1
|
Sanches K, Ashwood LM, Olushola-Siedoks AAM, Wai DCC, Rahman A, Shakeel K, Naseem MU, Panyi G, Prentis PJ, Norton RS. Structure-function relationships in ShKT domain peptides: ShKT-Ts1 from the sea anemone Telmatactis stephensoni. Proteins 2024; 92:192-205. [PMID: 37794633 DOI: 10.1002/prot.26594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.
Collapse
Affiliation(s)
- Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arfatur Rahman
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Elnahriry KA, Wai DCC, Ashwood LM, Naseem MU, Szanto TG, Guo S, Panyi G, Prentis PJ, Norton RS. Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140952. [PMID: 37640250 DOI: 10.1016/j.bbapap.2023.140952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N-labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch-clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.
Collapse
Affiliation(s)
- Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
3
|
Chandy KG, Sanches K, Norton RS. Structure of the voltage-gated potassium channel K V1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels (Austin) 2023; 17:2253104. [PMID: 37695839 PMCID: PMC10496531 DOI: 10.1080/19336950.2023.2253104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K+ efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in KV channels and can help guide the development of future KV1.3-targeted immuno-therapeutics.
Collapse
Affiliation(s)
- K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Manolios N, Papaemmanouil J, Adams DJ. The role of ion channels in T cell function and disease. Front Immunol 2023; 14:1238171. [PMID: 37705981 PMCID: PMC10497217 DOI: 10.3389/fimmu.2023.1238171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
T lymphocytes (T cells) are an important sub-group of cells in our immune system responsible for cell-mediated adaptive responses and maintaining immune homeostasis. Abnormalities in T cell function, lead the way to the persistence of infection, impaired immunosurveillance, lack of suppression of cancer growth, and autoimmune diseases. Ion channels play a critical role in the regulation of T cell signaling and cellular function and are often overlooked and understudied. Little is known about the ion "channelome" and the interaction of ion channels in immune cells. This review aims to summarize the published data on the impact of ion channels on T cell function and disease. The importance of ion channels in health and disease plus the fact they are easily accessible by virtue of being expressed on the surface of plasma membranes makes them excellent drug targets.
Collapse
Affiliation(s)
- Nicholas Manolios
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology, Westmead Hospital, Sydney, NSW, Australia
| | - John Papaemmanouil
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Pan Y, Kagawa Y, Sun J, Lucas DSD, Takechi R, Mamo JCL, Wai DCC, Norton RS, Jin L, Nicolazzo JA. Peripheral Administration of the Kv1.3-Blocking Peptide HsTX1[R14A] Improves Cognitive Performance in Senescence Accelerated SAMP8 Mice. Neurotherapeutics 2023; 20:1198-1214. [PMID: 37226029 PMCID: PMC10457257 DOI: 10.1007/s13311-023-01387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
Increased expression of the voltage-gated potassium channel Kv1.3 in activated microglia, and the subsequent release of pro-inflammatory mediators, are closely associated with the progression of Alzheimer's disease (AD). Studies have shown that reducing neuroinflammation through the non-selective blockade of microglial Kv1.3 has the potential to improve cognitive function in mouse models of familial AD. We have previously demonstrated that a potent and highly-selective peptide blocker of Kv1.3, HsTX1[R14A], not only entered the brain parenchyma after peripheral administration in a lipopolysaccharide (LPS)-induced mouse model of inflammation, but also significantly reduced pro-inflammatory mediator release from activated microglia. In this study, we show that microglial expression of Kv1.3 is increased in senescence accelerated mice (SAMP8), an animal model of sporadic AD, and that subcutaneous dosing of HsTX1[R14A] (1 mg/kg) every other day for 8 weeks provided a robust improvement in cognitive deficits in SAMP8 mice. The effect of HsTX1[R14A] on the whole brain was assessed using transcriptomics, which revealed that the expression of genes associated with inflammation, neuron differentiation, synapse function, learning and memory were altered by HsTX1[R14A] treatment. Further study is required to investigate whether these changes are downstream effects of microglial Kv1.3 blockade or a result of alternative mechanisms, including any potential effect of Kv1.3 blockade on other brain cell types. Nonetheless, these results collectively demonstrate the cognitive benefits of Kv1.3 blockade with HsTX1[R14A] in a mouse model of sporadic AD, demonstrating its potential as a therapeutic candidate for this neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Deanna S Deveson Lucas
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ryusuke Takechi
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - John C L Mamo
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Ashwood LM, Elnahriry KA, Stewart ZK, Shafee T, Naseem MU, Szanto TG, van der Burg CA, Smith HL, Surm JM, Undheim EAB, Madio B, Hamilton BR, Guo S, Wai DCC, Coyne VL, Phillips MJ, Dudley KJ, Hurwood DA, Panyi G, King GF, Pavasovic A, Norton RS, Prentis PJ. Genomic, functional and structural analyses elucidate evolutionary innovation within the sea anemone 8 toxin family. BMC Biol 2023; 21:121. [PMID: 37226201 DOI: 10.1186/s12915-023-01617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Zachary K Stewart
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thomas Shafee
- Department of Animal Plant & Soil Sciences, La Trobe University, Melbourne, Australia
- Swinburne University of Technology, Melbourne, VIC, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Chloé A van der Burg
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Hayden L Smith
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Eivind A B Undheim
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Victoria L Coyne
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Matthew J Phillips
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
7
|
Beraldo-Neto E, Vigerelli H, Coelho GR, da Silva DL, Nencioni ALA, Pimenta DC. Unraveling and profiling Tityus bahiensis venom: Biochemical analyses of the major toxins. J Proteomics 2023; 274:104824. [PMID: 36646272 DOI: 10.1016/j.jprot.2023.104824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Among the scorpions found in Brazil, Tityus bahiensis is one of the species that causes most of the reported human accidents. In spite of this important constatation, the venom composition description is not available in the literature. Thus, this venom remains not properly studied, segregating this particular species into an abandoned, forgotten condition. In the present study, chromatographic separation (RP-HPLC-C18) and proteomic analyses were employed to unravel the diversity, complexity, and proportional distribution of the main peptides and proteins found in the scorpion venom. Moreover, sequence analyses and the presence of new isoforms and toxins are discussed based on a database comparison with other Tityus toxins. Our results show the presence of a wide diversity of potassium and sodium channel toxins and enzymes, such as metallopeptidases and hyaluronidases, as previously described for other species. However, the current work also describes for the first time, at the protein level, phospholipase, angiotensin-converting enzyme, cysteine-rich proteins, serine peptidase inhibitors peptides, and antimicrobial peptides. Finally, thorough data analyses allowed the description of the venom toxins distribution regarding their diversity and relative quantity. SIGNIFICANCE: The work presents the first Tityus bahiensis proteome. We have focused on describing the neurotoxin variability in terms of their isoforms/amino acid substitutions. Understanding the natural variations in the toxins' sequences is essential, once the affinity of these peptides to their respective receptors/ionic channels will vary depending on the specific peptide sequences. Moreover, the current study describes some proteins present in the venom, including enzymes being described for the first time in scorpion venoms, such as PLA2 and ACE. Moreover, we describe the individual relative quantity distribution for the different protein classes identified, as well as their variability in the T.bahiensis venom. Finally, this study also reports the development of a simple straightforward chromatographic method for scorpion venom fractionation.
Collapse
Affiliation(s)
- Emidio Beraldo-Neto
- Programa de Pós-graduação em Toxinologia do Instituto Butantan, São Paulo, Brazil; Laboratório de Bioquímica, Instituto Butantan, São Paulo, Brazil
| | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, São Paulo, Brazil
| | | | - Daiane Laise da Silva
- Programa de Pós-graduação em Toxinologia do Instituto Butantan, São Paulo, Brazil; Laboratório de Bioquímica, Instituto Butantan, São Paulo, Brazil
| | | | | |
Collapse
|
8
|
Reddiar SB, de Veer M, Paterson BM, Sepehrizadeh T, Wai DCC, Csoti A, Panyi G, Nicolazzo JA, Norton RS. A Biodistribution Study of the Radiolabeled Kv1.3-Blocking Peptide DOTA-HsTX1[R14A] Demonstrates Brain Uptake in a Mouse Model of Neuroinflammation. Mol Pharm 2023; 20:255-266. [PMID: 36331024 DOI: 10.1021/acs.molpharmaceut.2c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The voltage-gated potassium channel Kv1.3 regulates the pro-inflammatory function of microglia and is highly expressed in the post-mortem brains of individuals with Alzheimer's and Parkinson's diseases. HsTX1[R14A] is a selective and potent peptide inhibitor of the Kv1.3 channel (IC50 ∼ 45 pM) that has been shown to decrease cytokine levels in a lipopolysaccharide (LPS)-induced mouse model of inflammation. Central nervous system exposure to HsTX1[R14A] was previously detected in this mouse model using liquid chromatography with tandem mass spectrometry, but this technique does not report on the spatial distribution of the peptide in the different brain regions or peripheral organs. Herein, the in vivo distribution of a [64Cu]Cu-labeled DOTA conjugate of HsTX1[R14A] was observed for up to 48 h by positron emission tomography (PET) in mice. After subcutaneous administration to untreated C57BL/6J mice, considerable uptake of the radiolabeled peptide was observed in the kidney, but it was undetectable in the brain. Biodistribution of a [68Ga]Ga-DOTA conjugate of HsTX1[R14A] was then investigated in the LPS-induced mouse model of neuroinflammation to assess the effects of inflammation on uptake of the peptide in the brain. A control peptide with very weak Kv1.3 binding, [68Ga]Ga-DOTA-HsTX1[R14A,Y21A,K23A] (IC50 ∼ 6 μM), was also tested. Significantly increased uptake of [68Ga]Ga-DOTA-HsTX1[R14A] was observed in the brains of LPS-treated mice compared to mice treated with control peptide, implying that the enhanced uptake was due to increased Kv1.3 expression rather than simply increased blood-brain barrier disruption. PET imaging also showed accumulation of [68Ga]Ga-DOTA-HsTX1[R14A] in inflamed joints and decreased clearance from the kidneys in LPS-treated mice. These biodistribution data highlight the potential of HsTX1[R14A] as a therapeutic for the treatment of neuroinflammatory diseases mediated by overexpression of Kv1.3.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Brett M Paterson
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia.,School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4010, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4010, Hungary
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Wai DCC, Naseem MU, Mocsár G, Babu Reddiar S, Pan Y, Csoti A, Hajdu P, Nowell C, Nicolazzo JA, Panyi G, Norton RS. Fluorescent Peptide Toxin for Selective Visualization of the Voltage-Gated Potassium Channel K V1.3. Bioconjug Chem 2022; 33:2197-2212. [DOI: 10.1021/acs.bioconjchem.2c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dorothy C. C. Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
- Damjanovich Cell Analysis Core Facility, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen, Debrecen4032, Hungary
| | - Cameron Nowell
- Imaging, FACS and Analysis Core, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria3052, Australia
| |
Collapse
|
11
|
Nowowiejska J, Baran A, Flisiak I. Psoriasis and neurodegenerative diseases—a review. Front Mol Neurosci 2022; 15:917751. [PMID: 36226313 PMCID: PMC9549431 DOI: 10.3389/fnmol.2022.917751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a chronic skin disease with underlying genetic, inflammatory and immunological background, which is a great medical problem, currently regarded as a systemic condition. Neurodegenerative diseases (NDs) are characterized by a progressive loss of nervous tissue, which affects elderly people more frequently; therefore, it is suspected that, due to society's aging, morbidity is going to increase. We performed a thorough review in order to investigate for the first time whether psoriasis may predispose to different particular neurodegenerative diseases—Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PubMed search resulted in the retrieval of 833 records, of which 77 eligible were included in the review. Our thorough analysis revealed there are some potential links between psoriasis and NDs (inflammation, oxidative stress, genetics, cardiometabolic disorders), but there is no strong evidence that psoriasis may predispose to NDs. Based on the evidence, it seems that the risk of PD in psoriatics is not increased, and the evidence for increased risk of AD slightly prevails the data that state the opposite. ALS risk does not seem to be increased in psoriatics. The paucity of original studies does not allow for the formulation of definitive conclusions but encourages to perform further investigations.
Collapse
|
12
|
Wang YZ, Guo SY, Kong RL, Sui AR, Wang ZH, Guan RX, Supratik K, Zhao J, Li S. Scorpion Venom Heat–Resistant Synthesized Peptide Increases Stress Resistance and Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1-Like Signal Pathway. Front Pharmacol 2022; 13:919269. [PMID: 35910355 PMCID: PMC9330001 DOI: 10.3389/fphar.2022.919269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Improving healthy life expectancy by targeting aging-related pathological changes has been the spotlight of geroscience. Scorpions have been used in traditional medicine in Asia and Africa for a long time. We have isolated heat-resistant peptides from scorpion venom of Buthusmartensii Karsch (SVHRP) and found that SVHRP can attenuate microglia activation and protect Caenorhabditis elegans (C. elegans) against β-amyloid toxicity. Based on the amino acid sequence of these peptides, scorpion venom heat–resistant synthesized peptide (SVHRSP) was prepared using polypeptide synthesis technology. In the present study, we used C. elegans as a model organism to assess the longevity-related effects and underlying molecular mechanisms of SVHRSP in vivo. The results showed that SVHRSP could prolong the lifespan of worms and significantly improve the age-related physiological functions of worms. SVHRSP increases the survival rate of larvae under oxidative and heat stress and decreases the level of reactive oxygen species and fat accumulation in vivo. Using gene-specific mutation of C. elegans, we found that SVHRSP-mediated prolongation of life depends on Daf-2, Daf-16, Skn-1, and Hsf-1 genes. These results indicate that the antiaging mechanism of SVHRSP in nematodes might be mediated by the insulin/insulin-like growth factor-1 signaling pathway. Meanwhile, SVHRSP could also up-regulate the expression of stress-inducing genes Hsp-16.2, Sod-3, Gei-7, and Ctl-1 associated with aging. In general, our study may have important implications for SVHRSP to promote healthy aging and provide strategies for research and development of drugs to treat age-related diseases.
Collapse
Affiliation(s)
- Ying-Zi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rui-Li Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Zhen-Hua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rong-Xiao Guan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| |
Collapse
|
13
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
14
|
Naseem MU, Carcamo-Noriega E, Beltrán-Vidal J, Borrego J, Szanto TG, Zamudio FZ, Delgado-Prudencio G, Possani LD, Panyi G. Cm28, a scorpion toxin having a unique primary structure, inhibits KV1.2 and KV1.3 with high affinity. J Gen Physiol 2022; 154:213282. [PMID: 35699659 PMCID: PMC9202693 DOI: 10.1085/jgp.202213146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
The Cm28 in the venom of Centruroides margaritatus is a short peptide consisting of 27 amino acid residues with a mol wt of 2,820 D. Cm28 has <40% similarity with other known α-KTx from scorpions and lacks the typical functional dyad (lysine-tyrosine) required to block KV channels. However, its unique sequence contains the three disulfide-bond traits of the α-KTx scorpion toxin family. We propose that Cm28 is the first example of a new subfamily of α-KTxs, registered with the systematic number α-KTx32.1. Cm28 inhibited voltage-gated K+ channels KV1.2 and KV1.3 with Kd values of 0.96 and 1.3 nM, respectively. There was no significant shift in the conductance-voltage (G-V) relationship for any of the channels in the presence of toxin. Toxin binding kinetics showed that the association and dissociation rates are consistent with a bimolecular interaction between the peptide and the channel. Based on these, we conclude that Cm28 is not a gating modifier but rather a pore blocker. In a selectivity assay, Cm28 at 150 nM concentration (>100× Kd value for KV1.3) did not inhibit KV1.5, KV11.1, KCa1.1, and KCa3.1 K+ channels; NaV1.5 and NaV1.4 Na+ channels; or the hHV1 H+ channel but blocked ∼27% of the KV1.1 current. In a biological functional assay, Cm28 strongly inhibited the expression of the activation markers interleukin-2 receptor and CD40 ligand in anti-CD3-activated human CD4+ effector memory T lymphocytes. Cm28, due to its unique structure, may serve as a template for the generation of novel peptides targeting KV1.3 in autoimmune diseases.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Edson Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Beltrán-Vidal
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia
| | - Jesus Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor G. Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary,Correspondence to Gyorgy Panyi:
| |
Collapse
|
15
|
Ding LJ, Wu XM, Zhang CG, Gao PF, Zhang Y, Yang ZZ, Zhao Y. Toxin diversity revealed by de novo transcriptome assembly for venom gland in two species of spiders (Trichonephila clavata and Sinopoda pengi). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100984. [PMID: 35462116 DOI: 10.1016/j.cbd.2022.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
During long-term predator-prey coevolution, spiders have generated a vast diversity of toxins. Trichonephila clavata is a web-spinning spider whose large, well-constructed webs and venomous arsenal facilitate prey capture. In contrast, Sinopoda pengi is an ambush predator with agile locomotion and strong chelicerae for hunting. In this study, transcriptomic analysis was performed to describe the predicted toxins of S. pengi and T. clavata. A total of 43 and 47 of these unigenes from S. pengi and T. clavata, respectively, were predicted to have toxin activity. Putative neurotoxins were classified to the family level according to cysteine arrangement; 4 and 6 toxin families were produced by S. pengi and T. clavata, respectively. In addition, potential metalloproteases, acetylcholinesterases, serine proteases, hyaluronidases and phospholipases were found by annotation in databases. In summary, molecular templates with potential application value for medical and biological fields were obtained by classifying and characterizing presumed venom components, which established a foundation for further study of venom.
Collapse
Affiliation(s)
- Li-Jun Ding
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Xiu-Mei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Cheng-Gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Peng-Fei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Yan Zhang
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan 650051, China
| | - Zi-Zhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China.
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| |
Collapse
|
16
|
sVmKTx, a transcriptome analysis-based synthetic peptide analogue of Vm24, inhibits Kv1.3 channels of human T cells with improved selectivity. Biochem Pharmacol 2022; 199:115023. [PMID: 35358481 DOI: 10.1016/j.bcp.2022.115023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
Kv1.3 K+ channels play a central role in the regulation of T cell activation and Ca2+ signaling under physiological and pathophysiological conditions. Peptide toxins targeting Kv1.3 have a significant therapeutic potential in the treatment of autoimmune diseases; thus, the discovery of new toxins is highly motivated. Based on the transcriptome analysis of the venom gland of V. mexicanus smithi a novel synthetic peptide, sVmKTx was generated, containing 36 amino acid residues. sVmKTx shows high sequence similarity to Vm24, a previously characterized peptide from the same species, but contains a Glu at position 32 as opposed to Lys32 in Vm24. Vm24 inhibits Kv1.3 with high affinity (Kd = 2.9 pM). However, it has limited selectivity (~1,500-fold) for Kv1.3 over hKv1.2, hKCa3.1, and mKv1.1. sVmKTx displays reduced Kv1.3 affinity (Kd = 770 pM) but increased selectivity for Kv1.3 over hKv1.2 (~9,000-fold) as compared to Vm24, other channels tested in the panel (hKCa3.1, hKv1.1, hKv1.4, hKv1.5, rKv2.1, hKv11.1, hKCa1.1, hNav1.5) were practically insensitive to the toxin at 2.5 μM. Molecular dynamics simulations showed that introduction of a Glu instead of Lys at position 32 led to a decreased structural fluctuation of the N-terminal segment of sVmKTx, which may explain its increased selectivity for Kv1.3. sVmKTx at 100 nM concentration decreased the expression level of the Ca2+ -dependent T cell activation marker, CD40 ligand. The high affinity block of Kv1.3 and increased selectivity over the natural peptide makes sVmKTx a potential candidate for Kv1.3 blockade-mediated treatment of autoimmune diseases.
Collapse
|
17
|
Warrell DA, Rowan EG. Professor Alan Lang Harvey (1950-2020). Toxicon 2022; 211:1-5. [PMID: 35287026 DOI: 10.1016/j.toxicon.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Cañas CA, Castaño-Valencia S, Castro-Herrera F. Pharmacological blockade of KV1.3 channel as a promising treatment in autoimmune diseases. J Transl Autoimmun 2022; 5:100146. [PMID: 35146402 PMCID: PMC8818563 DOI: 10.1016/j.jtauto.2022.100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022] Open
Abstract
There are more than 100 autoimmune diseases (AD), which have a high prevalence that ranges between 5% and 8% of the general population. Type I diabetes mellitus, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis remain the health problem of highest concern among people worldwide due to its high morbidity and mortality. The development of new treatment strategies has become a research hotspot. In recent years, the study of the ion channels presents in the cells of the immune system, regarding their functional role, the consequences of mutations in their genes and the different ways of blocking them are the subject of intense research. Pharmacological blockade of KV1.3 channel inhibits Ca2+ signaling, T cell proliferation, and pro-inflammatory interleukins production in human CD4+ effector memory T cells. These cells mediated most of the AD and their inhibition is a promising therapeutic target. In this review, we will highlight the biological function of KV1.3 channel in T cells, consequence of the pharmacological inhibition (through anemone and scorpion toxins, synthetic peptides, nanoparticles, or monoclonal antibodies) as well as the possible therapeutical application in AD.
Collapse
Affiliation(s)
- Carlos A. Cañas
- Universidad Icesi, CIRAT, Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, Colombia
- Unit of Rheumatology, Fundación Valle del Lili, Cali, Colombia
- Corresponding author. Rheumatology Unit, Fundación Valle del Lili, Cra. 98 18-49, Cali, 760032, Colombia.
| | - Santiago Castaño-Valencia
- Department of Physiological Sciences, Department of Health Sciences, Universidad del Valle, Cali, Colombia
| | - Fernando Castro-Herrera
- Department of Physiological Sciences, Department of Health Sciences, Universidad del Valle, Cali, Colombia
| |
Collapse
|
19
|
Kovacs T, Sohajda T, Szente L, Nagy P, Panyi G, Varga Z, Zakany F. Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the K V1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Front Mol Biosci 2021; 8:735357. [PMID: 34805269 PMCID: PMC8599428 DOI: 10.3389/fmolb.2021.735357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming water-soluble complexes with a variety of otherwise poorly soluble molecules including cholesterol and different drugs. Consistently, CDs are widely used in research and clinical practice to deplete cholesterol from cellular membranes or to increase solubility and bioavailability of different pharmaceuticals at local concentrations in the millimolar range. Effects of CDs exerted on cellular functions are generally thought to originate from reductions in cholesterol levels. Potential direct, ligand-like CD effects are largely neglected in spite of several recent studies reporting direct interaction between CDs and proteins including AMP-activated protein kinase, β-amyloid peptides, and α-synuclein. In this study, by using patch-clamp technique, time-resolved quantitation of cholesterol levels and biophysical parameters and applying cholesterol-extracting and non-cholesterol-extracting CDs at 1 and 5 mM concentrations, we provide evidence for a previously unexplored ligand-like, cholesterol-independent current inhibitory effect of CDs on KV1.3, a prototypical voltage-gated potassium channel with pathophysiological relevance in various autoimmune and neurodegenerative disorders. Our findings propose that potential direct CD effects on KV channels should be taken into consideration when interpreting functional consequences of CD treatments in both research and clinical practice. Furthermore, current-blocking effects of CDs on KV channels at therapeutically relevant concentrations might contribute to additional beneficial or adverse effects during their therapeutic applications.
Collapse
Affiliation(s)
- Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sohajda
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Nicolazzo JA, Pan Y, Di Stefano I, Choy KHC, Reddiar SB, Low YL, Wai DCC, Norton RS, Jin L. Blockade of Microglial Kv1.3 Potassium Channels by the Peptide HsTX1[R14A] Attenuates Lipopolysaccharide-mediated Neuroinflammation. J Pharm Sci 2021; 111:638-647. [PMID: 34767826 DOI: 10.1016/j.xphs.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
The expression of voltage-gated potassium Kv1.3 channels is increased in activated microglia, with non-selective blockade reported to attenuate microglial-mediated neuroinflammation. In this study, we evaluated the impact of a potent and selective peptidic blocker of Kv1.3 channels, HsTX1[R14A], on microglial-mediated neuroinflammation in vitro and in vivo. Treatment with both 0.1 and 1 µg/mL lipopolysaccharide (LPS) significantly (p < 0.05) increased Kv1.3 abundance on the surface of BV-2 microglia in association with increased levels of mRNA for tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The increased transcription of TNF-α and IL-6 was significantly attenuated (by 24.9 and 20.2%, respectively) by HsTX1[R14A] (100 nM). The concomitant increase in TNF-α and IL-6 release from BV-2 microglia was significantly attenuated by HsTX1[R14A] by 10.7 and 12.6%, respectively. In LPS-treated primary mouse microglia, the levels of TNF-α and nitric oxide were also attenuated by HsTX1[R14A] (26.1 and 20.4%, respectively). In an LPS-induced mouse model of neuroinflammation, both an immediate and delayed subcutaneous dose of HsTX1[R14A] (2 mg/kg) significantly reduced plasma and brain levels of the pro-inflammatory mediators TNF-α, IL-1β and IL-6, with no impact on the anti-inflammatory IL-10. These results demonstrate that HsTX1[R14A] is a promising therapeutic candidate for the treatment of diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ilenia Di Stefano
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kwok H C Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yi Ling Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
21
|
Naseem MU, Tajti G, Gaspar A, Szanto TG, Borrego J, Panyi G. Optimization of Pichia pastoris Expression System for High-Level Production of Margatoxin. Front Pharmacol 2021; 12:733610. [PMID: 34658872 PMCID: PMC8511391 DOI: 10.3389/fphar.2021.733610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Margatoxin (MgTx) is a high-affinity blocker of voltage-gated potassium (Kv) channels. It inhibits Kv1.1–Kv1.3 ion channels in picomolar concentrations. This toxin is widely used to study physiological function of Kv ion channels in various cell types, including immune cells. Isolation of native MgTx in large quantities from scorpion venom is not affordable. Chemical synthesis and recombinant production in Escherichia coli need in vitro oxidative refolding for proper disulfide bond formation, resulting in a very low yield of peptide production. The Pichia pastoris expression system offers an economical approach to overcome all these limitations and gives a higher yield of correctly refolded recombinant peptides. In this study, improved heterologous expression of recombinant MgTx (rMgTx) in P. pastoris was obtained by using preferential codons, selecting the hyper-resistant clone against Zeocin, and optimizing the culturing conditions. About 36 ± 4 mg/L of >98% pure His-tagged rMgTx (TrMgTx) was produced, which is a threefold higher yield than has been previously reported. Proteolytic digestion of TrMgTx with factor Xa generated untagged rMgTx (UrMgTx). Both TrMgTx and UrMgTx blocked the Kv1.2 and Kv1.3 currents (patch-clamp) (Kd for Kv1.2 were 64 and 14 pM, and for Kv1.3, 86 and 50 pM, respectively) with comparable potency to the native MgTx. The analysis of the binding kinetics showed that TrMgTx had a lower association rate than UrMgTx for both Kv1.2 and Kv1.3. The dissociation rate of both the analogues was the same for Kv1.3. However, in the case of Kv1.2, TrMgTx showed a much higher dissociation rate with full recovery of the block than UrMgTx. Moreover, in a biological functional assay, both peptides significantly downregulated the expression of early activation markers IL2R and CD40L in activated CD4+ TEM lymphocytes whose activation was Kv1.3 dependent. In conclusion, the authors report that the Pichia expression system is a powerful method to produce disulfide-rich peptides, the overexpression of which could be enhanced noticeably through optimization strategies, making it more cost-effective. Since the presence of the His-tag on rMgTx only mildly altered the block equilibrium and binding kinetics, recombinant toxins could be used in ion channel research without removing the tag and could thus reduce the cost and time demand for toxin production.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gaspar
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Debrecen, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Fischer T, Riedl R. Paracelsus' legacy in the faunal realm: Drugs deriving from animal toxins. Drug Discov Today 2021; 27:567-575. [PMID: 34678490 DOI: 10.1016/j.drudis.2021.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Given the vast number of venomous and poisonous animals, it is surprising that only relatively few animal-derived toxins have been explored and made their way into marketed drugs or are being investigated in ongoing clinical trials. In this review, we highlight marketed drugs deriving from animal toxins as well as ongoing clinical trials and preclinical investigations in the field. We emphasize that more attention should be paid to the rich supply of candidates that nature provides as valuable starting points for addressing serious unmet medical needs.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
23
|
Sanches K, Wai DCC, Norton RS. Conformational dynamics in peptide toxins: Implications for receptor interactions and molecular design. Toxicon 2021; 201:127-140. [PMID: 34454969 DOI: 10.1016/j.toxicon.2021.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Peptide toxins are potent and often exquisitely selective probes of the structure and function of ion channels and receptors, and are therefore of significant interest to the pharmaceutical and biotech industries as both pharmacological tools and therapeutic leads. The three-dimensional structures of peptide toxins are essential as a basis for understanding their structure-activity relationships and their binding to target receptors, as well as in guiding the design of analogues with modified potency and/or selectivity for key targets. NMR spectroscopy has played a key role in elucidating the structures of peptide toxins and probing their structure-function relationships. In this article, we highlight the additional important contribution of NMR to characterising the dynamics of peptide toxins. We also compare the information available from NMR measurements with that afforded by molecular dynamics simulations. We describe several examples of the importance of dynamics measurements over a range of timescales for understanding the structure-function relationships of peptide toxins and their receptor engagement. Peptide toxins that inhibit the voltage-gated potassium channel KV1.3 with pM affinities display different degrees of conformational flexibility, even though they contain multiple disulfide bonds, and this flexibility can affect the relative orientation of residues that have been shown to be critical for channel binding. Information on the dynamic properties of peptide toxins is important in the design of analogues or mimetics where receptor-bound structures are not available.
Collapse
Affiliation(s)
- Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
24
|
The Kv1.3 K + channel in the immune system and its "precision pharmacology" using peptide toxins. Biol Futur 2021; 72:75-83. [PMID: 34554500 DOI: 10.1007/s42977-021-00071-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023]
Abstract
Since the discovery of the Kv1.3 voltage-gated K+ channel in human T cells in 1984, ion channels are considered crucial elements of the signal transduction machinery in the immune system. Our knowledge about Kv1.3 and its inhibitors is outstanding, motivated by their potential application in autoimmune diseases mediated by Kv1.3 overexpressing effector memory T cells (e.g., Multiple Sclerosis). High affinity Kv1.3 inhibitors are either small organic molecules (e.g., Pap-1) or peptides isolated from venomous animals. To date, the highest affinity Kv1.3 inhibitors with the best Kv1.3 selectivity are the engineered analogues of the sea anemone peptide ShK (e.g., ShK-186), the engineered scorpion toxin HsTx1[R14A] and the natural scorpion toxin Vm24. These peptides inhibit Kv1.3 in picomolar concentrations and are several thousand-fold selective for Kv1.3 over other biologically critical ion channels. Despite the significant progress in the field of Kv1.3 molecular pharmacology several progressive questions remain to be elucidated and discussed here. These include the conjugation of the peptides to carriers to increase the residency time of the peptides in the circulation (e.g., PEGylation and engineering the peptides into antibodies), use of rational drug design to create novel peptide inhibitors and understanding the potential off-target effects of Kv1.3 inhibition.
Collapse
|
25
|
Genomic Structure of Two Kv1.3 Channel Blockers from Scorpion Mesobuthus eupeus and Sea Anemone Stichodactyla haddoni and Construction of their Chimeric Peptide as a Novel Blocker. Biochem Genet 2021; 60:504-526. [PMID: 34286408 DOI: 10.1007/s10528-021-10109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Different toxins acting on Kv1.3 channel have been isolated from animal venom. MeuKTX toxin from Mesobuthus eupeus phillipsi scorpion and shtx-k toxin from Stichodactyla haddoni sea anemone have been identified as two effective Kv1.3 channel blockers. In this work, we characterized the genomic organization of both toxins. MeuKTX gene contains one intron and two exons, similar to the most scorpion toxins. There are a few reports of genomic structure of sea anemone toxins acting on Kv channels. The sequence encoding mature peptide of shtx-k was located in an exon separated by an intron from the coding exon of the propeptide and signal region. In order to make a peptide with more affinity for Kv1.3 channel and greater stability, the shtx-k/ MeuKTX chimeric peptide was designed and constructed using splicing by overlap extension-PCR (SOE-PCR) method. MeuKTX, shtx-k, and shtx-k/MeuKTX were cloned and the expression of the soluble proteins in E. coli was determined. Molecular docking studies indicated more inhibitory effect of shtx-k/MeuKTX on Kv1.3 channel compared to shtx-k and MeuKTX toxins. Key amino acids binding channel from both toxins, also involved in interaction of chimeric peptide with channel. Our results showed that the fusion peptide, shtx-k/MeuKTX could be an effective agent to target Kv1.3 channel.
Collapse
|
26
|
Wang X, An P, Gu Z, Luo Y, Luo J. Mitochondrial Metal Ion Transport in Cell Metabolism and Disease. Int J Mol Sci 2021; 22:ijms22147525. [PMID: 34299144 PMCID: PMC8305404 DOI: 10.3390/ijms22147525] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
- Correspondence: (Y.L.); (J.L.)
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
- Correspondence: (Y.L.); (J.L.)
| |
Collapse
|
27
|
Gubič Š, Hendrickx LA, Toplak Ž, Sterle M, Peigneur S, Tomašič T, Pardo LA, Tytgat J, Zega A, Mašič LP. Discovery of K V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med Res Rev 2021; 41:2423-2473. [PMID: 33932253 PMCID: PMC8252768 DOI: 10.1002/med.21800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The KV 1.3 voltage-gated potassium ion channel is involved in many physiological processes both at the plasma membrane and in the mitochondria, chiefly in the immune and nervous systems. Therapeutic targeting KV 1.3 with specific peptides and small molecule inhibitors shows great potential for treating cancers and autoimmune diseases, such as multiple sclerosis, type I diabetes mellitus, psoriasis, contact dermatitis, rheumatoid arthritis, and myasthenia gravis. However, no KV 1.3-targeted compounds have been approved for therapeutic use to date. This review focuses on the presentation of approaches for discovering new KV 1.3 peptide and small-molecule inhibitors, and strategies to improve the selectivity of active compounds toward KV 1.3. Selectivity of dalatazide (ShK-186), a synthetic derivate of the sea anemone toxin ShK, was achieved by chemical modification and has successfully reached clinical trials as a potential therapeutic for treating autoimmune diseases. Other peptides and small-molecule inhibitors are critically evaluated for their lead-like characteristics and potential for progression into clinical development. Some small-molecule inhibitors with well-defined structure-activity relationships have been optimized for selective delivery to mitochondria, and these offer therapeutic potential for the treatment of cancers. This overview of KV 1.3 inhibitors and methodologies is designed to provide a good starting point for drug discovery to identify novel effective KV 1.3 modulators against this target in the future.
Collapse
Affiliation(s)
- Špela Gubič
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Louise A. Hendrickx
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Žan Toplak
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Maša Sterle
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Steve Peigneur
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | | - Luis A. Pardo
- AG OncophysiologyMax‐Planck Institute for Experimental MedicineGöttingenGermany
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Anamarija Zega
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
28
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
29
|
Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021; 42:101846. [PMID: 33419703 PMCID: PMC8113036 DOI: 10.1016/j.redox.2020.101846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Padova, Italy.
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Padova, Italy; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
30
|
Tabakmakher VM, Kuzmenkov AI, Gigolaev AM, Pinheiro-Junior EL, Peigneur S, Efremov RG, Tytgat J, Vassilevski AA. Artificial Peptide Ligand of Potassium
Channel KV1.1 with High Selectivity. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|
32
|
Reddiar SB, Jin L, Wai DCC, Csoti A, Panyi G, Norton RS, Nicolazzo JA. Lipopolysaccharide influences the plasma and brain pharmacokinetics of subcutaneously-administered HsTX1[R14A], a K V1.3-blocking peptide. Toxicon 2021; 195:29-36. [PMID: 33689790 DOI: 10.1016/j.toxicon.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/01/2022]
Abstract
KV1.3 is a voltage-gated potassium channel that is upregulated in neuroinflammatory conditions, such as Alzheimer's disease and Parkinson's disease. HsTX1[R14A] is a potent and selective peptide blocker of KV1.3 with the potential to block microglial KV1.3, but its brain uptake is expected to be limited owing to the restrictive nature of the blood-brain barrier. To assess its peripheral and brain exposure, a LC-MS/MS assay was developed to quantify HsTX1[R14A] concentrations in mouse plasma and brain homogenate that was reliable and reproducible in the range of 6.7-66.7 nM (r2 = 0.9765) and 15-150 pmol/g (r2 = 0.9984), respectively. To assess if neuroinflammation affected HsTX1[R14A] disposition, C57BL/6 mice were administered HsTX1[R14A] subcutaneously (2 mg/kg) 24 h after an intraperitoneal dose of Escherichia coli lipopolysaccharide (LPS), which is commonly used to induce neuroinflammation; brain and plasma concentrations of HsTX1[R14A] were then quantified over 120 min. LPS treatment significantly retarded the decline in HsTX1[R14A] plasma concentrations, presumably as a result of reducing renal clearance, and led to substantial brain uptake of HsTX1[R14A], presumably through disruption of brain inter-endothelial tight junctions. This study suggests that HsTX1[R14A] may reach microglia in sufficient concentrations to block KV1.3 in neuroinflammatory conditions, and therefore has the potential to reduce neurodegenerative diseases.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
33
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
34
|
Kunitz-Type Peptides from the Sea Anemone Heteractis crispa Demonstrate Potassium Channel Blocking and Anti-Inflammatory Activities. Biomedicines 2020; 8:biomedicines8110473. [PMID: 33158163 PMCID: PMC7694175 DOI: 10.3390/biomedicines8110473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
The Kunitz/BPTI peptide family includes unique representatives demonstrating various biological activities. Electrophysiological screening of peptides HCRG1 and HCRG2 from the sea anemone Heteractis crispa on six Kv1.x channel isoforms and insect Shaker IR channel expressed in Xenopus laevis oocytes revealed their potassium channels blocking activity. HCRG1 and HCRG2 appear to be the first Kunitz-type peptides from sea anemones blocking Kv1.3 with IC50 of 40.7 and 29.7 nM, respectively. In addition, peptides mainly vary in binding affinity to the Kv1.2 channels. It was established that the single substitution, Ser5Leu, in the TRPV1 channel antagonist, HCRG21, induces weak blocking activity of Kv1.1, Kv1.2, and Kv1.3. Apparently, for the affinity and selectivity of Kunitz-fold toxins to Kv1.x isoforms, the number and distribution along their molecules of charged, hydrophobic, and polar uncharged residues, as well as the nature of the channel residue at position 379 (Tyr, Val or His) are important. Testing the compounds in a model of acute local inflammation induced by the introduction of carrageenan administration into mice paws revealed that HCRG1 at doses of 0.1–1 mg/kg reduced the volume of developing edema during 24 h, similar to the effect of the nonsteroidal anti-inflammatory drug, indomethacin, at a dose of 5 mg/kg. ELISA analysis of the animals blood showed that the peptide reduced the synthesis of TNF-α, a pro-inflammatory mediator playing a leading role in the development of edema in this model.
Collapse
|
35
|
Prolonged Plasma Exposure of the Kv1.3-Inhibitory Peptide HsTX1[R14A] by Subcutaneous Administration of a Poly(Lactic-co-Glycolic Acid) (PLGA) Microsphere Formulation. J Pharm Sci 2020; 110:1182-1188. [PMID: 33065128 DOI: 10.1016/j.xphs.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
This study evaluated the impact of poly(lactic-co-glycolic acid) (PLGA) microsphere formulations on in vitro release and in vivo plasma exposure of HsTX1[R14A], a potent inhibitor of the voltage-gated potassium channel Kv1.3, with potential to treat autoimmune conditions. Microspheres containing HsTX1[R14A] were prepared using different PLGA materials, including Resomer® RG502H, RG503H and PURASORB® PDLG 5004 (Purac). After assessing encapsulation efficiency and in vitro release, plasma concentrations of HsTX1[R14A] were quantified by LCMS/MS following subcutaneous administration of HsTX1[R14A]-loaded RG503H microspheres (15 mg/kg) or HsTX1[R14A] solution (4 mg/kg) to Sprague-Dawley rats. Microspheres prepared with Purac exhibited the greatest encapsulation efficiency (45.5 ± 2.4% (mean ± SD)) and RG502H the lowest (22.0 ± 6.4%). Release of HsTX1[R14A] was fastest in vitro for RG502H microspheres (maximum release at 31 days) and slowest for Purac (82 days). With a relatively rapid burst release of 20.0 ± 0.4% and a controlled release profile of up to 41 days, HsTX1[R14A]-loaded RG503H microspheres were selected for subcutaneous administration, resulting in detectable plasma concentrations for 11 days relative to 8 h following subcutaneous administration of HsTX1[R14A] solution. Therefore, subcutaneous administration of RG503H PLGA microspheres is a promising approach to be exploited for delivery of this immune modulator.
Collapse
|
36
|
Affiliation(s)
- Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia; School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|