1
|
Gu L, Shao W, Liu L, Xu Q, Wang Y, Gu J, Yang Y, Zhang Z, Wu Y, Shen Y, Yu Q, Lian X, Ma H, Zhang Y, Zhang H. NE contribution to rebooting unconsciousness caused by midazolam. eLife 2024; 13:RP97954. [PMID: 39565190 DOI: 10.7554/elife.97954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.
Collapse
Affiliation(s)
- LeYuan Gu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Qian Yu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - XiTing Lian
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - HaiXiang Ma
- Medical College of Jining Medical University, Shandong, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - HongHai Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| |
Collapse
|
2
|
Jiang S, Chen L, Qu WM, Huang ZL, Chen CR. Hypothalamic corticotropin-releasing hormone neurons modulate sevoflurane anesthesia and the post-anesthesia stress responses. eLife 2024; 12:RP90191. [PMID: 39526880 PMCID: PMC11554309 DOI: 10.7554/elife.90191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
General anesthesia (GA) is an indispensable procedure necessary for safely and compassionately administering a significant number of surgical procedures and invasive diagnostic tests. However, the undesired stress response associated with GA causes delayed recovery and even increased morbidity in the clinic. Here, a core hypothalamic ensemble, corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus (PVHCRH neurons), is discovered to play a role in regulating sevoflurane GA. Chemogenetic activation of these neurons delay the induction of and accelerated emergence from sevoflurane GA, whereas chemogenetic inhibition of PVHCRH neurons accelerates induction and delays awakening. Moreover, optogenetic stimulation of PVHCRH neurons induce rapid cortical activation during both the steady and deep sevoflurane GA state with burst-suppression oscillations. Interestingly, chemogenetic inhibition of PVHCRH neurons relieve the sevoflurane GA-elicited stress response (e.g., excessive self-grooming and elevated corticosterone level). These findings identify PVHCRH neurons modulate states of anesthesia in sevoflurane GA, being a part of anesthesia regulatory network of sevoflurane.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Lu Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Chang-Rui Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Lin HT, Lin CM, Wu YY, Chang WH, Wei KC, Chen YC, Chen PY, Liu FC, Chen KT. Predictors for delayed awakening in adult glioma patients receiving awake craniotomy under monitored anesthesia care. J Neurooncol 2023; 165:361-372. [PMID: 37917280 PMCID: PMC10689299 DOI: 10.1007/s11060-023-04494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE Delayed awakening after anesthetic discontinuation during awake craniotomy is associated with somnolence during functional brain mapping. However, predictors of delayed awakening in patients receiving monitored anesthesia care for awake craniotomy are unknown. METHODS This retrospective cohort study analyzed 117 adult patients with supratentorial glioma in or near eloquent areas who received monitored anesthesia care for awake craniotomy between July 2020 and January 2023 at Linkou Chang Gung Memorial Hospital. These patients were divided into two groups according to their time to awakening (ability to speak their names) after propofol cessation: longer or shorter than 20 min (median duration). Because propofol was solely used anesthetic from skin incision to dural opening, parameters in Schnider model for propofol target-controlled infusion, such as age, sex, and BMI, were adjusted or propensity-matched to compare their anesthetic, surgical, and histopathological profiles. RESULTS After propensity-matched comparisons of age and BMI, significant predictors of delayed awakening included IDH1 wild-type tumors and repeated craniotomies. Subgroup analysis revealed that older age and larger T2 volume were predictors in patients undergoing the first craniotomy, while lower preoperative Karnofsky performance scale scores and depression were predictors in repeated craniotomy cases. Delayed awakening was also associated with somnolence and a lower gross total resection rate. CONCLUSION Our retrospective analysis of patients receiving monitored anesthesia care for awake craniotomy revealed that delayed awakening after propofol discontinuation occurred more often in patients with IDH1 wild-type tumors and repeated craniotomies. Also, delayed awakening was associated with somnolence during functional mapping and a lower gross total resection rate.
Collapse
Affiliation(s)
- Huan-Tang Lin
- Department of Anesthesiology, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chun-Ming Lin
- Department of Anesthesiology, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yah-Yuan Wu
- Department of Neurology, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wei-Han Chang
- Department of Physical Medicine & Rehabilitation, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ko-Ting Chen
- Department of Neurosurgery, College of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
| |
Collapse
|
4
|
Dezhina Z, Smallwood J, Xu T, Turkheimer FE, Moran RJ, Friston KJ, Leech R, Fagerholm ED. Establishing brain states in neuroimaging data. PLoS Comput Biol 2023; 19:e1011571. [PMID: 37844124 PMCID: PMC10602380 DOI: 10.1371/journal.pcbi.1011571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.
Collapse
Affiliation(s)
- Zalina Dezhina
- Department of Neuroimaging, King’s College London, United Kingdom
| | | | - Ting Xu
- Child Mind Institute, New York, United States of America
| | | | - Rosalyn J. Moran
- Department of Neuroimaging, King’s College London, United Kingdom
| | | | - Robert Leech
- Department of Neuroimaging, King’s College London, United Kingdom
| | | |
Collapse
|
5
|
Dallmer-Zerbe I, Jajcay N, Chvojka J, Janca R, Jezdik P, Krsek P, Marusic P, Jiruska P, Hlinka J. Computational modeling allows unsupervised classification of epileptic brain states across species. Sci Rep 2023; 13:13436. [PMID: 37596382 PMCID: PMC10439162 DOI: 10.1038/s41598-023-39867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Current advances in epilepsy treatment aim to personalize and responsively adjust treatment parameters to overcome patient heterogeneity in treatment efficiency. For tailoring treatment to the individual and the current brain state, tools are required that help to identify the patient- and time-point-specific parameters of epilepsy. Computational modeling has long proven its utility in gaining mechanistic insight. Recently, the technique has been introduced as a diagnostic tool to predict individual treatment outcomes. In this article, the Wendling model, an established computational model of epilepsy dynamics, is used to automatically classify epileptic brain states in intracranial EEG from patients (n = 4) and local field potential recordings from in vitro rat data (high-potassium model of epilepsy, n = 3). Five-second signal segments are classified to four types of brain state in epilepsy (interictal, preonset, onset, ictal) by comparing a vector of signal features for each data segment to four prototypical feature vectors obtained by Wendling model simulations. The classification result is validated against expert visual assessment. Model-driven brain state classification achieved a classification performance significantly above chance level (mean sensitivity 0.99 on model data, 0.77 on rat data, 0.56 on human data in a four-way classification task). Model-driven prototypes showed similarity with data-driven prototypes, which we obtained from real data for rats and humans. Our results indicate similar electrophysiological patterns of epileptic states in the human brain and the animal model that are well-reproduced by the computational model, and captured by a key set of signal features, enabling fully automated and unsupervised brain state classification in epilepsy.
Collapse
Affiliation(s)
- Isa Dallmer-Zerbe
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, 182 00, Prague, Czech Republic
- Department of Physiology, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Nikola Jajcay
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, 182 00, Prague, Czech Republic
- National Institute of Mental Health, 250 67, Klecany, Czech Republic
| | - Jan Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27, Prague, Czech Republic
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27, Prague, Czech Republic
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27, Prague, Czech Republic
| | - Pavel Krsek
- Department of Paediatric Neurology, Second Faculty of Medicine, Motol University Hospital, Charles University, 150 06, Prague, Czech Republic
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Motol University Hospital, Charles University, 150 06, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, 182 00, Prague, Czech Republic.
- National Institute of Mental Health, 250 67, Klecany, Czech Republic.
| |
Collapse
|
6
|
Voumvourakis KI, Sideri E, Papadimitropoulos GN, Tsantzali I, Hewlett P, Kitsos D, Stefanou M, Bonakis A, Giannopoulos S, Tsivgoulis G, Paraskevas GP. The Dynamic Relationship between the Glymphatic System, Aging, Memory, and Sleep. Biomedicines 2023; 11:2092. [PMID: 37626589 PMCID: PMC10452251 DOI: 10.3390/biomedicines11082092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
The process of memory entails the activation of numerous neural networks and biochemical pathways throughout the brain. The phenomenon of memory decline in relation to aging has been the subject of extensive research for several decades. The correlation between the process of aging and memory is intricate and has various aspects to consider. Throughout the aging process, there are various alterations that take place within the brain and, as expected, affect other functions that have already been linked to memory and its function such as involving microcirculation and sleep. Recent studies provide an understanding of how these mechanisms may be interconnected through the relatively new concept of the glymphatic system. The glymphatic system is strongly correlated to sleep processes. Sleep helps the glymphatic system remove brain waste solutes. Astrocytes expand and contract to form channels for cerebrospinal fluid (CSF) to wash through the brain and eliminate waste. However, the details have not been totally elusive, but the discovery of what we call the glymphatic system enables us to connect many pieces of physiology to understand how such factors are interconnected and the interplay between them. Thus, the purpose of this review is to discuss how the glymphatic system, sleep, memory, and aging are interconnected through a network of complex mechanisms and dynamic interactions.
Collapse
Affiliation(s)
- Konstantinos I. Voumvourakis
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Eleni Sideri
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
- Applied Psychology Department, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Georgios N. Papadimitropoulos
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Ioanna Tsantzali
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Paul Hewlett
- Applied Psychology Department, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Dimitrios Kitsos
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Marianna Stefanou
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Anastasios Bonakis
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Sotirios Giannopoulos
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Georgios Tsivgoulis
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - George P. Paraskevas
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| |
Collapse
|
7
|
Lawn T, Martins D, O'Daly O, Williams S, Howard M, Dipasquale O. The effects of propofol anaesthesia on molecular-enriched networks during resting-state and naturalistic listening. Neuroimage 2023; 271:120018. [PMID: 36935083 PMCID: PMC10410200 DOI: 10.1016/j.neuroimage.2023.120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Placing a patient in a state of anaesthesia is crucial for modern surgical practice. However, the mechanisms by which anaesthetic drugs, such as propofol, impart their effects on consciousness remain poorly understood. Propofol potentiates GABAergic transmission, which purportedly has direct actions on cortex as well as indirect actions via ascending neuromodulatory systems. Functional imaging studies to date have been limited in their ability to unravel how these effects on neurotransmission impact the system-level dynamics of the brain. Here, we leveraged advances in multi-modal imaging, Receptor-Enriched Analysis of functional Connectivity by Targets (REACT), to investigate how different levels of propofol-induced sedation alter neurotransmission-related functional connectivity (FC), both at rest and when individuals are exposed to naturalistic auditory stimulation. Propofol increased GABA-A- and noradrenaline transporter-enriched FC within occipital and somatosensory regions respectively. Additionally, during auditory stimulation, the network related to the dopamine transporter showed reduced FC within bilateral regions of temporal and mid/posterior cingulate cortices, with the right temporal cluster showing an interaction between auditory stimulation and level of consciousness. In bringing together these micro- and macro-scale systems, we provide support for both direct GABAergic and indirect noradrenergic and dopaminergic-related network changes under propofol sedation. Further, we delineate a cognition-related reconfiguration of the dopaminergic network, highlighting the utility of REACT to explore the molecular substrates of consciousness and cognition.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| |
Collapse
|
8
|
Dole M, Auboiroux V, Langar L, Mitrofanis J. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. Rev Neurosci 2023:revneuro-2023-0003. [PMID: 36927734 DOI: 10.1515/revneuro-2023-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
In recent years, transcranial photobiomodulation (tPBM) has been developing as a promising method to protect and repair brain tissues against damages. The aim of our systematic review is to examine the results available in the literature concerning the efficacy of tPBM in changing brain activity in humans, either in healthy individuals, or in patients with neurological diseases. Four databases were screened for references containing terms encompassing photobiomodulation, brain activity, brain imaging, and human. We also analysed the quality of the included studies using validated tools. Results in healthy subjects showed that even after a single session, tPBM can be effective in influencing brain activity. In particular, the different transcranial approaches - using a focal stimulation or helmet for global brain stimulation - seemed to act at both the vascular level by increasing regional cerebral blood flow (rCBF) and at the neural level by changing the activity of the neurons. In addition, studies also showed that even a focal stimulation was sufficient to induce a global change in functional connectivity across brain networks. Results in patients with neurological disease were sparser; nevertheless, they indicated that tPBM could improve rCBF and functional connectivity in several regions. Our systematic review also highlighted the heterogeneity in the methods and results generated, together with the need for more randomised controlled trials in patients with neurological diseases. In summary, tPBM could be a promising method to act on brain function, but more consistency is needed in order appreciate fully the underlying mechanisms and the precise outcomes.
Collapse
Affiliation(s)
- Marjorie Dole
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France
| | | | - Lilia Langar
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Clinatec, 38000 Grenoble, France
| | - John Mitrofanis
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France.,Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med 2023; 29:317-333. [PMID: 36797480 PMCID: PMC11219030 DOI: 10.1038/s41591-022-02197-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Psychiatric disorders are highly prevalent, often devastating diseases that negatively impact the lives of millions of people worldwide. Although their etiological and diagnostic heterogeneity has long challenged drug discovery, an emerging circuit-based understanding of psychiatric illness is offering an important alternative to the current reliance on trial and error, both in the development and in the clinical application of treatments. Here we review new and emerging treatment approaches, with a particular emphasis on the revolutionary potential of brain-circuit-based interventions for precision psychiatry. Limitations of circuit models, challenges of bringing precision therapeutics to market and the crucial advances needed to overcome these obstacles are presented.
Collapse
Affiliation(s)
- Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin T Baker
- McLean Hospital Institute for Technology in Psychiatry, Belmont, MA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
10
|
Peng Y, Yuan C, Zhang Y. The role of the basal forebrain in general anesthesia. IBRAIN 2022; 9:102-110. [PMID: 37786520 PMCID: PMC10529324 DOI: 10.1002/ibra.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 10/04/2023]
Abstract
The basal forebrain is a group of nerve nuclei on the ventral side of the ventral ganglion, composed of γ-aminobutyric acid neurons, glutamatergic neurons, cholinergic neurons, and orexigenic neurons. Previous studies have focused on the involvement of the basal forebrain in regulating reward, learning, movement, sleep-awakening, and other neurobiological behaviors, but its role in the regulation of general anesthesia has not been systematically elucidated. Therefore, the different neuronal subtypes in the basal forebrain and projection pathways in general anesthesia will be discussed in this paper. In this paper, we aim to determine and elaborate on the role of the basal forebrain in general anesthesia and the development of theoretical research and provide a new theory.
Collapse
Affiliation(s)
- Yi‐Ting Peng
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Cheng‐Dong Yuan
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Yi Zhang
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
11
|
Biophysical Model: A Promising Method in the Study of the Mechanism of Propofol: A Narrative Review. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8202869. [PMID: 35619772 PMCID: PMC9129930 DOI: 10.1155/2022/8202869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
The physiological and neuroregulatory mechanism of propofol is largely based on very limited knowledge. It is one of the important puzzling issues in anesthesiology and is of great value in both scientific and clinical fields. It is acknowledged that neural networks which are comprised of a number of neural circuits might be involved in the anesthetic mechanism. However, the mechanism of this hypothesis needs to be further elucidated. With the progress of artificial intelligence, it is more likely to solve this problem through using artificial neural networks to perform temporal waveform data analysis and to construct biophysical computational models. This review focuses on current knowledge regarding the anesthetic mechanism of propofol, an intravenous general anesthetic, by constructing biophysical computational models.
Collapse
|
12
|
Vandewalle G. Circadian, sleep-wake dependent or both? A preface to the special issue "Circadian rhythm and sleep-wake dependent regulation of behavior and brain function". Biochem Pharmacol 2021; 191:114535. [PMID: 33781739 DOI: 10.1016/j.bcp.2021.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Belgium.
| |
Collapse
|