1
|
Liu LW, Tang M, Zhang ZB, Zhou PP, Xue LP, Jia QQ, Zhao LG, Zuo LH, Sun Z. A stepwise integrated strategy to explore quality markers of Qishen Yiqi dripping pills against myocardial ischemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156182. [PMID: 39488103 DOI: 10.1016/j.phymed.2024.156182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Numerous experiments and clinical practices have demonstrated the effectiveness of Qishen Yiqi dripping pills (QSYQ) on myocardial ischemia (MI). However, the bioactive ingredients and mechanisms remain unclear, leading to huge gaps between quality control and biological effect of QSYQ. Discovering quality markers (Q-markers) based on effective components is crucial for ensuring stable quality and clinical effectiveness of QSYQ. PURPOSE To explore Q-markers of QSYQ against MI by a stepwise strategy integrating serum pharmacochemistry, network pharmacology, metabolomics, quantitative analysis, and cell experiments. METHODS Firstly, liquid/gas chromatography-mass spectrometry was applied to characterize chemical profiles of QSYQ in vitro and in vivo. Based on the serum migrating constituents, a component-target-MI interaction network was constructed. Subsequently, pharmacodynamics and metabolomics were conducted to evaluate cardioprotective effect and potential mechanism of QSYQ. Next, conjoint analysis of network pharmacology and metabolomics was performed to screen candidate Q-markers. Finally, the measurability and bioactivity were validated to justify their usage as Q-markers. RESULTS A total of 97 components were identified in QSYQ, 24 prototypes of which were detected in serum. The "component-target-disease" interaction network was constructed based on serum migrating constituents. Pharmacodynamic results showed that QSYQ effectively improved cardiac function, attenuated inflammatory cell infiltration, alleviated myocardial fibrosis, and reduced the levels of myocardial enzymes and oxidative stress in MI rats. Metabolomics study demonstrated that 59 metabolites were markedly altered in MI rats, 25 of which were significantly reversely regulated by QSYQ. After integrative analysis of network pharmacology and metabolomics, 12 components were selected as candidate Q-markers of QSYQ, and the contents were quantified. These candidate Q-markers displayed synergistic protective effects against H2O2-induced injury in H9c2 cells. Taken together, 12 components with properties of transitivity and traceability, effectiveness, measurability, and compatibility contribution were defined as representative Q-markers of QSYQ, including Astragaloside IV, Ononin, Calycosin, Formononetin, Rosmarinic acid, Cryptotanshinone, Salvianolic acid A, Tanshinol, Ginsenoside Rb1, Ginsenoside Rg1, Nerolidol, and Santalol. CONCLUSION In this study, a novel stepwise integrated strategy was presented for discovering Q-markers related to therapeutic effects of traditional Chinese medicine prescriptions. Twelve comprehensive and representative Q-markers of QSYQ were identified for the first time to improve its quality control.
Collapse
Affiliation(s)
- Li-Wei Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Meng Tang
- The First Department of Orthopaedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, 450007, PR China
| | - Zhi-Bo Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Pei-Pei Zhou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Lian-Ping Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Qing-Quan Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Ling-Guo Zhao
- Center for Disease Prevention and Control of Baoan District, Shenzhen, Guangdong Province, 518101, PR China
| | - Li-Hua Zuo
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China.
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
2
|
Islam R, Hong Z. YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis. MECHANOBIOLOGY IN MEDICINE 2024; 2:100085. [PMID: 39281415 PMCID: PMC11391866 DOI: 10.1016/j.mbm.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhongkui Hong
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Al-Nuaimi DA, Rütsche D, Abukar A, Hiebert P, Zanetti D, Cesarovic N, Falk V, Werner S, Mazza E, Giampietro C. Hydrostatic pressure drives sprouting angiogenesis via adherens junction remodelling and YAP signalling. Commun Biol 2024; 7:940. [PMID: 39097636 PMCID: PMC11297954 DOI: 10.1038/s42003-024-06604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Endothelial cell physiology is governed by its unique microenvironment at the interface between blood and tissue. A major contributor to the endothelial biophysical environment is blood hydrostatic pressure, which in mechanical terms applies isotropic compressive stress on the cells. While other mechanical factors, such as shear stress and circumferential stretch, have been extensively studied, little is known about the role of hydrostatic pressure in the regulation of endothelial cell behavior. Here we show that hydrostatic pressure triggers partial and transient endothelial-to-mesenchymal transition in endothelial monolayers of different vascular beds. Values mimicking microvascular pressure environments promote proliferative and migratory behavior and impair barrier properties that are characteristic of a mesenchymal transition, resulting in increased sprouting angiogenesis in 3D organotypic model systems ex vivo and in vitro. Mechanistically, this response is linked to differential cadherin expression at the adherens junctions, and to an increased YAP expression, nuclear localization, and transcriptional activity. Inhibition of YAP transcriptional activity prevents pressure-induced sprouting angiogenesis. Together, this work establishes hydrostatic pressure as a key modulator of endothelial homeostasis and as a crucial component of the endothelial mechanical niche.
Collapse
Affiliation(s)
| | - Dominic Rütsche
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland
| | - Asra Abukar
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland
| | - Paul Hiebert
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
- Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, HU6 7RX, UK
| | - Dominik Zanetti
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Sabine Werner
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Edoardo Mazza
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| | - Costanza Giampietro
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| |
Collapse
|
4
|
Bhuker S, Kaur A, Rajauria K, Tuli HS, Saini AK, Saini RV, Gupta M. Allicin: a promising modulator of apoptosis and survival signaling in cancer. Med Oncol 2024; 41:210. [PMID: 39060753 DOI: 10.1007/s12032-024-02459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
According to the World Health Organization, cancer is the foremost cause of mortality globally. Various phytochemicals from natural sources have been extensively studied for their anticancer properties. Allicin, a powerful organosulfur compound derived from garlic, exhibits anticancer, antioxidant, anti-inflammatory, antifungal, and antibacterial properties. This review aims to update and evaluate the chemistry, composition, mechanisms of action, and pharmacokinetics Allicin. Allicin has garnered significant attention for its potential role in modulating Fas-FasL, Bcl2-Bax, PI3K-Akt-mTOR, autophagy, and miRNA pathways. At the molecular level, allicin induces the release of cytochrome c from the mitochondria and enhances the activation of caspases-3, -8, and -9. This is accompanied by the simultaneous upregulation of Bax and Fas expression in tumor cells. Allicin can inhibit excessive autophagy by activating the PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Allicin-loaded nano-formulations efficiently induce apoptosis in cancer cells while minimizing toxicity to normal cells. Safety and clinical aspects are meticulously scrutinized, providing insights into the tolerability and adverse effects associated with allicin administration, along with an overview of current clinical trials evaluating its therapeutic potential. In conclusion, this review underscores the promising prospects of allicin as a dietary-derived medicinal compound for cancer therapy. It emphasizes the need for further research to elucidate its precise mechanisms of action, optimize delivery strategies, and validate its efficacy in clinical settings.
Collapse
Affiliation(s)
- Sunaina Bhuker
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Avneet Kaur
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Kanitha Rajauria
- SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, 603203, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Reena V Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory and Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
5
|
Li R, Huang W. Yes-Associated Protein and Transcriptional Coactivator with PDZ-Binding Motif in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24021666. [PMID: 36675179 PMCID: PMC9861006 DOI: 10.3390/ijms24021666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Yes-associated protein (YAP, also known as YAP1) and its paralogue TAZ (with a PDZ-binding motif) are transcriptional coactivators that switch between the cytoplasm and nucleus and regulate the organ size and tissue homeostasis. This review focuses on the research progress on YAP/TAZ signaling proteins in myocardial infarction, cardiac remodeling, hypertension and coronary heart disease, cardiomyopathy, and aortic disease. Based on preclinical studies on YAP/TAZ signaling proteins in cellular/animal models and clinical patients, the potential roles of YAP/TAZ proteins in some cardiovascular diseases (CVDs) are summarized.
Collapse
|
6
|
Li DD, Li N, Cai C, Wei CM, Liu GH, Wang TH, Xu FR. A molecular network-based pharmacological study on the protective effect of Panax notoginseng rhizomes against renal ischemia-reperfusion injury. Front Pharmacol 2023; 14:1134408. [PMID: 37144215 PMCID: PMC10151715 DOI: 10.3389/fphar.2023.1134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Objective: We aimed to explore the protective effect of Panax notoginseng rhizomes (PNR) on renal ischemia and reperfusion injury (RIRI) and the underlying molecular network mechanism based on network pharmacology and combined systemic experimental validation. Methods: A bilateral RIRI model was established, and Cr, SCr, and BUN levels were detected. Then, the PNR was pretreated 1 week before the RIRI model was prepared. To determine the effects of the PNR in RIRI, histopathological damage and the effect of PNRs to the kidney was assessed, using TTC, HE, and TUNEL staining. Furthermore, the underlying network pharmacology mechanism was detected by screening drug-disease intersection targets from PPI protein interactions and GO and KEGG analysis, and the hub genes were screened for molecular docking based on the Degree value. Finally, the expression of hub genes in kidney tissues was verified by qPCR, and the protein expression of related genes was further detected by Western blot (WB). Results: PNR pretreatment could effectively increase Cr level, decrease SCr and BUN levels, reduce renal infarct areas and renal tubular cell injury areas, and inhibit renal cell apoptosis. By using network pharmacology combined with bioinformatics, we screened co-targets both Panax notoginseng (Sanchi) and RIRI, acquired ten hub genes, and successfully performed molecular docking. Of these, pretreatment with the PNR reduced the mRNA levels of IL6 and MMP9 at postoperative day 1 and TP53 at postoperative day 7, and the protein expression of MMP9 at postoperative day 1 in IRI rats. These results showed that the PNR could decrease kidney pathological injury in IRI rats and inhibit apoptotic reaction and cell inflammation so as to improve renal injury effectively, and the core network mechanism is involved in the inhibition of MMP9, TP53, and IL-6. Conclusion: The PNR has a marked protective effect for RIRI, and the underlying mechanism is involved in inhibiting the expression of MMP9, TP53, and IL-6. This striking discovery not only provides fruitful evidence for the protective effect of the PNR in RIRI rats but also provides a novel mechanic explanation.
Collapse
Affiliation(s)
- Dan-Dan Li
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Na Li
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
| | - Chui Cai
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Mian Wei
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Guang-Hua Liu
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ting-Hua Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
- *Correspondence: Ting-Hua Wang, ; Fu-Rong Xu,
| | - Fu-Rong Xu
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Ting-Hua Wang, ; Fu-Rong Xu,
| |
Collapse
|
7
|
Hofmann J, Pühringer M, Steinkellner S, Holl AS, Meszaros AT, Schneeberger S, Troppmair J, Hautz T. Novel, Innovative Models to Study Ischemia/Reperfusion-Related Redox Damage in Organ Transplantation. Antioxidants (Basel) 2022; 12:antiox12010031. [PMID: 36670893 PMCID: PMC9855021 DOI: 10.3390/antiox12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The implementation of ex vivo organ machine perfusion (MP) into clinical routine undoubtedly helped to increase the donor pool. It enables not just organ assessment, but potentially regeneration and treatment of marginal organs in the future. During organ procurement, redox-stress triggered ischemia-reperfusion injury (IRI) is inevitable, which in addition to pre-existing damage negatively affects such organs. Ex vivo MP enables to study IRI-associated tissue damage and its underlying mechanisms in a near to physiological setting. However, research using whole organs is limited and associated with high costs. Here, in vitro models well suited for early stage research or for studying particular disease mechanisms come into play. While cell lines convince with simplicity, they do not exert all organ-specific functions. Tissue slice cultures retain the three-dimensional anatomical architecture and cells remain within their naïve tissue-matrix configuration. Organoids may provide an even closer modelling of physiologic organ function and spatial orientation. In this review, we discuss the role of oxidative stress during ex vivo MP and the suitability of currently available in vitro models to further study the underlying mechanisms and to pretest potential treatment strategies.
Collapse
|
8
|
Zhang W, Li QQ, Gao HY, Wang YC, Cheng M, Wang YX. The regulation of yes-associated protein/transcriptional coactivator with PDZ-binding motif and their roles in vascular endothelium. Front Cardiovasc Med 2022; 9:925254. [PMID: 35935626 PMCID: PMC9354077 DOI: 10.3389/fcvm.2022.925254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Abstract
Normal endothelial function plays a pivotal role in maintaining cardiovascular homeostasis, while endothelial dysfunction causes the occurrence and development of cardiovascular diseases. Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) serve as crucial nuclear effectors in the Hippo signaling pathway, which are regulated by mechanical stress, extracellular matrix stiffness, drugs, and other factors. Increasing evidence supports that YAP/TAZ play an important role in the regulation of endothelial-related functions, including oxidative stress, inflammation, and angiogenesis. Herein, we systematically review the factors affecting YAP/TAZ, downstream target genes regulated by YAP/TAZ and the roles of YAP/TAZ in regulating endothelial functions, in order to provide novel potential targets and effective approaches to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Wen Zhang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Qian-qian Li
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Han-yi Gao
- Department of Rehabilitation Medicine, Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Yong-chun Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Cheng
- School of Basic Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Min Cheng,
| | - Yan-Xia Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
- Yan-Xia Wang,
| |
Collapse
|
9
|
Pu L, Meng Q, Li S, Wang Y, Sun B, Liu B, Li F. Laminar shear stress alleviates monocyte adhesion and atherosclerosis development via miR-29b-3p/CX3CL1 axis regulation. J Cell Sci 2022; 135:275792. [PMID: 35735031 PMCID: PMC9450891 DOI: 10.1242/jcs.259696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Laminar shear stress (Lss) is an important anti-atherosclerosis (anti-AS) factor, but its mechanism network is not clear. Therefore, this study aimed to identify how Lss acts against AS formation from a new perspective. In this study, we analyzed high-throughput sequencing data from static and Lss-treated human aortic and human umbilical vein endothelial cells (HAECs and HUVECs, respectively) and found that the expression of CX3CL1, which is a target gene closely related to AS development, was lower in the Lss group. Lss alleviated the inflammatory response in TNF-α (also known as TNF)-activated HAECs by regulating the miR-29b-3p/CX3CL1 axis, and this was achieved by blocking nuclear factor (NF)-κB signaling. In complementary in vivo experiments, a high-fat diet (HFD) induced inflammatory infiltration and plaque formation in the aorta, both of which were significantly reduced after injection of agomir-miRNA-29b-3p via the tail vein into HFD-fed ApoE−/− mice. In conclusion, this study reveals that the Lss-sensitive miR-29b-3p/CX3CL1 axis is an important regulatory target that affects vascular endothelial inflammation and AS development. Our study provides new insights into the prevention and treatment of AS. Summary: The laminar shear stress-sensitive miR-29b-3p/CX3CL1 axis significantly inhibits monocyte adhesion to activated human aortic endothelial cells, and alleviates local inflammation and plaque formation in ApoE−/− mice fed a high-fat diet.
Collapse
Affiliation(s)
- Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yaru Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Banghao Sun
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
10
|
Upregulated miR-206 Aggravates Deep Vein Thrombosis by Regulating GJA1-Mediated Autophagy of Endothelial Progenitor Cells. Cardiovasc Ther 2022; 2022:9966306. [PMID: 35360546 PMCID: PMC8956392 DOI: 10.1155/2022/9966306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background Deep vein thrombosis (DVT) is the third most prevalent vascular disease worldwide. MicroRNAs (miRNAs) play regulatory roles in functions of endothelial progenitor cells (EPCs), which is becoming a promising therapeutic choice for thrombus resolution. Nevertheless, the role of miR-206 in EPCs is unclear. Methods EPCs were isolated from the peripheral blood of patients with DVT. In DVT mouse models, DVT was induced by stenosis of the inferior vena cava (IVC). The levels of miR-206 and gap junction protein alpha 1 (GJA1) in EPCs and vascular tissues of DVT mice were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The proliferation, migration, apoptosis, and angiogenesis were tested by cell counting kit-8 (CCK-8) assay, Transwell assay, flow cytometry analysis, and in vitro tube formation assay. The levels of autophagy-related proteins as well as the level of GJA1 in EPCs and vascular tissues were evaluated by western blotting. DVT formation in vivo was observed through hematoxylin-eosin (HE) staining. The expression of thrombus resolution markers, CD34 molecule (CD34) and matrix metallopeptidase 2 (MMP2), in the thrombi was measured by immunofluorescence staining. Results miR-206 overexpression inhibited proliferation, migration, and angiogenesis and promoted apoptosis of EPCs, while miR-206 knockdown exerted an opposite effect on EPC phenotypes. Downregulation of GJA1, the target of miR-206, abolished the influence of miR-206 on EPC phenotypes. Furthermore, silencing of miR-206 suppressed the autophagy of EPCs via upregulating GJA1. miR-206 knockdown repressed thrombus formation, enhanced the homing ability of EPCs to the thrombosis site, and facilitated thrombus resolution in DVT mouse models. Additionally, miR-206 was upregulated while GJA1 was downregulated in vascular tissues of DVT mice. miR-206 knockdown elevated GJA1 expression in vascular tissues of DVT mice. The expression of miR-206 was negatively correlated with that of GJA1 in DVT mice. Conclusion miR-206 knockdown upregulates GJA1 to inhibit autophagy of EPCs and then promote EPC proliferation, migration, and angiogenesis, thereby enhancing EPC homing to thrombi and facilitating thrombus resolution.
Collapse
|