2 cells treated with varying concentrations of CGEtOAc, sorafenib, and their combination. Flow cytometry was used to determine apoptosis, which corresponded with a decline in mitochondrial membrane potential and activation of DNA fragmentation. Reactive oxygen species (ROS) levels were assessed in combination with the expression of the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) pathway, which was suggested for association with ROS-induced apoptosis. Combining CGEtOAc at 400 μg/mL with sorafenib at 4 μM, which were their respective half-IC50 concentrations, significantly inhibited HepG2 viability upon 24 h of exposure in comparison with the vehicle and each single treatment. Consequently, CGEtOAc when combined with sorafenib significantly diminished HepG2 migration and induced apoptosis through a mitochondrial-correlation mechanism. ROS production was speculated to be the primary mechanism of stimulating apoptosis in HepG2 cells after exposure to a combination of CGEtOAc and sorafenib, in association with PI3K/Akt/mTOR pathway suppression. Our results present valuable knowledge to support the development of anticancer regimens derived from the CGEtOAc with the chemotherapeutic agent sorafenib, both of which were administered at half-IC50, which may minimize the toxic implications of cancer treatments while improving the therapeutic effectiveness toward future medical applications.
Collapse
Affiliation(s)
- Pattaraporn Chaisupasakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | | | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
9
|
Li R, Wu Y, Li Y, Shuai W, Wang A, Zhu Y, Hu X, Xia Y, Ouyang L, Wang G. Targeted regulated cell death with small molecule compounds in colorectal cancer: Current perspectives of targeted therapy and molecular mechanisms. Eur J Med Chem 2024; 265:116040. [PMID: 38142509 DOI: 10.1016/j.ejmech.2023.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Lin S, Chen Z, Li S, Chen B, Wu Y, Zheng Y, Huang J, Chen Y, Lin X, Yao H. Anti-tumor effect and mechanism of the total biflavonoid extract from S doederleinii on human cervical cancer cells in vitro and in vivo. Heliyon 2024; 10:e24778. [PMID: 38304845 PMCID: PMC10830543 DOI: 10.1016/j.heliyon.2024.e24778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
In this study, the therapeutic effect and possible mechanism of the total biflavonoid extract of Selaginella doederleinii Hieron (SDTBE) against cervical cancer were originally investigated in vitro and in vivo. First, the inhibition of SDTBE on proliferation of cervical cancer HeLa cells was evaluated, followed by morphological observation with AO/EB staining, Annexin V/PI assay, and autophagic flux monitoring to evaluate the possible effect of SDTBE on cell apoptosis and autophagy. Cell cycle, as well as mitochondrial membrane potential (ΔѰm), was detected with flow cytometry. Further, the apoptosis related protein expression and the autophagy related gene LC3 mRNA transcription level were analyzed by Western blot (WB) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. Finally, the anti-cervical cancer effect of the SDTBE was also validated in vivo in HeLa cells grafts mice. As results, SDTBE inhibited HeLa cells proliferation with the IC50 values of 49.05 ± 6.76 and 44.14 ± 4.75 μg/mL for 48 and 72 h treatment, respectively. The extract caused mitochondrial ΔѰ loss, induced cell apoptosis by upregulating Bax, downregulating Bcl-2, activating Caspase-9 and Caspase-3, promoting cell autophagy and blocking the cell cycle in G0/G1 phase. Furthermore, 100, 200, and 300 mg/kg SDTBE suppressed the growth of HeLa cells xenografts in mice with the mean inhibition rates, 25.3 %, 57.5 % and 62.9 %, respectively, and the change of apoptosis related proteins and microvascular density was confirmed in xenografts by immunohistochemistry analysis. The results show that SDTBE possesses anti-cervical cancer effect, and the mechanism involves in activating Caspase-dependent mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Shilan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhijie Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Youjia Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianyong Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yan Chen
- Department of Medical Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Gao YN, Min L, Yang X, Wang JQ, Zheng N. The coexistence of aflatoxin M1 and ochratoxin A induced intestinal barrier disruption via the regulation of key differentially expressed microRNAs and long non-coding RNAs in BALB/c mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115428. [PMID: 37688864 DOI: 10.1016/j.ecoenv.2023.115428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Food safety can be seriously threatened by the existence of both aflatoxin M1 (AFM1) and ochratoxin A (OTA) in milk and corresponding products. The importance of intestine integrity in preserving human health is widely understood in vitro, but the fundamental processes by which AFM1 and OTA cause disruption of the intestinal barrier are as yet unknown, especially in vivo. Based on the analysis of the whole transcriptome of BALB/c mice, the competing endogenous RNA (ceRNA) regulation network was obtained in the current study. Each of 12 mice were separated into five treatments: saline solution treatment, 1.0% DMSO vehicle control treatment, 3.0 mg/kg b.w. individual AFM1 treatment (AFM1), 3.0 mg/kg b.w. individual OTA treatment (OTA), and combined mycotoxins treatment (AFM1 +OTA). The study period lasted 28 days. The jejunum tissue was collected for the histological assessment and whole transcriptome analysis, and the whole blood was collected, and determination of serum biochemical indicators. The phenotypic results demonstrated that AFM1 and OTA caused intestinal barrier disruption via an increased apoptosis level and decreased expression of tight junction (TJ) proteins. The ceRNA network demonstrated that AFM1 and OTA induced cell apoptosis through activating the expression of DUSP9 and suppressing the expression of PLA2G2D, which were regulated by differentially expressed microRNAs (DEmiRNAs) (miR-124-y, miR-194-z, miR-224-x, and miR-452-x) and differentially expressed long non-coding RNAs (DElncRNAs) (FUT8 and GPR31C). And AFM1 and OTA decreased TJ proteins via inhibiting the expression of PAK6, which was regulated by several important DEmiRNAs and DElncRNAs. These DE RNAs in intestinal integrity were involved in MAPK and Ras signaling pathway. Overall, our findings expand the current knowledge regarding the potential mechanisms of intestinal integrity disruption brought on by AFM1 and OTA in vivo.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Min
- Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Wang X, Chen Q, Zhu Y, Wang K, Chang Y, Wu X, Bao W, Cao T, Chen H, Zhang Y, Qin H. Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme. Signal Transduct Target Ther 2023; 8:277. [PMID: 37474504 PMCID: PMC10359331 DOI: 10.1038/s41392-023-01491-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/22/2023] Open
Abstract
The crucial role of intratumoral bacteria in the progression of cancer has been gradually recognized with the development of sequencing technology. Several intratumoral bacteria which have been identified as pathogens of cancer that induce progression, metastasis, and poor outcome of cancer, while tumor vascular networks and immunosuppressive microenvironment provide shelters for pathogens localization. Thus, the mutually-beneficial interplay between pathogens and tumors, named "pathogen-tumor symbionts", is probably a potential therapeutic site for tumor treatment. Herein, we proposed a destroying pathogen-tumor symbionts strategy that kills intratumoral pathogens, F. nucleatum, to break the symbiont and synergize to kill colorectal cancer (CRC) cells. This strategy was achieved by a groundbreaking protein-supported copper single-atom nanozyme (BSA-Cu SAN) which was inspired by the structures of native enzymes that are based on protein, with metal elements as the active center. BSA-Cu SAN can exert catalytic therapy by generating reactive oxygen species (ROS) and depleting GSH. The in vitro and in vivo experiments demonstrate that BSA-Cu SAN passively targets tumor sites and efficiently scavenges F. nucleatum in situ to destroy pathogen-tumor symbionts. As a result, ROS resistance of CRC through elevated autophagy mediated by F. nucleatum was relieved, contributing to apoptosis of cancer cells induced by intracellular redox imbalance generated by BSA-Cu SAN. Particularly, BSA-Cu SAN experiences renal clearance, avoiding long-term systemic toxicity. This work provides a feasible paradigm for destroying pathogen-tumor symbionts to block intratumoral pathogens interplay with CRC for antitumor therapy and an optimized trail for the SAN catalytic therapy by the clearable protein-supported SAN.
Collapse
Affiliation(s)
- Xinyue Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Qian Chen
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Yefei Zhu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yongliang Chang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Xiawei Wu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Weichao Bao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
| | - Tongcheng Cao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
- Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, 318000, Zhejiang, China.
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| |
Collapse
|
13
|
Li R, Zheng C, Shiu PHT, Rangsinth P, Wang W, Kwan YW, Wong ESW, Zhang Y, Li J, Leung GPH. Garcinone E triggers apoptosis and cell cycle arrest in human colorectal cancer cells by mediating a reactive oxygen species–dependent JNK signaling pathway. Biomed Pharmacother 2023; 162:114617. [PMID: 37001180 DOI: 10.1016/j.biopha.2023.114617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Despite various therapeutic approaches, colorectal cancer is among the most fatal diseases globally. Hence, developing novel and more effective methods for colorectal cancer treatment is essential. Recently, reactive oxygen species (ROS)/JNK signaling pathway has been proposed as the potential target for the anticancer drug discovery. The present study investigated the anticancer effects of the bioactive xanthone garcinone E (GAR E) in mangosteen and explored its underlying mechanism of action. HT-29 and Caco-2 cancer cells were used as in vitro models to study the anticancer effect of GAR E. The findings demonstrated that GAR E inhibited colony formation and wound healing, whereas triggered the production of ROS, which induced mitochondrial dysfunction and apoptosis, causing cell cycle arrest at the Sub G1 phase. Additionally, GAR E treatment elevated the ratio of Bax/Bcl-2 and activated PARP, caspases 3 and 9, and JNK1/2. These GAR E-induced cytotoxic activities and expression of signaling proteins were reversed by the antioxidant N-acetyl-L-cysteine and JNK inhibitor SP600125, indicating the involvement of ROS/JNK signaling pathways. In vivo experiments using an HT-29 xenograft nude mouse model also demonstrated the antitumor effect of GAR E. In conclusion, our findings showed that GAR E might be potentially effective in treating colorectal cancer and provided insights into the development of xanthones as novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wen Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Emily Sze-Wan Wong
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China
| | - Yanbo Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
14
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
15
|
Si Z, Yang G, Wang X, Yu Z, Pang Q, Zhang S, Qian L, Ruan Y, Huang J, Yu L. An unconventional cancer-promoting function of methamphetamine in hepatocellular carcinoma. Life Sci Alliance 2023; 6:e202201660. [PMID: 36669783 PMCID: PMC9873983 DOI: 10.26508/lsa.202201660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/22/2023] Open
Abstract
For the past decade, the prevalence and mortality of methamphetamine (METH) use have doubled, suggesting that METH use could be the next substance use crisis worldwide. Ingested METH is transformed into other products in the liver, a major metabolic organ. Studies have revealed that METH causes deleterious inflammatory response, oxidative stress, and extensive DNA damage. These pathological damages are driving factors of hepatocellular carcinoma (HCC). Nonetheless, the potential role of METH in HCC and the underlying mechanisms remain unknown. Herein, we found a higher HCC incidence in METH abusers. METH promoted cellular proliferation, migration, and invasion in two human-derived HCC cells. Consistently, METH uptake promoted HCC progression in a xenograft mouse model. Mechanistically, METH exposure induced ROS production, which activated the Ras/MEK/ERK signaling pathway. Clearance of ROS by NAC suppressed METH-induced activation of Ras/ERK1/2 pathways, leading to arrest of HCC xenograft formation in nude mice. To the best of our knowledge, this is the first study to substantiate that METH promotes HCC progression and inhibition of ROS may reverse this process.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Pharmacy, The Affiliated Hospital of Ningbo University Medical School, Ningbo, P. R. China
- School of Medicine, Ningbo University, Ningbo, P. R. China
| | - GuanJun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, P. R. China
| | - Xidi Wang
- School of Medicine, Ningbo University, Ningbo, P. R. China
| | - Zhaoying Yu
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Qian Pang
- School of Medicine, Ningbo University, Ningbo, P. R. China
| | | | - Liyin Qian
- School of Medicine, Ningbo University, Ningbo, P. R. China
| | - Yuer Ruan
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Jing Huang
- Department of Pharmacy, The Affiliated Hospital of Ningbo University Medical School, Ningbo, P. R. China
| | - Liu Yu
- School of Medicine, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
16
|
Ma F, Zhu X, Niu Y, Nai A, Bashir S, Xiong Y, Dong Y, Li Y, Song J, Xu M. FGFR inhibitors combined with nab-paclitaxel - A promising strategy to treat non-small cell lung cancer and overcome resistance. Front Oncol 2023; 13:1088444. [PMID: 36845692 PMCID: PMC9950728 DOI: 10.3389/fonc.2023.1088444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Lung cancer has high morbidity and mortality rates worldwide, and NSCLC accounts for 85% of all lung cancer cases. Despite the development of targeted therapies and immunotherapy, many NSCLC patients do not effectively respond to treatment, and new treatment strategies are urgently needed. Aberrant activation of the FGFR signaling pathway is closely related to the initiation and progression of tumors. AZD4547, which is a selective inhibitor of FGFR 1-3, can suppress the growth of tumor cells with deregulated FGFR expression in vivo and in vitro. However, further exploration is needed to determine whether AZD4547 can play an antiproliferative role in tumor cells without deregulated FGFR expression. We investigated the antiproliferative effect of AZD4547 on NSCLC cells without deregulated FGFR expression. In vivo and in vitro experiments showed that AZD4547 exerted a weak antiproliferative effect on NSCLC cells without deregulated FGFR expression, but it significantly enhanced the sensitivity of NSCLC cells to nab-paclitaxel. We found that AZD4547 combined with nab-paclitaxel suppressed the phosphorylation of the MAPK signaling pathway, led to cell cycle arrest in the G2/M phase, promoted apoptosis, and inhibited cell proliferation more substantially than nab-paclitaxel alone. These findings provide insight into the rational use of FGFR inhibitors and personalized treatment of NSCLC patients.
Collapse
Affiliation(s)
- Feng Ma
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,Department of Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xinhai Zhu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yuchun Niu
- Department of Radiation Oncology, The First People’s Hospital of Foshan, Foshan, China
| | - Aitao Nai
- Department of Oncology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - Shoaib Bashir
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yan Xiong
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunlong Dong
- Department of Thoracic Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,*Correspondence: Meng Xu, ; Jian Song, ; Yin Li,
| | - Jian Song
- Department of Oncology, Zhongshan Torch Development Zone People’s Hospital, Zhongshan, China,*Correspondence: Meng Xu, ; Jian Song, ; Yin Li,
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,*Correspondence: Meng Xu, ; Jian Song, ; Yin Li,
| |
Collapse
|
17
|
Badavenkatappa gari S, Nelson VK, Peraman R. Tinospora sinensis (Lour.) Merr alkaloid rich extract induces colon cancer cell death via ROS mediated, mTOR dependent apoptosis pathway: "an in-vitro study". BMC Complement Med Ther 2023; 23:33. [PMID: 36737760 PMCID: PMC9896699 DOI: 10.1186/s12906-023-03849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most mortality rate causing disease after lung cancer. Though there is a significant improvement in the treatment schedule offered to CRC. However, there is no notable decrease in terms of cases as well as death rate. Hence, there is an urgent need to discover novel cancer therapeutics to treat CRC. Since ancient times, the use of phytochemicals has drawn huge attention as chemo-preventive and chemotherapeutic agents. Earlier studies on Tinospora sinensis (TS) revealed the cytotoxic effect on human colorectal carcinoma (HCT-116) cells, yet the mechanism is to be uncovered. Therefore, the present study was designed to study the cell death mechanism of TS in HCT-116 cells. METHOD Different extracts such as n-hexane, ethyl acetate, and ethanol extracts from the root part of TS were prepared using a cold maceration process. The extracts were screened against cancer cell lines by methyl thiazoldiphenyltetrazolium bromide (MTT) assay. From the result, the most active extract was subjected to gas chromatography-mass spectrometry (GC-MS) and Fourier-Transform infrared spectroscopy (FTIR) analyses to identify the major constituents. Finally, the mechanism of cytotoxicity to cancer cells for the most active extract was evaluated using various experiments such as cell cycle analysis, Annexin-V assay, and Western blot. RESULTS The results from the MTT assay indicated that the n-hexane extract of TS inhibits the growth of HCT-116 cells more effectively than other cancer cells like Henrietta Lacks cervical cancer cells (Hela), and Michigan cancer foundation-breast cancer (MCF-7). The GC-MS and FT-IR analyses revealed the presence of alkaloids in the n-hexane extract and were responsible for the apoptosis activity in HCT-cells via reactive oxygen species (ROS) generation, and phosphoinositide 3-kinase (PI3K)/ protein Kinase B (Akt)/ mammalian target of rapamycin (mTOR) down-regulation. CONCLUSION This study concludes that this finding is unique of its kind, and for the first time. The anticancer effect of TS root is specific to colon cancer cells (HCT-116). This distinctive finding helps the researchers to investigate further, and to identify a novel source for anti-colon cancer drug candidates in near future.
Collapse
Affiliation(s)
- Sreelakshmi Badavenkatappa gari
- grid.459547.eFaculty of Pharmaceutical Sciences, Jawaharlal Nehru Technological University Anantapur (JNTUA), Anantapur, Andhra Pradesh 515 002 India
| | - Vinod K. Nelson
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER) –Autonomous, Anantapur, Andhra Pradesh 515721 India
| | - Ramalingam Peraman
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER) –Autonomous, Anantapur, Andhra Pradesh 515721 India ,grid.464629.b0000 0004 1775 2698Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, 844102 India
| |
Collapse
|
18
|
DHCR7 promotes tumorigenesis via activating PI3K/AKT/mTOR signalling pathway in bladder cancer. Cell Signal 2023; 102:110553. [PMID: 36473621 DOI: 10.1016/j.cellsig.2022.110553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Bladder cancer (BCa) is a common malignancy with uncertain molecular mechanism. 7-dehydrocholesterol reductase (DHCR7), the enzyme of mammalian sterol biosynthesis, plays important roles in several types of cancers but its specific function in BCa is still unknown. The current study aimed to determine the bioinformatic characteristics and biological functions of DHCR7 in BCa. Sequencing results and clinical data from online public databases, human BCa tissues and matched noncancerous tissues, xenograft nude mice, DHCR7 deficiency and overexpression BCa cell (T24 and EJ) models were used. Several bioinformatics analyses were made, qRT-PCR, Western-blotting, flow cytometry, immunohistochemistry (IHC), MTT assay, wound healing and cell invasion assays were performed. It was found that DHCR7 was upregulated in BCa as an independent risk factor, and the expression of DHCR7 was associated with BCa grade and stage, finally resulted in poor prognosis. We further demonstrated that DHCR7 overexpression could accelerate the G0/G1 phase to accelerate the growth of tumor cells, antagonize cell apoptosis, and enhance the invasion and migration capacity, as well as EMT process via PI3K/AKT/mTOR signalling pathway, which could be completely reversed by DHCR7 knockdown. Finally, DHCR7 deficiency significantly decreased tumorigenesis in vivo. Our novel data demonstrated that DHCR7 could modulate BCa tumorigenesis in vitro and in vivo via PI3K/AKT/mTOR signalling pathway. It is suggested that DHCR7 might become a molecular target for the diagnosis and treatment of BCa.
Collapse
|
19
|
Lin F, Lin X, Wang X, Mei G, Chen B, Yao H, Huang L. Inhibitory effect of Selaginella doederleinii hieron on human cytochrome P450. Front Pharmacol 2023; 14:1108867. [PMID: 36874034 PMCID: PMC9975586 DOI: 10.3389/fphar.2023.1108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Selaginella doederleinii Hieron is a traditional Chinese herbal medicine, the ethyl acetate extract from Selaginella doederleinii (SDEA) showed favorable anticancer potentials. However, the effect of SDEA on human cytochrome P450 enzymes (CYP450) remains unclear. To predict the herb-drug interaction (HDI) and lay the groundwork for further clinical trials, the inhibitory effect of SDEA and its four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) on seven CYP450 isoforms were investigated by using the established CYP450 cocktail assay based on LC-MS/MS. Methods: Appropriate substrates for seven tested CYP450 isoforms were selected to establish a reliable cocktail CYP450 assay based on LC-MS/MS. The contents of four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) in SDEA were determined as well. Then, the validated CYP450 cocktail assay was applied to test the inhibitory potential of SDEA and four constituents on CYP450 isoforms. Results: SDEA showed strong inhibitory effect on CYP2C9 and CYP2C8 (IC50 ≈ 1 μg/ml), moderate inhibitory effect against CYP2C19, CYP2E1 and CYP3A (IC50 < 10 μg/ml). Among the four constituents, Amentoflavone had the highest content in the extract (13.65%) and strongest inhibitory effect (IC50 < 5 μM), especially for CYP2C9, CYP2C8 and CYP3A. Amentoflavone also showed time-dependent inhibition on CYP2C19 and CYP2D6. Apigenin and Palmatine both showed concentration-dependent inhibition. Apigenin inhibited CYP1A2, CYP2C8, CYP2C9, CYP2E1 and CYP3A. Palmatine inhibited CYP3A and had a weak inhibitory effect on CYP2E1. As for Delicaflavone, which has the potential to develop as an anti-cancer agent, showed no obvious inhibitory effect on CYP450 enzymes. Conclusion: Amentoflavone may be one of the main reasons for the inhibition of SDEA on CYP450 enzymes, the potential HDI should be considered when SDEA or Amentoflavone were used with other clinical drugs. On the contrast, Delicaflavone is more suitable to develop as a drug for clinical use, considering the low level of CYP450 metabolic inhibition.
Collapse
Affiliation(s)
- Fei Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xuewen Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Guanghui Mei
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lingyi Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Li L, You W, Wang X, Zou Y, Yao H, Lan H, Lin X, Zhang Q, Chen B. Delicaflavone reactivates anti-tumor immune responses by abrogating monocytic myeloid cell-mediated immunosuppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154508. [PMID: 36332384 DOI: 10.1016/j.phymed.2022.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Myeloid cell-mediated immunosuppression is a major obstacle to checkpoint blockade immunotherapy. We previously reported that total biflavonoids extract from Selaginella doederleinii (TBESD) and a flavone monomer isolated from TBESD, named Delicaflavone, have favorable anti-tumor activity. However, whether TBESD and Delicaflavone could affect the tumor microenvironment (TME) remains unclear. PURPOSE In this study, we focused on the TME to determine whether TBESD and Delicaflavone could restore anti-tumor immune response. METHODS 4T1 tumor-bearing immunocompetent BALB/c mice and T cell-deficient nude mice were used to examine the effect of TBESD on T cell-mediated immunity in vivo. Multi-parameter flow cytometry was conducted to evaluate the impacts of TBESD on TME. Primary cells, including murine CD8+ T cells, tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) were prepared to investigate the modulatory activities of TBESD on immune cells. It was further determined whether Delicaflavone or Amentoflavone, two typical functional biflavones from TBESD, mediated those effects of TBESD. Finally, the impacts of TBESD and Delicaflavone on Jak1/STAT6 signaling pathway were explored via western blot. RESULTS We found that TBESD significantly reduced 4T1 tumor growth in immunocompetent BALB/c mice, but not in nude mice. This effect was associated with the regulation of TME, shown as an increase in functional T cells and M1 phenotype TAMs (M1-TAMs), and a decrease in M2 phenotype TAMs (M2-TAMs), monocytic-MDSCs (M-MDSCs) and regulatory T cells (Tregs) in TBESD-treated BALB/c mouse 4T1 tumors. It was found ex vivo that TBESD restrained the viability and immunosuppressive properties of M2-TAMs and M-MDSCs, especially for the loss of arginase-1 expression. Additionally, TBESD re-educated M2-TAMs to an M1 like phenotype. Further investigations determined that Delicaflavone predominantly mediated the immuno-modulatory activities of TBESD both ex vivo and in vivo. Finally, Delicaflavone and TBESD blocked Jak1/STAT6 signaling pathway in M2-TAMs and MDSCs. CONCLUSION The present study suggests Delicaflavone as a potent natural inhibitor of M2-TAMs and MDSCs, which fills the gap in knowledge on the immuno-modulatory effects of TBESD and Delicaflavone, and could have translational implications to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Lijun Li
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuewen Wang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yulian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hailin Lan
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
| | - Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
21
|
Xie FL, Wang Y, Zhu JW, Xu HH, Guo QF, Wu Y, Liu SH. Anticancer mechanism studies of iridium(III) complexes inhibiting osteosarcoma HOS cells proliferation. J Inorg Biochem 2022; 237:112011. [PMID: 36252336 DOI: 10.1016/j.jinorgbio.2022.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/18/2023]
Abstract
Three iridium (III) polypyridine complexes [Ir(bzq)2(maip)](PF6) (Ir1,bzq = benzo[h]quinoline, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(bzq)2(apip)](PF6) (Ir2, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(bzq)2(paip)](PF6) (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The cytotoxic activities of the three complexes against human osteosarcoma HOS, U2OS, MG63 and normal LO2 cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The results showed that Ir1-3 exhibited moderate antitumor activity against HOS with IC50 of 21.8 ± 0. 4 μM,10.5 ± 1.8 μM and 7.4 ± 0.4 μM, respectively. We found that Ir1-3 can effectively inhibit HOS cells growth and blocked the cell cycle at the G0/G1 phase. Further studies revealed that complexes can increase intracellular reactive oxygen species (ROS) and Ca2+, which accompanied by mitochondria-mediated intrinsic apoptosis pathway. In addition, autophagy was also investigated. Taken together, the complexes induce HOS apoptosis through a ROS-mediated mitochondrial dysfunction pathway and inhibition of the PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) signaling pathway. This study provides useful help for understanding the anticancer mechanism of iridium (III) complexes toward osteosarcoma treatment.
Collapse
Affiliation(s)
- Fu-Li Xie
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yan Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jian-Wei Zhu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Hui-Hua Xu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Qi-Feng Guo
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| | - Si-Hong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| |
Collapse
|
22
|
Bian C, Zheng Z, Su J, Wang H, Chang S, Xin Y, Jiang X. Targeting Mitochondrial Metabolism to Reverse Radioresistance: An Alternative to Glucose Metabolism. Antioxidants (Basel) 2022; 11:2202. [PMID: 36358574 PMCID: PMC9686736 DOI: 10.3390/antiox11112202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy failure and poor tumor prognosis are primarily attributed to radioresistance. Improving the curative effect of radiotherapy and delaying cancer progression have become difficult problems for clinicians. Glucose metabolism has long been regarded as the main metabolic process by which tumor cells meet their bioenergetic and anabolic needs, with the complex interactions between the mitochondria and tumors being ignored. This misconception was not dispelled until the early 2000s; however, the cellular molecules and signaling pathways involved in radioresistance remain incompletely defined. In addition to being a key metabolic site that regulates tumorigenesis, mitochondria can influence the radiation effects of malignancies by controlling redox reactions, participating in oxidative phosphorylation, producing oncometabolites, and triggering apoptosis. Therefore, the mitochondria are promising targets for the development of novel anticancer drugs. In this review, we summarize the internal relationship and related mechanisms between mitochondrial metabolism and cancer radioresistance, thus exploring the possibility of targeting mitochondrial signaling pathways to reverse radiation insensitivity. We suggest that attention should be paid to the potential value of mitochondria in prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
23
|
Delicaflavone Represses Lung Cancer Growth by Activating Antitumor Immune Response through N6-Methyladenosine Transferases and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8619275. [PMID: 35979397 PMCID: PMC9377966 DOI: 10.1155/2022/8619275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
Our previous studies have shown that delicaflavone (DLL), a biocomponent extracted from Selaginella doederleinii Hieron, has antitumor activity. However, the role of DLL in the antitumor immune response is unknown. In this study, we tested the potential roles of DLL in antitumor immune response. An animal tumor model with Lewis lung cancer cell line (3LL) in C57BL/6 mice was established to determine whether DLL induced the tumor-bearing host's antitumor immune response. m6A-MeRIP-qPCR, western blot, and flow cytometry were performed to explore the underlying mechanisms. DLL inhibited the proliferation of 3LL lung cancer cells in vitro and in vivo and induced tumor cell oxidative stress. DLL significantly inhibited tumor growth in immunocompetent mice compared with nude mice. DLL treatment significantly increased Th1 cytokine production and CD8+ T cell infiltration into tumor tissues in tumor-bearing mice. DLL-mediated antitumor immune effects were reversed by overexpression of the N6-methyladenosine (m6A) transferase Mettl3/Mettl14. Mechanistically, DLL upregulated the expression of Stat1 and Irf1 and the secretion of cytokines by inhibiting Mettl3 and Mettl14 in lung cancer cells. In conclusion, DLL inhibited lung cancer cell growth by suppressing Mettl3/Mettl14 to activate antitumor immunity. These findings provided an opportunity to enhance lung cancer immunotherapy.
Collapse
|
24
|
Noser A, Shehadi IA, Abdelmonsef AH, Salem MM. Newly Synthesized Pyrazolinone Chalcones as Anticancer Agents via Inhibiting the PI3K/Akt/ERK1/2 Signaling Pathway. ACS OMEGA 2022; 7:25265-25277. [PMID: 35910116 PMCID: PMC9330109 DOI: 10.1021/acsomega.2c02181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A series of novel pyrazolinone chalcones 3-9 have been synthesized through the condensation of azo pyrazolinone derivatives with various aromatic aldehydes. Spectroscopic techniques and elemental analysis have both corroborated this. Furthermore, all compounds were screened in silico for their ability to inhibit cancer proliferation and metastasis by targeting the PI3K/Akt signaling pathway. This inhibitory pathway might be an efficient approach for the death of cancer cells, angiogenesis, and metastasis prevention. Our results indicated that only compound 6b was the top-ranked. It demonstrated the highest binding energies of -11.1 and -10.7 kcal/mol against the target proteins PI3K and Akt, respectively; thus, it was chosen for in vitro studies. Compound 6b exhibited the most effective cytotoxic impact against the Caco cell line with IC50 of 23.34 ± 0.14 μM. Furthermore, it showed significant inhibition of PI3K/Akt proteins and oxidative stress, leading to elevated Bax and p53 expression, reduced Bcl-2 expression, and triggered cell cycle arrest at the sub-G0/G1 phase. Additionally, it showed significant downregulation of the Raf-1 gene, leading to ERK1/2 protein inhibition. These findings demonstrate that compound 6b obeyed Lipinski's rule of five and might be used as a favored scaffold for cancer treatment by inhibiting proliferation and metastasis via inhibition of the PI3K/Akt and Raf-1/ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Ahmed
A. Noser
- Organic
Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ihsan A. Shehadi
- Department
of Chemistry, Pure and Applied Chemistry Research Group, College of
Sciences, University of Sharjah, Sharjah 27272, UAE
| | | | - Maha M. Salem
- Biochemistry
Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
25
|
Español A, Sanchez Y, Salem A, Obregon J, Sales ME. Nicotinic receptors modulate antitumor therapy response in triple negative breast cancer cells. World J Clin Oncol 2022; 13:505-519. [PMID: 35949430 PMCID: PMC9244968 DOI: 10.5306/wjco.v13.i6.505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Triple negative breast cancer is more aggressive than other breast cancer subtypes and constitutes a public health problem worldwide since it has high morbidity and mortality due to the lack of defined therapeutic targets. Resistance to chemotherapy complicates the course of patients’ treatment. Several authors have highlighted the participation of nicotinic acetylcholine receptors (nAChR) in the modulation of conventional chemotherapy treatment in cancers of the airways. However, in breast cancer, less is known about the effect of nAChR activation by nicotine on chemotherapy treatment in smoking patients.
AIM To investigate the effect of nicotine on paclitaxel treatment and the signaling pathways involved in human breast MDA-MB-231 tumor cells.
METHODS Cells were treated with paclitaxel alone or in combination with nicotine, administered for one or three 48-h cycles. The effect of the addition of nicotine (at a concentration similar to that found in passive smokers’ blood) on the treatment with paclitaxel (at a therapeutic concentration) was determined using the 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The signaling mediators involved in this effect were determined using selective inhibitors. We also investigated nAChR expression, and ATP “binding cassette” G2 drug transporter (ABCG2) expression and its modulation by the different treatments with Western blot. The effect of the treatments on apoptosis induction was determined by flow cytometry using annexin-V and 7AAD markers.
RESULTS Our results confirmed that treatment with paclitaxel reduced MDA-MB-231 cell viability in a concentration-dependent manner and that the presence of nicotine reversed the cytotoxic effect induced by paclitaxel by involving the expression of functional α7 and α9 nAChRs in these cells. The action of nicotine on paclitaxel treatment was linked to modulation of the protein kinase C, mitogen-activated protein kinase, extracellular signal-regulated kinase, and NF-κB signaling pathways, and to an up-regulation of ABCG2 protein expression. We also detected that nicotine significantly reduced the increase in cell apoptosis induced by paclitaxel treatment. Moreover, the presence of nicotine reduced the efficacy of paclitaxel treatment administered in three cycles to MDA-MB-231 tumor cells.
CONCLUSION Our findings point to nAChRs as responsible for the decrease in the chemotherapeutic effect of paclitaxel in triple negative tumors. Thus, nAChRs should be considered as targets in smoking patients.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jaqueline Obregon
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Maria Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
26
|
The therapeutic potential of γ-Al 2O 3 nanoparticle containing 5-fluorouracil in the treatment of colorectal cancer. Tissue Cell 2022; 76:101755. [PMID: 35220126 DOI: 10.1016/j.tice.2022.101755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/07/2023]
Abstract
5-Fluorouracil (5-FU) is being used in the treatment of several malignancies, but side effects are often reported and include: diarrhea, vomiting, nausea, poor appetite, watery eyes, and photophobia. We have developed and tested the cytotoxic activity of nanocrystalline powder of γ-alumina (γ-Al2O3) containing 5-FU in two-dimensional and three-dimensional (3D) CRC cell culture. γ-Al2O3 was prepared using a facile sol-gel method. The physicochemical properties of nanoparticles were investigated by Fourier Transform Infrared (FTIR) analysis, Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray Analysis (EDXA). Moreover, the particle size was monitored by Transmission Electron Microscopy (TEM). We used MTT and a scratch assay to assess the antiproliferative and anti-migratory of this agent. The effect of γ-Al2O3-5-FU on SOD, MDA, and total-thiols levels were evaluated. We assessed the expression of apoptotic markers in mRNA or proteins by RT-PCR and ELISA respectively. γ-Al2O3-5-FU inhibited cell growth in two-dimensional (2D) and three-dimensional (3D) cell culture and increased apoptosis as detected by DAPI stainning via modulation of caspases, BAx, BCl2 and cyclinD1. γ-Al2O3-5-FU also reduced the migratory activity of CRC cells relative to untreated controls. γ-Al2O3-5-FU increased the level of MDA, while reducing the level of SOD and total-thiols as well as inflamatory markers (e.g., TNF-s and IL-6). Our study demonstrated that γ-Al2O3-5-FU inhibited cell growth and migration, indicating its potential value in the treatment of colorectal cancer.
Collapse
|
27
|
Shao S, Zhuang X, Zhang L, Qiao T. Antidepressants Fluoxetine Mediates Endoplasmic Reticulum Stress and Autophagy of Non-Small Cell Lung Cancer Cells Through the ATF4-AKT-mTOR Signaling Pathway. Front Pharmacol 2022; 13:904701. [PMID: 35620287 PMCID: PMC9127500 DOI: 10.3389/fphar.2022.904701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Fluoxetine, one of the latest clinical antidepressants, is reported to have the anti-proliferative effect on cancer cells via immune-related pathways. However, the mechanism is still not known. This study mainly focused on the discovery of the molecular basis of the inhibitory effect of fluoxetine in lung cancer. The specific anti-proliferation effect and autophagy induced by fluoxetine on lung cancer cell were shown in CCK8 and immunofluorescence. The RNA sequence hinted that the endoplasmic reticulum (ER) stress-related protein and mTOR pathway were enriched after fluoxetine treatment. Western blot results revealed that the ER stress pathway was activated by fluoxetine, including PERK, ATF4, and CHOP, while the AKT/mTOR pathway was inhibited. In addition, the transfection of ATF4 siRNA further discovered that ER stress participated in the inhibition of AKT/mTOR pathway and the induction of anti-proliferation and autophagy in the fluoxetine-treated cells. More importantly, fluoxetine was demonstrated to play cytotoxic activity in cancer cells without affecting normal cells. Our results showed that fluoxetine triggered the ATF4-AKT-mTOR signaling pathway to induce cell cycle arrest and autophagy restraining cancer cells’ growth in lung cancer. This study found fluoxetine unaffected the proliferation of normal lung epithelial cells, providing safe clinical therapeutic strategies for lung cancer patients with depression.
Collapse
Affiliation(s)
- Shali Shao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lin Zhang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Chen T, Wang Z, Zhong J, Zhang L, Zhang H, Zhang D, Xu X, Zhong X, Wang J, Li H. Secoisolariciresinol diglucoside induces pyroptosis by activating caspase-1 to cleave GSDMD in colorectal cancer cells. Drug Dev Res 2022; 83:1152-1166. [PMID: 35472101 PMCID: PMC9543314 DOI: 10.1002/ddr.21939] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022]
Abstract
Secoisolariciresinol diglucoside (SDG) is the main component of lignans with various biological activities, including anticancer activity. However, whether SDG has obvious anticancer effects on colorectal cancer (CRC) is unclear. Pyroptosis, a form of programmed cell death, has received increasing attention in cancer‐related research. In this study, we aimed to test the anticancer properties and relatecd functional mechanisms of SDG. we found that SDG not only inhibited the cell viability of HCT116 cells, but also induced HCT116 cells to swell with apparent large bubbles, which are typical signs of pyroptosis. Furthermore, SDG induced cell pyroptosis by enhancing cleavage of the N‐terminal fragment of gasdermin D (GSDMD) in CRC cells, accompanied by increased caspase‐1 cleavage. Consistent with this, SDG‐induced GSDMD‐N‐terminal fragment cleavage and pyroptosis were reduced by siRNA‐mediated silencing of caspase‐1 or treatment with the specific caspase‐1 inhibitor VX‐765 treatment, suggesting that active caspase‐1 further induces pyroptosis. A mechanistic study showed that SDG induced reactive oxygen species (ROS) accumulation and inhibits phosphatidylinositol 3‐kinase (PI3K) phosphorylation and increases pyroptosis, while increasing GSDMD and caspase‐1 cleavage and enhancing expression of BCL2‐associated X (BAX), which could be rescued by the ROS scavenger (NAC), suggesting that SDG‐induced GSDME‐dependent pyroptosis is related to the ROS/PI3K/AKT/BAX‐mitochondrial apoptotic pathway. In vivo results showed that SDG significantly inhibited tumor growth and induced pyroptosis in the HCT116‐CRC nude mouse model. In conclusion, our findings suggest that the anticancer activity of SDG in CRC is associated with the induction of GSDMD‐dependent pyroptosis by SDG through the generation of ROS/P13K/AKT/BAK‐mitochondrail apoptosis pathway, providing insights into SDG in its potential new application in cancer treatment.
Collapse
Affiliation(s)
- Tuo Chen
- Department of Burn and Plastic Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, China.,Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhen Wang
- Department of Gastroenterology, The People's Hospital of Leshan, Leshan, Sichuan, China
| | - Junbo Zhong
- Department of Burn and Plastic Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Lijun Zhang
- Respiratory and Critical Care Medicine, Yanzhou Branch of Affiliated Hospital of Jining Medical University, Jining, China
| | - Haopeng Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dayong Zhang
- Department of Urinary Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Xiaofeng Xu
- Department of Urinary Surgery, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Xianfei Zhong
- Department of Gastroenterology, The People's Hospital of Leshan, Leshan, Sichuan, China
| | - Jing Wang
- Xi'an Medical University School of Stomatolog, Xi'an, Shanxi, China
| | - Hai Li
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
29
|
CDC42 Regulates Cell Proliferation and Apoptosis in Bladder Cancer via the IQGAP3-Mediated Ras/ERK Pathway. Biochem Genet 2022; 60:2383-2398. [PMID: 35412170 DOI: 10.1007/s10528-022-10223-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Bladder cancer (BC) is the most common malignant tumour of the urinary system. The current conventional treatments for BC have certain limitations. It is very urgent and necessary to find new treatment strategies for BC. Our study elucidated the underlying regulatory mechanisms of cell division control protein 42 homologue (CDC42) to regulate the development of BC. Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence and immunohistochemistry were used to assess the expression of CDC42 and IQ motif-containing GTPase-activating protein 3 (IQGAP3) in BC tissues and BC cells. We induced the knockdown or overexpression by transfecting sh-CDC42 or oe-IQGAP3 into BC cells. In addition, cell proliferation and apoptosis were evaluated by cell counting kit-8 and flow cytometry assays, respectively. Moreover, proteins involved in the rat sarcoma (Ras)/extracellular regulated protein kinase (ERK) pathway were determined by Western blot. The expression of CDC42 and IQGAP3 was markedly upregulated in both BC tissues and BC cells. CDC42 silencing downregulated the expression of IQGAP3 and suppressed the Ras/ERK pathway. In addition, CDC42 silencing markedly promoted apoptosis and inhibited proliferation in BC cells. Further experiments showed that overexpression of IQGAP3 dramatically abolished the bioeffects mediated by CDC42 silencing on the proliferation and apoptosis of BC cells. All our results suggested that CDC42 promoted the Ras/ERK pathway by regulating IQGAP3, thus enhancing cell proliferation and suppressing cell apoptosis in BC cells and ultimately participating in the pathogenesis of BC.
Collapse
|
30
|
The CBS-H 2S axis promotes liver metastasis of colon cancer by upregulating VEGF through AP-1 activation. Br J Cancer 2022; 126:1055-1066. [PMID: 34952931 PMCID: PMC8979992 DOI: 10.1038/s41416-021-01681-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The main therapy for colon cancer with liver metastasis is chemotherapy based on 5-fluorouracil combined with targeted drugs. However, acquired drug resistance and severe adverse reactions limit patients' benefit from standard chemotherapy. Here, we investigate the involvement of endogenous hydrogen sulfide (H2S) in liver metastasis of colon cancer and its potential value as a novel therapeutic target. METHODS We used the CRISPR/Cas9 system to knockdown CBS gene expression in colon cancer cell lines. PCR arrays and proteome arrays were applied to detect the transcription and protein expression levels, respectively, of angiogenesis-related genes after knockdown. The molecular mechanism was investigated by western blot analysis, RT-qPCR, immunofluorescence staining, ChIP assays and dual-luciferase reporter assays. A liver metastasis mouse model was adopted to investigate the effect of targeting CBS on tumour metastasis in vivo. RESULTS Knockdown of CBS decreased the metastasis and invasion of colon cancer cells and inhibited angiogenesis both in vivo and in vitro. Tissue microarray analysis showed a positive correlation between CBS and VEGF expression in colon cancer tissues. Further analysis at the molecular level validated a positive feedback loop between the CBS-H2S axis and VEGF. CONCLUSIONS Endogenous H2S promotes angiogenesis and metastasis in colon cancer, and targeting the positive feedback loop between the CBS-H2S axis and VEGF can effectively intervene in liver metastasis of colon cancer.
Collapse
|
31
|
Hu Q, Zheng J, Xu XN, Gu C, Li W. Uranium induces kidney cells apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture. ENVIRONMENTAL TOXICOLOGY 2022; 37:899-909. [PMID: 35044038 DOI: 10.1002/tox.23453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
Uranium (U) induces generation of excessive intracellular reactive oxygen species (ROS), which is generally considered as a possible mediator of U-triggered kidney tubular cells injury and nephrotoxicity. Our goal is designed to elucidate that the precise molecular mechanism in ROS downstream is association with U-induced NRK-52E cells apoptosis. The results show that U intoxication in NRK-52E cells reduced cell activity and triggered apoptosis, as demonstrated by flow cytometry and apoptotic marker cleaved Caspase-3 expression. U exposure triggered endoplasmic reticulum (ER) stress, which is involvement of apoptosis determined by marker molecules including GRP78, PERK, IRE1, ATF6, CHOP, cleaved Caspase-12, and Caspase-3. Administration of antioxidant N-acetylcysteine (NAC) effectively blocked U-triggered ROS generation, ER stress, and apoptosis. U contamination evidently decreased the expression of phosphorylation PI3K, AKT, and mTOR and ratios of their respective phosphorylation to the corresponding total proteins. Application of a PI3K activator IGF-1 significantly abolished these adverse effects of U intoxication on PI3K/AKT/mTOR signaling and subsequently abrogated U-triggered apoptosis. NAC also effectively reversed down-regulation of phosphorylated PI3K induced by U exposure. Taken together, these data strongly suggest that U treatment induces NRK-52E cells apoptosis through ROS production, ER stress, and down-regulation of PI3K/AKT/mTOR signaling. Targeting ROS formation-, ER stress-, and PI3K/AKT/mTOR pathway-mediated apoptosis could be a novel approach for attenuating U-triggered nephrotoxicity.
Collapse
Affiliation(s)
- Qiaoni Hu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jifang Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Xiao Na Xu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
32
|
Wang Y, Han Y, Wang Y, Lv M, Li Y, Niu D. Expression of p38MAPK and its regulation of apoptosis under high temperature stress in the razor clam Sinonovacula constricta. FISH & SHELLFISH IMMUNOLOGY 2022; 122:288-297. [PMID: 35172214 DOI: 10.1016/j.fsi.2022.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
p38MAPK is a key branch of the MAPK (mitogen-activated protein kinase) pathway that plays an important role in physiological processes such as apoptosis, cell proliferation and growth. In this experiment, we screened and identified one p38MAPK gene in the razor clam Sinonovacula constricta, which encoded 359 amino acids and was widely expressed in various adult tissues. After 24 h of high temperature stress at 34 °C, the transcript expression of p38MAPK showed significant changes in all tested tissues. In particular in the gill and hepatopancreas tissues, where the expression increased 1.81 and 7.83 times compared with the control group, respectively (P < 0.01). Furthermore, we examined the expression of the apoptosis suppressor gene Bcl-2 and pro-apoptosis gene Bax by knock-down of p38MAPK with dsRNA interference in the gill and hepatopancreas tissues. The obvious up-regulation expression of Bcl-2 and significant suppression of Bax were observed, respectively (P < 0.01). Moreover, the TUNEL staining technique was used to detect apoptosis before and after interference. The degree of apoptosis in the gill and hepatopancreas tissues was reduced after interference with p38MAPK, and the ROS content was significantly reduced (P < 0.01). The results suggested that p38MAPK had a regulatory role in the heat tolerance of razor clams.
Collapse
Affiliation(s)
- Yizhen Wang
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuting Han
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanhui Wang
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Lv
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Donghong Niu
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
33
|
Michalkova R, Kello M, Kudlickova Z, Gazdova M, Mirossay L, Mojzisova G, Mojzis J. Programmed Cell Death Alterations Mediated by Synthetic Indole Chalcone Resulted in Cell Cycle Arrest, DNA Damage, Apoptosis and Signaling Pathway Modulations in Breast Cancer Model. Pharmaceutics 2022; 14:503. [PMID: 35335879 PMCID: PMC8953149 DOI: 10.3390/pharmaceutics14030503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Although new chemotherapy significantly increased the survival of breast cancer (BC) patients, the use of these drugs is often associated with serious toxicity. The discovery of novel anticancer agents for BC therapy is expected. This study was conducted to explore the antiproliferative effect of newly synthesized indole chalcone derivative ZK-CH-11d on human BC cell lines. MTT screening, flow cytometry, Western blot, and fluorescence microscopy were used to evaluate the mode of cell death. ZK-CH-11d significantly suppressed the proliferation of BC cells with minimal effect against non-cancer cells. This effect was associated with cell cycle arrest at the G2/M phase and apoptosis induction. Apoptosis was associated with cytochrome c release, increased activity of caspase 3 and caspase 7, PARP cleavage, reduced mitochondrial membrane potential, and activation of the DNA damage response system. Furthermore, our study demonstrated that ZK-CH-11d increased the AMPK phosphorylation with simultaneous inhibition of the PI3K/Akt/mTOR pathway indicating autophagy initiation. However, chloroquine, an autophagy inhibitor, significantly potentiated the cytotoxic effect of ZK-CH-11d in MDA-MB-231 cells indicating that autophagy is not principally involved in the antiproliferative effect of ZK-CH-11d. Taking together the results from our experiments, we assume that autophagy was activated as a defense mechanism in treated cells trying to escape from chalcone-induced harmful effects.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| | - Zuzana Kudlickova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Maria Gazdova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| | - Gabriela Mojzisova
- Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (R.M.); (M.G.); (L.M.)
| |
Collapse
|
34
|
Effects of quercetin on tenderness, apoptotic and autophagy signalling in chickens during post-mortem ageing. Food Chem 2022; 383:132409. [PMID: 35176713 DOI: 10.1016/j.foodchem.2022.132409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
The effect of quercetin on chicken breast muscle tenderness and the associated mechanism were investigated. The results indicated that quercetin significantly decreased the shear force and increased the myofibril fragmentation index (MFI). Haematoxylin-eosin-stained images showed that the internal structure of myofibril bundles in the quercetin-treated group was obviously degraded. Transmission electron microscopy showed that the myofibril structure, especially the M-line and A-band, was seriously degraded after quercetin treatment. Furthermore, quercetin treatment increased caspase-3 activity and the Bax/Bcl-2 ratio. The intensity of BiP, XBP1 and p-IRE1/IRE1 ratio increased significantly, and caspase-12 was activated. In addition, quercetin induced the transition from LC3I to LC3II and increased the expression of ATG7 and Beclin-1. The PI3K/Akt/mTOR signalling pathway was involved in the induction of autophagy and apoptosis by quercetin. These results indicated quercetin can promote meat tenderization, and activate apoptosis and autophagy pathways during post-mortem ageing.
Collapse
|
35
|
Govindarasu M, Abirami P, Rajakumar G, Ansari MA, Alomary MN, Aba Alkhayl FF, Aloliqi AA, Thiruvengadam M, Vaiyapuri M. Kaempferitrin inhibits colorectal cancer cells by inducing reactive oxygen species and modulating PI3K/AKT signalling pathway. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Chen B, Luo H, Chen W, Huang Q, Zheng K, Xu D, Li S, Liu A, Huang L, Zheng Y, Lin X, Yao H. Pharmacokinetics, Tissue Distribution, and Human Serum Albumin Binding Properties of Delicaflavone, a Novel Anti-Tumor Candidate. Front Pharmacol 2021; 12:761884. [PMID: 34867382 PMCID: PMC8635734 DOI: 10.3389/fphar.2021.761884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 01/12/2023] Open
Abstract
Delicaflavone (DF), a natural active ingredient from Selaginella doederleinii Hieron, has been reported to have favorable anticancer effects and is thus considered a potential anticancer agent. However, its pharmacokinetics and plasma protein binding properties remain unknown. Here, we investigated the pharmacokinetic profile of DF in rats using a validated HPLC-MS/MS methods, as well as its human serum albumin (HSA) binding properties through multi-spectroscopic and in silico methods. The results showed that DF was rapidly eliminated and had a widespread tissue distribution after intravenous administration. DF showed linear dynamics in the dose range of 30–60 mg/kg and poor oral bioavailability. The major distribution tissues of DF were the liver, lungs, and kidneys. Ultraviolet and fluorescence spectroscopy and molecular docking demonstrated that DF had a static quenching effect on HSA, with one binding site, and relatively strong binding constants. Thermodynamic analysis of the binding data revealed that hydrogen bonding and van der Waals interactions played major roles in binding. The results of this study further our understanding of the pharmacokinetic and plasma protein binding properties of the potential anticancer agent DF and shed light on pharmacological strategies that may be useful for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hongbin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Department of Orthopedic, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiying Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Department of Pharmacy, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Qishu Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kaifan Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Tan X, Gong L, Li X, Zhang X, Sun J, Luo X, Wang Q, Chen J, Xie L, Han S. Promethazine inhibits proliferation and promotes apoptosis in colorectal cancer cells by suppressing the PI3K/AKT pathway. Biomed Pharmacother 2021; 143:112174. [PMID: 34560542 DOI: 10.1016/j.biopha.2021.112174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the potential effect of promethazine on colorectal cancer (CRC) cells and the underlying mechanism. MATERIALS AND METHODS Targets of the drug promethazine (PMTZ) were identified by DrugBank and comparative toxicogenomic databases (CTD), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed with STRING software. The effects of PMTZ were predicted to be associated with the PI3K/AKT pathway. Cell Counting Kit 8 (CCK-8) assays were used to evaluate the effects of different concentrations of PMTZ on the proliferation of various types of CRC cells. Flow cytometry and Western blotting analyses were used to detect the degree of CRC cell apoptosis and the expression of the apoptosis-related proteins Bcl-2, Bax and caspase-3 after PMTZ treatment. The expression levels of PI3K/AKT pathway-related proteins [PI3K, AKT, phosphorylated (P)-PI3K and p-AKT] in CRC cells treated with PMTZ were analyzed by Western blotting. RESULTS PMTZ inhibited the proliferation and promoted the apoptosis of CRC cells and suppressed the activation of the PI3K/AKT signaling pathway in a dose-dependent manner. DISCUSSION AND CONCLUSIONS PMTZ may suppress the proliferation and induce the apoptosis of CRC cells by inhibiting the PI3K/ AKT signaling pathway. This study reported, for the first time, the function of PMTZ in CRC cells and the underlying mechanism and further confirmed the potential antitumor effects of phenothiazine. The combination of bioinformatics analyses and experiments provides informative evidence for the reuse of drugs and the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Tan
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Xinyue Li
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Xinyue Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Jiahao Sun
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Xuehui Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Qi Wang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Jie Chen
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Lina Xie
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China.
| |
Collapse
|
38
|
Cai S, Li Q, Zhou H, Xu Y, Song J, Gan C, Qi Z, Qi S. [Mechanism of PI3K/AKT/mTOR signaling pathway for mediating anti-inflammatory and anti-oxidant effects of chrysin: a protein microarray-based study]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1554-1561. [PMID: 34755672 DOI: 10.12122/j.issn.1673-4254.2021.10.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the mechanism of PI3K/AKT/mTOR signaling pathway for mediating the anti-inflammatory and anti-oxidant effects of chrysin. METHODS RAW264.7 cells were treated with different concentrations of chrysin for 24 h, and the changes in cell viability were detected using CCK-8 method. The cells with or without chrysin pretreatment for 2 h were stimulated with lipopolysaccharide (LPS) for different lengths of time, and the related signal molecules were screened using protein chip technique. In cells pretreated with chrysin for 2 h followed by LPS stimulation for 18 h, the release of IL-6, MCP-1 and TNF-α by the cells was detected with ELISA, and NO production was examined using Griess method, and ROS level was determined using DCFH-DA. The effects of chrysin, LPS, and their combination on the mRNA expressions of iNOS and COX-2 were detected using RT-PCR; Western blotting was performed to examine the changes in cellular expressions of p-AKT, p-PRAS40, p-mTOR, mTOR, p-P70S6k, p-S6RP and S6RP following the treatments with LPS, N-Acetyl-L-cysteine, and chrysin, alone or in combinations. RESULTS Chrysin below 60 μg/mL did not significantly affect the viability of RAW264.7 cells (P>0.05). Chrysin treatment significantly reduced the release of IL-6, MCP-1, and TNF-α and the level of NO (P < 0.01), and inhibited the mRNA and protein expressions of iNOS and COX-2 (P < 0.01) in the cells. The results of protein chip screening suggested that LPS could activate the AKT/mTOR pathway, which was significantly inhibited by chrysin pretreatment, and the results were verified by Western blotting (P < 0.01). Chrysin treatment significantly reduced the generation of endogenous ROS, and treatment with N-Acetyl-L-cysteine to eliminate intracellular ROS obviously reduced the expressions of iNOS and COX-2 (P < 0.05) and blocked the AKT/mTOR pathway (P < 0.05). CONCLUSION Chrysin can inhibit the synthesis of the upstream signaling molecule ROS to inhibit the activation of AKT/mTOR signaling pathway, regulate the translation process of ribosomes, down-regulate the synthesis and release of pro-inflammatory cytokines and inflammatory mediators, and thus produce anti-inflammatory effects.
Collapse
Affiliation(s)
- S Cai
- Key Laboratory of Active Macromolecules, Wannan Medical College, Wuhu 241002, China
| | - Q Li
- Key Laboratory of Active Macromolecules, Wannan Medical College, Wuhu 241002, China.,Department of Human Anatomy, Wannan Medical College, Wuhu 241002, China
| | - H Zhou
- Key Laboratory of Active Macromolecules, Wannan Medical College, Wuhu 241002, China
| | - Y Xu
- Key Laboratory of Active Macromolecules, Wannan Medical College, Wuhu 241002, China
| | - J Song
- Key Laboratory of Active Macromolecules, Wannan Medical College, Wuhu 241002, China
| | - C Gan
- Key Laboratory of Active Macromolecules, Wannan Medical College, Wuhu 241002, China
| | - Z Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Key Laboratory of Active Macromolecules, Wannan Medical College, Wuhu 241002, China
| | - S Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Key Laboratory of Active Macromolecules, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
39
|
He X, Yang F, Huang X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021; 26:molecules26196088. [PMID: 34641631 PMCID: PMC8512048 DOI: 10.3390/molecules26196088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023] Open
Abstract
Biflavonoids, composed of two monoflavonoid residues, occur naturally in angiosperms, bryophytes, ferns, and gymnosperms. More than 592 biflavonoids have been structurally elucidated, and they can be classified into two groups of C-C and C-linear fragments-C, based on whether the linker between the two residues contains an atom. As the linker can be established on two arbitrary rings from different residues, the C-C type contains various subtypes, as does the C-linear fragment-C type. Biflavonoids have a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, antidiabetic, antitumor, and cytotoxic properties, and they can be applied in Alzheimer's disease and Parkinson's disease. This review mainly summarizes the distribution and chemistry of biflavonoids; additionally, their bioactivities, pharmacokinetics, and synthesis are discussed.
Collapse
Affiliation(s)
- Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Fan Yang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Xin’an Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Correspondence: ; Tel.: +86-020-36585450
| |
Collapse
|
40
|
Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR, Jinga M. Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int J Mol Sci 2021; 22:ijms221910260. [PMID: 34638601 PMCID: PMC8508474 DOI: 10.3390/ijms221910260] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a predominant malignancy worldwide, being the fourth most common cause of mortality and morbidity. The CRC incidence in adolescents, young adults, and adult populations is increasing every year. In the pathogenesis of CRC, various factors are involved including diet, sedentary life, smoking, excessive alcohol consumption, obesity, gut microbiota, diabetes, and genetic mutations. The CRC tumor microenvironment (TME) involves the complex cooperation between tumoral cells with stroma, immune, and endothelial cells. Cytokines and several growth factors (GFs) will sustain CRC cell proliferation, survival, motility, and invasion. Epidermal growth factor receptor (EGFR), Insulin-like growth factor -1 receptor (IGF-1R), and Vascular Endothelial Growth Factor -A (VEGF-A) are overexpressed in various human cancers including CRC. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and all the three major subfamilies of the mitogen-activated protein kinase (MAPK) signaling pathways may be activated by GFs and will further play key roles in CRC development. The main aim of this review is to present the CRC incidence, risk factors, pathogenesis, and the impact of GFs during its development. Moreover, the article describes the relationship between EGF, IGF, VEGF, GFs inhibitors, PI3K/AKT/mTOR-MAPK signaling pathways, and CRC.
Collapse
Affiliation(s)
- Constantin Stefani
- Department of Family Medicine and Clinical Base, ‘‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
- Correspondence: (D.M.); (M.G.)
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
| | - Remus Iulian Nica
- Surgery 2, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
- Correspondence: (D.M.); (M.G.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
| | - Mariana Jinga
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| |
Collapse
|
41
|
Melatonin Induces Autophagy via Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress Pathway in Colorectal Cancer Cells. Molecules 2021; 26:molecules26165038. [PMID: 34443626 PMCID: PMC8400139 DOI: 10.3390/molecules26165038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5′–adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
Collapse
|
42
|
Goossens JF, Goossens L, Bailly C. Hinokiflavone and Related C-O-C-Type Biflavonoids as Anti-cancer Compounds: Properties and Mechanism of Action. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:365-377. [PMID: 33534099 PMCID: PMC7856339 DOI: 10.1007/s13659-021-00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Biflavonoids are divided in two classes: C-C type compounds represented by the dimeric compound amentoflavone and C-O-C-type compounds typified by hinokiflavone (HNK) with an ether linkage between the two connected apigenin units. This later sub-group of bisflavonyl ethers includes HNK, ochnaflavone, delicaflavone and a few other dimeric compounds, found in a variety of plants, notably Selaginella species. A comprehensive review of the anticancer properties and mechanism of action of HNK is provided, to highlight the anti-proliferative and anti-metastatic activities of HNK and derivatives, and HNK-containing plant extracts. The anticancer effects rely on the capacity of HNK to interfere with the ERK1-2/p38/NFκB signaling pathway and the regulation of the expression of the matrix metalloproteinases MMP-2 and MMP-9 (with a potential direct binding to MMP-9). In addition, HNK was found to function as a potent modulator of pre-mRNA splicing, inhibiting the SUMO-specific protease SENP1. As such, HNK represents a rare SENP1 inhibitor of natural origin and a scaffold to design synthetic compounds. Oral formulations of HNK have been elaborated to enhance its solubility, to facilitate the compound delivery and to enhance its anticancer efficacy. The review shed light on the anticancer potential of C-O-C-type biflavonoids and specifically on the pharmacological profile of HNK. This compound deserves further attention as a regulator of pre-mRNA splicing, useful to treat cancers (in particular hepatocellular carcinoma) and other human pathologies.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | - Laurence Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | | |
Collapse
|
43
|
Chen NY, Lu K, Yuan JM, Li XJ, Gu ZY, Pan CX, Mo DL, Su GF. 3-Arylamino-quinoxaline-2-carboxamides inhibit the PI3K/Akt/mTOR signaling pathways to activate P53 and induce apoptosis. Bioorg Chem 2021; 114:105101. [PMID: 34175723 DOI: 10.1016/j.bioorg.2021.105101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023]
Abstract
Thirty-eight new 3-arylaminoquinoxaline-2-carboxamide derivatives were in silico designed, synthesized and their cytotoxicity against five human cancer cell lines and one normal cells WI-38 were evaluated. Molecular mechanism studies indicated that N-(3-Aminopropyl)-3-(4-chlorophenyl) amino-quinoxaline-2-carboxamide (6be), the compound with the most potent anti-proliferation can inhibit the PI3K-Akt-mTOR pathway via down regulating the levels of PI3K, Akt, p-Akt, p-mTOR and simultaneously inhibit the phosphorylation of Thr308 and Ser473 residues in Akt kinase to servers as a dual inhibitor. Further investigation revealed that 6be activate the P53 signal pathway, modulated the downstream target gene of Akt kinase such p21, p27, Bax and Bcl-2, caused the fluctuation of intracellular ROS, Ca2+ and mitochondrial membrane potential to induce cell cycle arrest and apoptosis in MGC-803 cells. 6be also display moderate anti-tumor activity in vivo while displaying no obvious adverse signs during the drug administration. The results suggest that 3-arylaminoquinoxaline-2-carboxamide derivatives might server as new scaffold for development of PI3K-Akt-mTOR inhibitor.
Collapse
Affiliation(s)
- Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Ke Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Jing-Mei Yuan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Xiao-Juan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Zi-Yu Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
44
|
Sahai R, Bhattacharjee A, Shukla VN, Yadav P, Hasanain M, Sarkar J, Narender T, Mitra K. Gedunin isolated from the mangrove plant Xylocarpus granatum exerts its anti-proliferative activity in ovarian cancer cells through G2/M-phase arrest and oxidative stress-mediated intrinsic apoptosis. Apoptosis 2021; 25:481-499. [PMID: 32399945 DOI: 10.1007/s10495-020-01605-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gedunin is a natural tetranorterpenoid secondary metabolite found in plants of the Meliaceae family, which has been reported for its antiparasitic, antifungal and anticancer activities. Here, we describe the molecular mechanisms underlying the in vitro anti proliferative activity of gedunin (isolated from the mangrove plant Xylocarpus granatum) in human ovarian cancer cells. We observed that gedunin triggered severe ROS generation leading to DNA damage and cell cycle arrest in G2/M phase thus inhibiting cell proliferation. ROS upregulation also led to mitochondrial stress and membrane depolarization, which eventually resulted in mitochondria-mediated apoptosis following cytochrome C release, caspase 9, 3 activation, and PARP cleavage. Transmission electron microscopy of gedunin treated cells revealed sub-cellular features typical of apoptosis. Moreover, an upregulation in stress kinases like phospho-ERK 1/2, phospho-p38 and phospho-JNK was also observed in gedunin treated cells. Free radical scavenger N-Acetyl-L-Cysteine (NAC) reversed all these effects resulting in increased cell survival, abrogation of cell cycle arrest, rescue of mitochondrial membrane potential and suppression of apoptotic markers. Interestingly, gedunin is also an inhibitor of the evolutionarily conserved molecular chaperone Heat Shock Protein 90 (hsp90) responsible for maintaining cellular homeostasis. Targeting this chaperone could be an attractive strategy for developing cancer therapeutics since many oncogenic proteins are also client proteins of hsp90. Collectively, our findings provide insights into the molecular mechanism of action of gedunin, which may aid drug development efforts against ovarian cancer.
Collapse
Affiliation(s)
- Rohit Sahai
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Arindam Bhattacharjee
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Vishwa Nath Shukla
- Medicinal and Process Chemistry Division, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Pragya Yadav
- Medicinal and Process Chemistry Division, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Mohammad Hasanain
- Division of Biochemistry, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Jayanta Sarkar
- Division of Biochemistry, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - T Narender
- Medicinal and Process Chemistry Division, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
45
|
Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma. Int J Mol Sci 2021; 22:ijms22115938. [PMID: 34073079 PMCID: PMC8197880 DOI: 10.3390/ijms22115938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane (SFN) is a natural glucosinolate found in cruciferous vegetables that acts as a chemopreventive agent, but its mechanism of action is not clear. Due to antioxidative mechanisms being thought central in preventing cancer progression, SFN could play a role in oxidative processes. Since redox imbalance with increased levels of reactive oxygen species (ROS) is involved in the initiation and progression of bladder cancer, this mechanism might be involved when chemoresistance occurs. This review summarizes current understanding regarding the influence of SFN on ROS and ROS-related pathways and appraises a possible role of SFN in bladder cancer treatment.
Collapse
|
46
|
Jia S, Ge S, Fan X, Leong KW, Ruan J. Promoting reactive oxygen species generation: a key strategy in nanosensitizer-mediated radiotherapy. Nanomedicine (Lond) 2021; 16:759-778. [PMID: 33856241 DOI: 10.2217/nnm-2020-0448] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The radiotherapy enhancement effect of numerous nanosensitizers is based on the excessive production of reactive oxygen species (ROS), and only a few systematic reviews have focused on the key strategy in nanosensitizer-mediated radiotherapy. To clarify the mechanism underlying this effect, it is necessary to understand the role of ROS in radiosensitization before clinical application. Thus, the source of ROS and their principle of tumor inhibition are first introduced. Then, nanomaterial-mediated ROS generation in radiotherapy is reviewed. The double-edged sword effect of ROS and the potential dangers they may pose to cancer patients are subsequently addressed. Finally, future perspectives regarding ROS-regulated nanosensitizer applications and development are discussed.
Collapse
Affiliation(s)
- Shichong Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China.,Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
47
|
Colorectal cancer cells promote osteoclastogenesis and bone destruction through regulating EGF/ERK/CCL3 pathway. Biosci Rep 2021; 40:225098. [PMID: 32478376 PMCID: PMC7315727 DOI: 10.1042/bsr20201175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Bone metastasis of colorectal cancer (CRC) cells leads to osteolysis. Aberrant activation of osteoclasts is responsible for bone resorption in tumor. In general, bone marrow-derived monocytes (BMMs) differentiate into osteoclasts, however, how CRC cells interact with BMMs and how to regulate the differentiation is elusive. We here report that CRC cells promote bone resorption in bone metastasis. Transcriptomic profiling revealed CCL3 up-regulated in MC-38 conditional medium treated BMMs. Further investigation demonstrated that CCL3 produced by BMMs facilitated cell infusion and thus promoted the osteoclastogenesis. In addition, CRC cells derived EGF stimulated the production of CCL3 in BMMs through activation of ERK/CREB pathway. Blockage of EGF or CCL3 can efficiently attenuate the osteolysis in bone metastasis of CRC.
Collapse
|
48
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
49
|
Yang H, Jing H, Han X, Tan H, Cheng W. Synergistic Anticancer Strategy of Sonodynamic Therapy Combined with PI-103 Against Hepatocellular Carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:531-542. [PMID: 33603343 PMCID: PMC7886098 DOI: 10.2147/dddt.s296880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/20/2021] [Indexed: 01/15/2023]
Abstract
Purpose Sonodynamic therapy (SDT) is considered a promising therapeutic strategy for the effective elimination of cancer cells. However, developing novel sonosensitizers with potentially high SDT efficacy remains a considerable challenge. Herein, we utilized near-infrared dye IR820 nanobubbles (NBs) combined with a dual PI3K/mTOR inhibitor PI-103 for the SDT treatment of hepatocellular carcinoma (HCC) in vitro. Methods The generated reactive oxygen species (ROS) were quantified using 2,7-dichlorodihydrofluorescein diacetate to determine the feasibility of using IR820 NBs as a potential sonosensitizer. The inhibition effects of the synergistic therapy was examined using the cell counting Kit 8 assay and apoptosis assay. JC-1 staining was performed to study mitochondrial membrane depolarization, and the transwell assay was used for cell migration analysis. Results The particle size and zeta potential of IR820 NBs were 545.5±93.1 nm and −5.19±1.73 mV, respectively. ROS accumulation was observed after HepG2 cells were treated with IR820 NBs under ultrasound irradiation. The SDT combined with PI-103 group inhibited cell viability and migration more strongly than the other groups (P < 0.01). The apoptosis assay also demonstrated a relatively high anti-HCC efficacy with the synergistic therapy, while JC-1 staining showed a decrease in the mitochondrial membrane potential after the combined treatment. Conclusion The combination of SDT and PI-103 was very effective in suppressing HCC proliferation, which might help develop new minimally invasive cancer treatment strategies.
Collapse
Affiliation(s)
- Huajing Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, People's Republic of China
| |
Collapse
|
50
|
Antioxidative Stress: Inhibiting Reactive Oxygen Species Production as a Cause of Radioresistance and Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620306. [PMID: 33628367 PMCID: PMC7884184 DOI: 10.1155/2021/6620306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 02/05/2023]
Abstract
Radiotherapy and chemotherapy are the most effective nonsurgical treatments for cancer treatment. They usually induce regulated cell death by increasing the level of reactive oxygen species (ROS) in tumour cells. However, as intracellular ROS concentration increases, many antioxidant pathways are concurrently upregulated by cancer cells to inhibit ROS production, ultimately leading to drug resistance. Understanding the mechanism of antioxidant stress in tumour cells provides a new research direction for overcoming therapeutic resistance. In this review, we address (1) how radiotherapy and chemotherapy kill tumour cells by increasing the level of ROS, (2) the mechanism by which ROS activate antioxidant pathways and the subsequent cellular mitigation of ROS in radiotherapy and chemotherapy treatments, and (3) the potential research direction for targeted treatment to overcome therapeutic resistance.
Collapse
|