1
|
Gao J, Wang C, Zhang J, Shawuti Z, Wang S, Ma C, Wang J. CircZNF609 inhibits miR-150-5p to promote high glucose-induced damage to retinal microvascular endothelial cells. Mol Cell Endocrinol 2024; 590:112261. [PMID: 38679361 DOI: 10.1016/j.mce.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Hyperglycemia is a key contributor to diabetic macrovascular and ocular complications. It triggers a cascade of cellular damage, particularly in the retinal microvascular endothelial cells (RMECs). However, the underlying molecular mechanisms remain only partially understood. This study hypothesizes that CircZNF609 plays a pivotal role in mediating high glucose-induced damage in RMECs by modulating miR-150-5p and its downstream target genes, thereby affecting cellular survival, apoptosis, and oxidative stress. Gene expression datasets (GSE193974 and GSE160308) and clinical samples were used to investigate the expression levels of CircZNF609 and its interaction with miR-150-5p in the context of diabetic retinopathy (DR). Our results demonstrate that CircZNF609 is upregulated in both peripheral blood stem cells from DR patients and high glucose-stimulated hRMECs. Functional experiments reveal that silencing CircZNF609 improves cell viability, reduces apoptosis, inhibits tube formation, and modulates oxidative stress markers, whereas CircZNF609 overexpression exacerbates these effects. Moreover, miR-150-5p, a microRNA, was found to be negatively regulated by CircZNF609 and downregulated in DR. Its overexpression mitigates high glucose-induced cell injury. Our findings suggest a novel mechanism whereby CircZNF609 exacerbates high glucose-induced endothelial cell damage by sponging miR-150-5p, implicating the CircZNF609/miR-150-5p axis as a potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Chenfei Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Jie Zhang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zulifeiya Shawuti
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Siyao Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Cunhua Ma
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Juan Wang
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
2
|
Chew S, Tran T, Sanfilippo P, Lim LL, Sandhu SS, Wickremasinghe S. Elevated aqueous TNF-α levels are associated with more severe functional and anatomic findings in eyes with diabetic macular oedema. Clin Exp Ophthalmol 2024. [PMID: 39072984 DOI: 10.1111/ceo.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Intravitreal ranibizumab for diabetic macular oedema (DMO) has been recently shown to modulate levels of aqueous cytokines. This study investigates the associations between changes in aqueous cytokine levels following intravitreal ranibizumab therapy and the corresponding anatomical and functional changes in the eye. METHODS Twenty-five patients comprising 30 eyes diagnosed with DMO were prospectively recruited. All eyes received three loading dose ranibizumab injections at baseline, week 4 and week 8, followed by pro re nata treatment based on best-corrected visual acuity (BCVA) and central macular thickness (CMT) up to week 48. Prior to ranibizumab administration, aqueous samples were collected from all eyes, and subsequent sampling was performed at week 8. Levels of 32 cytokines were assessed at baseline and at week 8. RESULTS At baseline, higher aqueous TNF-α levels were associated with poorer BCVA (p = 0.033), greater macular volume (p = 0.017) and worse diabetic retinopathy (p = 0.047). Higher levels of IL-7 were associated with poorer BCVA and greater macular volume (MV). Following treatment with ranibizumab there was a significant correlation with reduction of aqueous TNF-α and improvements in BCVA and MV, both at 6 months (BCVA [r = -0.558, p = 0.001], MV [r = 0.410, p = 0.024]) and 12-months (BCVA [r = -0.413, p = 0.023], MV [r = 0.482, p = 0.008]). The change in VEGF concentration following ranibizumab treatment did not correlate with either BCVA or MV improvements (p > 0.05). CONCLUSIONS Higher levels of aqueous TNF-α and IL-7 correlated with worse DMO, both anatomically and functionally. Reductions in levels of aqueous TNF-α, but not VEGF, post ranibizumab treatment were associated with improvement in BCVA and MV.
Collapse
Affiliation(s)
- Sky Chew
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Tuan Tran
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Paul Sanfilippo
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Lyndell L Lim
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Sukhpal S Sandhu
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Wang J, Yang N, Li W, Zhang H, Li J. Role of Hsa_circ_0000880 in the Regulation of High Glucose-Induced Apoptosis of Retinal Microvascular Endothelial Cells. Transl Vis Sci Technol 2024; 13:12. [PMID: 38587436 PMCID: PMC11005064 DOI: 10.1167/tvst.13.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Circular RNAs (circRNAs) have been verified to participate in multiple biological processes and disease progression. Yet, the role of circRNAs in the pathogenesis of diabetic retinopathy (DR) is still poorly understood and deserves further study. This study aimed to investigate the role of circRNAs in the regulation of high glucose (HG)-induced apoptosis of retinal microvascular endothelial cells (RMECs). Methods Epiretinal membranes from patients with DR and nondiabetic patients with idiopathic macular epiretinal membrane were collected for this study. The circRNA microarrays were performed using high-throughput sequencing. Hierarchical clustering, functional enrichment, and network regulation analyses were used to analyze the data generated by high-throughput sequencing. Next, RMECs were subjected to HG (25 mM) conditions to induce RMECs apoptosis in vitro. A series of experiments, such as Transwell, the Scratch wound, and tube formation, were conducted to explore the regulatory effect of circRNA on RMECs. Fluorescence in situ hybridization (FISH), immunofluorescence staining, and Western blot were used to study the mechanism underlying circRNA-mediated regulation. Results A total of 53 differentially expressed circRNAs were found in patients with DR. Among these, hsa_circ_0000880 was significantly upregulated in both the diabetic epiretinal membranes and in an in vitro DR model of HG-treated RMECs. Hsa_circ_0000880 knockout facilitated RMECs vitality and decreased the paracellular permeability of RMECs under hyperglycemia. More importantly, silencing of hsa_circ_0000880 significantly inhibited HG-induced ROS production and RMECs apoptosis. Hsa_circ_0000880 acted as an endogenous sponge for eukaryotic initiation factor 4A-III (EIF4A3). Knockout of hsa_circ_0000880 reversed HG-induced decrease in EIF4A3 protein level. Conclusions Our findings suggest that hsa_circ_0000880 is a novel circRNA can induce RMECs apoptosis in response to HG conditions by sponging EIF4A3, offering an innovative treatment approach against DR. Translational Relevance The circRNAs participate in the dysregulation of microvascular endothelial function induced by HG conditions, indicating a promising therapeutic target for DR.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nannan Yang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Ophthalmology, The People's Hospital of Laoling City, Dezhou, Shandong, China
| | - Wanna Li
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Han Zhang
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Yu HS, Hong EH, Kang JH, Lee YW, Lee WJ, Kang MH, Cho H, Shin YU, Seong M. Expression of microRNAs related to apoptosis in the aqueous humor and lens capsule of patients with glaucoma. Front Med (Lausanne) 2024; 11:1288854. [PMID: 38449883 PMCID: PMC10917207 DOI: 10.3389/fmed.2024.1288854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Background The aim of this study is to investigate the expression profiles of microRNAs (miRNAs) related to apoptosis in the aqueous humor (AH) and lens capsule (LC) of patients with glaucoma. Methods AH and LC samples were collected from patients with open-angle glaucoma and control participants who were scheduled for cataract surgery. A miRNA PCR array comprising 84 miRNAs was used to analyze the AH (glaucoma, n = 3; control, n = 3) and LC samples (glaucoma, n = 3; control, n = 4). Additionally, the AH and LC samples (glaucoma, n = 3; control, n = 4) were subjected to quantitative real-time PCR to validate the differentially expressed miRNAs determined using the PCR array. Bioinformatics analysis was performed to identify the interactions between miRNAs and diseases. Additionally, the differential expression of these miRNAs and the target gene was validated through in vitro experiments using a retinal ganglion cell (RGC) model. Results Expression levels of 19 and 3 miRNAs were significantly upregulated in the AH and LC samples of the glaucoma group, respectively (p < 0.05). Of these, the expression levels of hsa-miR-193a-5p and hsa-miR-222-3p showed significant differences in both AH and LC samples. Bioinformatics analysis showed experimentally validated 8 miRNA:gene pairs. Among them, PTEN was selected to analyze the expression level in AH and LC from separate cohort (glaucoma, n = 5; control, n = 4). The result showed downregulation of PTEN concurrent with upregulation of the two miRNAs in LC samples of glaucoma group. In vitro experiments validated that the expression levels of hsa-miR-193a-5p and hsa-miR-222-3p were significantly upregulated, and that of PTEN was significantly downregulated in the H2O2-treated RGC, while the level of PTEN was recovered through co-treatment with miR-193a inhibitor or miR-222 inhibitor. Conclusion This is the first study to investigate the differential expression of apoptosis-related miRNAs in the AH and LC of patients with glaucoma. Hsa-miR-193a-5p and hsa-miR-222-3p, which were upregulated in both AH and LC, may be considered potential biomarkers for glaucoma.
Collapse
Affiliation(s)
- Hyo Seon Yu
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Hong
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Ji Hye Kang
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yong Woo Lee
- Department of Ophthalmology, Kangwon National University Graduate School of Medicine, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Won June Lee
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Min Ho Kang
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
- NOON Eye Clinic, Guri, Gyeonggi-do, Republic of Korea
| | - Yong Un Shin
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Mincheol Seong
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
- NOON Eye Clinic, Guri, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Galdiero M, Trotta C, Schettino MT, Cirillo L, Sasso FP, Petrillo F, Petrillo A. Normospermic Patients Infected With Ureaplasma parvum: Role of Dysregulated miR-122-5p, miR-34c-5, and miR-141-3p. Pathog Immun 2024; 8:16-36. [PMID: 38223489 PMCID: PMC10783813 DOI: 10.20411/pai.v8i2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ureaplasma parvum (UP) is a causative agent of non-gonococcal urethritis, involved in the pathogenesis of prostatitis and epididymitis, and it could impair human fertility. Although UP infection is a frequent cause of male infertility the study evidence assessing their prevalence and the association in patients with infertility is still scarce. The molecular processes leading to defects in spermatozoa quality are not completely investigated. MicroRNAs (miRNAs) have been extensively reported as gene regulatory molecules on post-transcriptional levels involved in various biological processes such as gametogenesis, embryogenesis, and the quality of sperm, oocyte, and embryos. Methods Therefore, the study design was to demonstrate that miRNAs in body fluids like sperm could be utilized as non-invasive diagnostic biomarkers for pathological and physiological conditions such as infertility. A post-hoc bioinformatics analysis was carried out to predict the pathways modulated by the miRNAs dysregulated in the differently motile spermatozoa. Results Here it is shown that normospermic patients infected by UP had spermatozoa with increased quantity of superoxide anions, reduced expression of miR-122-5p, miR-34c-5, and increased miR-141-3p compared with non-infected normospermic patients. This corresponded to a reduction of sperm motility in normospermic infected patients compared with normospermic non-infected ones. A target gene prediction presumed that an essential role of these miRNAs resided in the regulation of lipid kinase activity, accounting for the changes in the constitution of spermatozoa membrane lipids caused by UP. Conclusions Altogether, the data underline the influence of UP on epigenetic mechanisms regulating spermatozoa motility.
Collapse
Affiliation(s)
- Marilena Galdiero
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy. Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Carolo Trotta
- Department of Gynecology and Obstetrics University of Campania Luigi Vanvitelli Naples Italy
| | - Maria Teresa Schettino
- Department of Gynecology and Obstetrics University of Campania Luigi Vanvitelli Naples Italy
| | - Luigi Cirillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples Italy
| | | | - Francesco Petrillo
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy. Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | | |
Collapse
|
6
|
Mrowicka M, Mrowicki J, Majsterek I. Relationship between Biochemical Pathways and Non-Coding RNAs Involved in the Progression of Diabetic Retinopathy. J Clin Med 2024; 13:292. [PMID: 38202299 PMCID: PMC10779474 DOI: 10.3390/jcm13010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetic retinopathy (DR) is a progressive blinding disease, which affects the vision and quality of life of patients, and it severely impacts the society. This complication, caused by abnormal glucose metabolism, leads to structural, functional, molecular, and biochemical abnormalities in the retina. Oxidative stress and inflammation also play pivotal roles in the pathogenic process of DR, leading to mitochondrial damage and a decrease in mitochondrial function. DR causes retinal degeneration in glial and neural cells, while the disappearance of pericytes in retinal blood vessels leads to alterations in vascular regulation and stability. Clinical changes include dilatation and blood flow changes in response to the decrease in retinal perfusion in retinal blood vessels, leading to vascular leakage, neovascularization, and neurodegeneration. The loss of vascular cells in the retina results in capillary occlusion and ischemia. Thus, DR is a highly complex disease with various biological factors, which contribute to its pathogenesis. The interplay between biochemical pathways and non-coding RNAs (ncRNAs) is essential for understanding the development and progression of DR. Abnormal expression of ncRNAs has been confirmed to promote the development of DR, suggesting that ncRNAs such as miRNAs, lncRNAs, and circRNAs have potential as diagnostic biomarkers and theranostic targets in DR. This review provides an overview of the interactions between abnormal biochemical pathways and dysregulated expression of ncRNAs under the influence of hyperglycemic environment in DR.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.M.); (I.M.)
| | | | | |
Collapse
|
7
|
Yang R, Lou D, Xia K, Sun L, Zhu Q. A pH-Mediated Highly Selective System Enabling Simultaneous Analysis of Circulating RNAs Carried by Extracellular Vesicles and Lipoproteins. Anal Chem 2023; 95:18803-18813. [PMID: 38078945 DOI: 10.1021/acs.analchem.3c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Extracellular vesicles (EVs) and lipoproteins (LPPs) serve as important carriers of circulating miRNAs in peripheral blood, offering immense potential for disease diagnosis and therapeutic interventions. Due to their shared physicochemical attributes, EVs and LPPs are frequently coisolated, potentially leading to misunderstandings regarding their distinct functional roles in physiological and pathological processes. Here, we report a highly selective magnetic system based on the pH-mediated affinity displayed by cibacron blue (CB) toward EVs and LPPs, enabling successful separation and collection of these two nanoparticles without cross-contamination for subsequent circulating RNA analysis. First, we found that CB-modified magnetic beads (CBMBs) exhibit a strong affinity toward LPP particles while displaying little interaction with EVs in standard samples under physiological pH conditions. We further demonstrate that the affinity between CB molecules and bionanoparticles in plasma samples is highly pH-dependent. Specifically, CBMBs show affinities for both LPP and EV particles under neutral and acidic conditions. However, at basic pH levels, CB molecules selectively bind only to LPP particles. Consequently, the remaining EV particles present in plasma are subsequently isolated by using titanium dioxide-modified beads (TiMBs) through phospholipid affinity. The simultaneous analysis of the transcriptomic contents of EV and LPP reveals clear differences in their small RNA profiles, with the differentially expressed RNAs reflecting distinct biological processes. Significantly, in a proof-of-concept study, we successfully demonstrated a strong correlation between miRNAs carried by both EV and LPP particles with the occurrence of ocular neovascularization during the progression of diabetic retinopathy. The involved miRNAs may serve as potential biomarkers for DR diagnostics and severity classification. To sum up, this pH-mediated separation system is not only user-friendly but also highly compatible, rendering it a potent tool for probing the molecular compositions, biomarkers, and underlying biological mechanisms of EVs and LPPs.
Collapse
Affiliation(s)
- Rui Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Doudou Lou
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, China
| | - Kangfu Xia
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230051, China
- Department of Clinical Laboratory, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, Lu'an 237005, China
| | - Lei Sun
- Department of Clinical Laboratory, Lu'an People's Hospital of Anhui Province, Lu'an Hospital of Anhui Medical University, Lu'an 237005, China
| | - Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
8
|
Sun WJ, An XD, Zhang YH, Zhao XF, Sun YT, Yang CQ, Kang XM, Jiang LL, Ji HY, Lian FM. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne) 2023; 14:1270145. [PMID: 38027131 PMCID: PMC10680169 DOI: 10.3389/fendo.2023.1270145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Dong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Ting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun-Qing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Min Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hang-Yu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Lepre CC, Russo M, Trotta MC, Petrillo F, D'Agostino FA, Gaudino G, D'Amico G, Campitiello MR, Crisci E, Nicoletti M, Gesualdo C, Simonelli F, D'Amico M, Hermenean A, Rossi S. Inhibition of Galectins and the P2X7 Purinergic Receptor as a Therapeutic Approach in the Neurovascular Inflammation of Diabetic Retinopathy. Int J Mol Sci 2023; 24:ijms24119721. [PMID: 37298672 DOI: 10.3390/ijms24119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular retinal complication of diabetic patients, contributing to loss of vision. Recently, retinal neuroinflammation and neurodegeneration have emerged as key players in DR progression, and therefore, this review examines the neuroinflammatory molecular basis of DR. We focus on four important aspects of retinal neuroinflammation: (i) the exacerbation of endoplasmic reticulum (ER) stress; (ii) the activation of the NLRP3 inflammasome; (iii) the role of galectins; and (iv) the activation of purinergic 2X7 receptor (P2X7R). Moreover, this review proposes the selective inhibition of galectins and the P2X7R as a potential pharmacological approach to prevent the progression of DR.
Collapse
Affiliation(s)
- Caterina Claudia Lepre
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania
| | - Marina Russo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesco Petrillo
- Ph.D. Course in Translational Medicine, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Fabiana Anna D'Agostino
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gennaro Gaudino
- School of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy
| | | | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy
| | - Erminia Crisci
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maddalena Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
10
|
Liu W, Sun X, Huang J, Zhang J, Liang Z, Zhu J, Chen T, Zeng Y, Peng M, Li X, Zeng L, Lei W, Cheng J. Development and validation of a genomic nomogram based on a ceRNA network for comprehensive analysis of obstructive sleep apnea. Front Genet 2023; 14:1084552. [PMID: 36968605 PMCID: PMC10036397 DOI: 10.3389/fgene.2023.1084552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Objectives: Some ceRNA associated with lncRNA have been considered as possible diagnostic and therapeutic biomarkers for obstructive sleep apnea (OSA). We intend to identify the potential hub genes for the development of OSA, which will provide a foundation for the study of the molecular mechanism underlying OSA and for the diagnosis and treatment of OSA.Methods: We collected plasma samples from OSA patients and healthy controls for the detection of ceRNA using a chip. Based on the differential expression of lncRNA, we identified the target genes of miRNA that bind to lncRNAs. We then constructed lncRNA-related ceRNA networks, performed functional enrichment analysis and protein-protein interaction analysis, and performed internal and external validation of the expression levels of stable hub genes. Then, we conducted LASSO regression analysis on the stable hub genes, selected relatively significant genes to construct a simple and easy-to-use nomogram, validated the nomogram, and constructed the core ceRNA sub-network of key genes.Results: We successfully identified 282 DElncRNAs and 380 DEmRNAs through differential analysis, and we constructed an OSA-related ceRNA network consisting of 292 miRNA-lncRNAs and 41 miRNA-mRNAs. Through PPI and hub gene selection, we obtained 7 additional robust hub genes, CCND2, WT1, E2F2, IRF1, BAZ2A, LAMC1, and DAB2. Using LASSO regression analysis, we created a nomogram with four predictors (CCND2, WT1, E2F2, and IRF1), and its area under the curve (AUC) is 1. Finally, we constructed a core ceRNA sub-network composed of 74 miRNA-lncRNA and 7 miRNA-mRNA nodes.Conclusion: Our study provides a new foundation for elucidating the molecular mechanism of lncRNA in OSA and for diagnosing and treating OSA.
Collapse
Affiliation(s)
- Wang Liu
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xishi Sun
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiewen Huang
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinjian Zhang
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhengshi Liang
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinru Zhu
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tao Chen
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zeng
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Min Peng
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongbin Li
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijuan Zeng
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Lei
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Junfen Cheng, ; Wei Lei,
| | - Junfen Cheng
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Junfen Cheng, ; Wei Lei,
| |
Collapse
|
11
|
Wang J, Liu Y, Gao Y, Liang J, Wang B, Xia Q, Xie Y, Shan F, Xia Q. Comprehensive bioinformatics analysis and molecular validation of lncRNAs-mediated ceRNAs network in schizophrenia. Life Sci 2022; 312:121205. [PMID: 36410410 DOI: 10.1016/j.lfs.2022.121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
AIMS The present study aimed to investigate how Schizophrenia (SCZ)-specific long non-coding RNAs (lncRNAs) served as competing endogenous RNAs (ceRNAs) to modulate the biological functions and pathways involved in the pathogenesis of SCZ. MAIN METHODS Microarray dataset (GSE54913) was obtained from Gene Expression Omnibus (GEO) database. Differently expressed (DE) lncRNAs and mRNAs were identified by "limma" package. The binding miRNAs of lncRNAs and target mRNAs of shared miRNAs were predicted by miRcode, miRDB, miRTarbase and targetscan databases. Following the ceRNAs theory, interaction network was established and visualized with the cytoscape. Functional enrichment analysis uncovered the concentrated functions and signaling pathways that may be associated with SCZ progression. Protein-protein interaction (PPI) analysis was utilized to determine hub genes. Quantitative real-time PCR (qRT-PCR) and receiver operating characteristic curve (ROC) were performed to evaluate the expression and diagnostic value of ceRNAs members, respectively. KEY FINDINGS DElncRNAs and DEmRNAs were initially screened from GSE54913 to construct the SCZ-related ceRNAs network with 42 nodes and 53 edges. Functional enrichment analysis revealed that ceRNAs members appeared to be highly correlated with transcription factor activation, cell replication and tumor-related pathways. Once validated, a significant ceRNAs subnetwork was proposed as being implicated in the pathogenesis of SCZ. ROC analysis indicated that SCZ-related ceRNAs members may be sensitive diagnostic biomarkers for SCZ. SIGNIFICANCE The significant SCZ-related ceRNAs subnetworks (lncRNA-C2orf48A/hsa-miR-20b-5p,-17-5p/KIF23, FOXJ2) may represent promising predictive and diagnostic biomarkers and provide novel insights into the mechanism by which lncRNAs act as microRNA sponges and contribute to the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Jiequan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China
| | - Yaru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230022, China
| | - Yejun Gao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China
| | - Baoshi Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230022, China
| | - Yawen Xie
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui 230022, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Feng Shan
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China
| | - Qingrong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui 230000, China.
| |
Collapse
|
12
|
Trotta MC, Petrillo F, Gesualdo C, Rossi S, Corte AD, Váradi J, Fenyvesi F, D’Amico M, Hermenean A. Effects of the Calix[4]arene Derivative Compound OTX008 on High Glucose-Stimulated ARPE-19 Cells: Focus on Galectin-1/TGF-β/EMT Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154785. [PMID: 35897964 PMCID: PMC9332238 DOI: 10.3390/molecules27154785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Diabetic retinopathy (DR) is a neurovascular disease characterized by the reduction of retina integrity and functionality, as a consequence of retinal pigment epithelial cell fibrosis. Although galectin-1 (a glycan-binding protein) has been associated with dysregulated retinal angiogenesis, no evidence has been reported about galectin-1 roles in DR-induced fibrosis. ARPE-19 cells were cultured in normal (5 mM) or high glucose (35 mM) for 3 days, then exposed to the selective galectin-1 inhibitor OTX008 (2.5–5–10 μM) for 6 days. The determination of cell viability and ROS content along with the analysis of specific proteins (by immunocytochemistry, Western blotting, and ELISA) or mRNAs (by real time-PCR) were performed. OTX008 5 μM and 10 μM improved cell viability and markedly reduced galectin-1 protein expression in cells exposed to high glucose. This was paralleled by a down-regulation of the TGF-β/, NF-kB p65 levels, and ROS content. Moreover, epithelial–mesenchymal transition markers were reduced by OTX008 5 μM and 10 μM. The inhibition of galectin-1 by OTX008 in DR may preserve retinal pigment epithelial cell integrity and functionality by reducing their pro-fibrotic phenotype and epithelial–mesenchymal transition phenomenon induced by diabetes.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (M.D.)
| | - Francesco Petrillo
- PhD Course in Translational Medicine, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (S.R.); (A.D.C.)
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (S.R.); (A.D.C.)
| | - Alberto Della Corte
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (S.R.); (A.D.C.)
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (J.V.); (F.F.)
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (J.V.); (F.F.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (M.D.)
| | - Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania
- Correspondence:
| |
Collapse
|
13
|
Amorim M, Martins B, Caramelo F, Gonçalves C, Trindade G, Simão J, Barreto P, Marques I, Leal EC, Carvalho E, Reis F, Ribeiro-Rodrigues T, Girão H, Rodrigues-Santos P, Farinha C, Ambrósio AF, Silva R, Fernandes R. Putative Biomarkers in Tears for Diabetic Retinopathy Diagnosis. Front Med (Lausanne) 2022; 9:873483. [PMID: 35692536 PMCID: PMC9174990 DOI: 10.3389/fmed.2022.873483] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Tear fluid biomarkers may offer a non-invasive strategy for detecting diabetic patients with increased risk of developing diabetic retinopathy (DR) or increased disease progression, thus helping both improving diagnostic accuracy and understanding the pathophysiology of the disease. Here, we assessed the tear fluid of nondiabetic individuals, diabetic patients with no DR, and diabetic patients with nonproliferative DR (NPDR) or with proliferative DR (PDR) to find putative biomarkers for the diagnosis and staging of DR. Methods Tear fluid samples were collected using Schirmer test strips from a cohort with 12 controls and 54 Type 2 Diabetes (T2D) patients, and then analyzed using mass spectrometry (MS)-based shotgun proteomics and bead-based multiplex assay. Tear fluid-derived small extracellular vesicles (EVs) were analyzed by transmission electron microscopy, Western Blotting, and nano tracking. Results Proteomics analysis revealed that among the 682 reliably quantified proteins in tear fluid, 42 and 26 were differentially expressed in NPDR and PDR, respectively, comparing to the control group. Data are available via ProteomeXchange with identifier PXD033101. By multicomparison analyses, we also found significant changes in 32 proteins. Gene ontology (GO) annotations showed that most of these proteins are associated with oxidative stress and small EVs. Indeed, we also found that tear fluid is particularly enriched in small EVs. T2D patients with NPDR have higher IL-2/-5/-18, TNF, MMP-2/-3/-9 concentrations than the controls. In the PDR group, IL-5/-18 and MMP-3/-9 concentrations were significantly higher, whereas IL-13 was lower, compared to the controls. Conclusions Overall, the results show alterations in tear fluid proteins profile in diabetic patients with retinopathy. Promising candidate biomarkers identified need to be validated in a large sample cohort.
Collapse
Affiliation(s)
- Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | | | | | - Jorge Simão
- Coimbra University Hospital, Coimbra, Portugal
| | - Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Inês Marques
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Ermelindo Carreira Leal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Eugénia Carvalho
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia Farinha
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra University Hospital, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Rufino Silva
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Coimbra University Hospital, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
- *Correspondence: Rosa Fernandes
| |
Collapse
|
14
|
Biomarkers as Predictive Factors of Anti-VEGF Response. Biomedicines 2022; 10:biomedicines10051003. [PMID: 35625740 PMCID: PMC9139112 DOI: 10.3390/biomedicines10051003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration is the main cause of irreversible vision in developed countries, and intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections are the current gold standard treatment today. Although anti-VEGF treatment results in important improvements in the course of this disease, there is a considerable number of patients not responding to the standardized protocols. The knowledge of how a patient will respond or how frequently retreatment might be required would be vital in planning treatment schedules, saving both resource utilization and financial costs, but today, there is not an ideal biomarker to use as a predictive response to ranibizumab therapy. Whole blood and blood mononuclear cells are the samples most studied; however, few reports are available on other important biofluid samples for studying this disease, such as aqueous humor. Moreover, the great majority of studies carried out to date were focused on the search for SNPs in genes related to AMD risk factors, but miRNAs, proteomic and metabolomics studies have rarely been conducted in anti-VEGF-treated samples. Here, we propose that genomic, proteomic and/or metabolomic markers could be used not alone but in combination with other methods, such as specific clinic characteristics, to identify patients with a poor response to anti-VEGF treatment to establish patient-specific treatment plans.
Collapse
|
15
|
Circ_NNT suppresses the apoptosis and inflammation in glucose-induced human retinal pigment epithelium by regulating miR-320b/TIMP3 axis in diabetic retinopathy. Clin Immunol 2022; 238:109023. [PMID: 35477026 DOI: 10.1016/j.clim.2022.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a frequent complication of diabetes. Recent reports have showed that circular RNAs (circRNAs) play important roles in DR progression. Herein, the aim of this study was to explore the role and molecular mechanism of circ_NNT in DR process. METHODS Human retinal pigment epithelial cells ARPE-19 were treated with high glucose (HG) in experimental group. The expression of circ_NNT, miR-320b, and TIMP3 (TIMP Metallopeptidase Inhibitor 3) were determined using quantitative real-time polymerase chain reaction and Western blot. In vitro experiments were conducted by 5-ethynyl-2'-deoxyuridine (EdU) assay, MTT assay, flow cytometry, Western blot, and ELISA. The binding interaction was confirmed using dual-luciferase reporter and pull-down assays. RESULTS HG stimulation led to a decrease of circ_NNT and TIMP3 expression, and an increase of miR-320b expression in ARPE-19 cells. Functionally, circ_NNT up-regulation reversed HG-evoked apoptosis and inflammation in ARPE-19 cells. Mechanistically, circ_NNT acted as a sponge for miR-320b to elevate TIMP3 expression. Further rescue experiments showed that miR-320b elevation attenuated the protective effects of circ_NNT on HG-induced ARPE-19 cells. Moreover, inhibition of miR-320b protected ARPE-19 cells against HG-evoked apoptosis and inflammation, which were abolished by TIMP3 knockdown. CONCLUSION Circ_NNT protected ARPE-19 cells against HG-evoked apoptosis and inflammation via elevating TIMP3 through sequestering miR-320b, indicating that up-regulation of circ_NNT might contribute to the inhibition of DR process.
Collapse
|
16
|
Gu C, Zhang H, Li Q, Zhao S, Gao Y. MiR-192 attenuates high glucose-induced pyroptosis in retinal pigment epithelial cells via inflammasome modulation. Bioengineered 2022; 13:10362-10372. [PMID: 35441575 PMCID: PMC9161832 DOI: 10.1080/21655979.2022.2044734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic retinopathy is one of the most characteristic complications of diabetes mellitus, and pyroptosis plays acrucial role in the onset and development of diabetic retinopathy. Although microRNA-192 (miR-192) has been demonstrated to be involved in diabetic retinopathy progression, to the best of our knowledge, its potential and mechanism in cell pyroptosis in diabetic retinopathy have not been studied. The present study demonstrated that high glucose (HG) contributes to the pyroptosis of retinal pigment epithelial (RPE) cells in a dose-dependent manner. The results revealed that miR-192 was weakly expressed in HG-induced RPE cells. Furthermore, overexpression of miR-192 abrogated the role of HG in RPE cell pyroptosis. Based on the bioinformatics analysis, a dual-luciferase reporter assay, and an RNA pull-down assay, FTO α-ketoglutarate-dependent dioxygenase (FTO) was demonstrated to be a direct target of miR-192. Additionally, upregulation of FTO abolished the effects of miR-192 on RPE cells treated with HG. Nucleotide-binding domain leucine-rich repeat family protein 3 (NLRP3) inflammasome activation is vital for cell pyroptosis, and FTO functions as a pivotal modulator in the N6-methyladenosine modifications of various genes. Mechanistically, FTO enhanced NLRP3 expression by facilitating demethylation of NLRP3. In conclusion, the present results demonstrate that miR-192 represses RPE cell pyroptosis triggered by HG via regulation of the FTO/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Cao Gu
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongjun Zhang
- Department of Ophthalmology, Minhang Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qing Li
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shaofei Zhao
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Gao
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
17
|
Trotta MC, Gesualdo C, Petrillo F, Cavasso G, Corte AD, D'Amico G, Hermenean A, Simonelli F, Rossi S. Serum Iba-1, GLUT5, and TSPO in Patients With Diabetic Retinopathy: New Biomarkers for Early Retinal Neurovascular Alterations? A Pilot Study. Transl Vis Sci Technol 2022; 11:16. [PMID: 35285861 PMCID: PMC8934554 DOI: 10.1167/tvst.11.3.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study explored the possibility of highlighting early retinal neurovascular alterations of diabetic retinopathy (DR) by monitoring in DR patients the serum levels of microglial biomarkers ionized calcium-binding adapter molecule 1 (Iba-1), glucose transporter 5 (GLUT5), and translocator protein (TSPO), along with serum changes of the endothelial dysfunction marker arginase-1. Methods Serum markers were determined by enzyme-linked immunosorbent assay in 50 patients: 12 non-diabetic subjects, 14 diabetic patients without DR, 13 patients with non-proliferative DR (NPDR), and 11 patients with proliferative DR (PDR). The results were correlated with hyperreflective retinal spots (HRS), observed with optical coherence tomography (OCT). Results Although HRS were absent in diabetic patients without DR, NPDR patients showed an average of 4 ± 1 HRS, whereas the highest presence was detected in PDR patients, with 8 ± 1 HRS (P < 0.01 vs. NPDR). HRS were positively correlated (P < 0.01) with serum levels of arginase-1 (r = 0.91), Iba-1 (r = 0.96), GLUT5 (r = 0.94), and TSPO (r = 0.88). Moreover, serum proinflammatory cytokines and chemokines showed a positive correlation (P < 0.01) with HRS number and the serum markers analyzed. Conclusions Serum markers of microglial activation positively correlate with retinal HRS in NPDR and PDR patients. Translational Relevance These data corroborate the possibility of highlighting early retinal neurovascular changes due to diabetes by monitoring circulating microglial markers.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Giancuomo Cavasso
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Alberto Della Corte
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Giovanbattista D'Amico
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|
18
|
Guo J, Zhou P, Liu Z, Dai F, Pan M, An G, Han J, Du L, Jin X. The Aflibercept-Induced MicroRNA Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients Detected by Next-Generation Sequencing. Front Pharmacol 2021; 12:781276. [PMID: 34938191 PMCID: PMC8685391 DOI: 10.3389/fphar.2021.781276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: Vascular endothelial growth factor-A (VEGF-A) is an important pathogenic factor in proliferative diabetic retinopathy (PDR), and aflibercept (Eylea) is one of the widely used anti-VEGF agents. This study investigated the microRNA (miRNA) profiles in the vitreous of 5 idiopathic macular hole patients (non-diabetic controls), 5 untreated PDR patients (no-treatment group), and 5 PDR patients treated with intravitreal aflibercept injection (treatment group). Methods: Next-generation sequencing was performed to determine the miRNA profiles. Deregulated miRNAs were validated with quantitative real-time PCR (qRT-PCR) in another cohort. The mRNA profile data (GSE160310) of PDR patients were retrieved from the Gene Expression Omnibus (GEO) database. The function of differentially expressed miRNAs and mRNAs was annotated by bioinformatic analysis and literature study. Results: Twenty-nine miRNAs were significantly dysregulated in the three groups, of which 19,984 target mRNAs were predicted. Hsa-miR-3184-3p, hsa-miR-24-3p, and hsa-miR-197-3p were validated to be remarkably upregulated in no-treatment group versus controls, and significantly downregulated in treatment group versus no-treatment group. In the GSE160310 profile, 204 deregulated protein-coding mRNAs were identified, and finally 179 overlapped mRNAs between the 19,984 target mRNAs and 204 deregulated mRNAs were included for further analysis. Function analysis provided several roles of aflibercept-induced miRNAs, promoting the alternation of drug sensitivity or resistance-related mRNAs, and regulating critical mRNAs involved in angiogenesis and retinal fibrosis. Conclusion: Hsa-miR-3184-3p, hsa-miR-24-3p, and hsa-miR-197-3p were highly expressed in PDR patients, and intravitreal aflibercept injection could reverse this alteration. Intravitreal aflibercept injection may involve in regulating cell sensitivity or resistance to drug, angiogenesis, and retinal fibrosis.
Collapse
Affiliation(s)
- Ju Guo
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyi Zhou
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenhui Liu
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Dai
- People’s Hospital of Zhengzhou University and Henan Eye Institute, Zhengzhou, China
| | - Meng Pan
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangqi An
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Han
- People’s Hospital of Zhengzhou University and Henan Eye Institute, Zhengzhou, China
| | - Liping Du
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemin Jin
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Barbagallo C, Platania CBM, Drago F, Barbagallo D, Di Pietro C, Purrello M, Bucolo C, Ragusa M. Do Extracellular RNAs Provide Insight into Uveal Melanoma Biology? Cancers (Basel) 2021; 13:5919. [PMID: 34885029 PMCID: PMC8657116 DOI: 10.3390/cancers13235919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, showing a high mortality due to metastasis. Although it is considered a rare disease, a growing number of papers have reported altered levels of RNAs (i.e., coding and non-coding RNAs) in cancerous tissues and biological fluids from UM patients. The presence of circulating RNAs, whose dysregulation is associated with UM, paved the way to the possibility of exploiting it for diagnostic and prognostic purposes. However, the biological meaning and the origin of such RNAs in blood and ocular fluids of UM patients remain unexplored. In this review, we report the state of the art of circulating RNAs in UM and debate whether the amount and types of RNAs measured in bodily fluids mirror the RNA alterations from source cancer cells. Based on literature data, extracellular RNAs in UM patients do not represent, with rare exceptions, a snapshot of RNA dysregulations occurring in cancerous tissues, but rather the complex and heterogeneous outcome of a systemic dysfunction, including immune system activity, that modifies the mechanisms of RNA delivery from several cell types.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (D.B.); (C.D.P.); (M.P.); (M.R.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences—Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.B.M.P.); (F.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences—Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.B.M.P.); (F.D.)
- Center of Research in Ocular Pharmacology—CERFO, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (D.B.); (C.D.P.); (M.P.); (M.R.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (D.B.); (C.D.P.); (M.P.); (M.R.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (D.B.); (C.D.P.); (M.P.); (M.R.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences—Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.B.M.P.); (F.D.)
- Center of Research in Ocular Pharmacology—CERFO, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (D.B.); (C.D.P.); (M.P.); (M.R.)
| |
Collapse
|
20
|
Gesualdo C, Balta C, Platania CBM, Trotta MC, Herman H, Gharbia S, Rosu M, Petrillo F, Giunta S, Della Corte A, Grieco P, Bellavita R, Simonelli F, D'Amico M, Hermenean A, Rossi S, Bucolo C. Fingolimod and Diabetic Retinopathy: A Drug Repurposing Study. Front Pharmacol 2021; 12:718902. [PMID: 34603029 PMCID: PMC8484636 DOI: 10.3389/fphar.2021.718902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the interactions between fingolimod, a sphingosine 1-phosphate receptor (S1PR) agonist, and melanocortin receptors 1 and 5 (MCR1, MCR5). In particular, we investigated the effects of fingolimod, a drug approved to treat relapsing-remitting multiple sclerosis, on retinal angiogenesis in a mouse model of diabetic retinopathy (DR). We showed, by a molecular modeling approach, that fingolimod can bind with good-predicted affinity to MC1R and MC5R. Thereafter, we investigated the fingolimod actions on retinal MC1Rs/MC5Rs in C57BL/6J mice. Diabetes was induced in C57BL/6J mice through streptozotocin injection. Diabetic and control C57BL/6J mice received fingolimod, by oral route, for 12 weeks and a monthly intravitreally injection of MC1R antagonist (AGRP), MC5R antagonist (PG20N), and the selective S1PR1 antagonist (Ex 26). Diabetic animals treated with fingolimod showed a decrease of retinal vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2), compared to diabetic control group. Fingolimod co-treatment with MC1R and MC5R selective antagonists significantly (p < 0.05) increased retinal VEGFR1, VEGFR2, and VEGFA levels compared to mice treated with fingolimod alone. Diabetic animals treated with fingolimod plus Ex 26 (S1PR1 selective blocker) had VEGFR1, VEGFR2, and VEGFA levels between diabetic mice group and the group of diabetic mice treated with fingolimod alone. This vascular protective effect of fingolimod, through activation of MC1R and MC5R, was evidenced also by fluorescein angiography in mice. Finally, molecular dynamic simulations showed a strong similarity between fingolimod and the MC1R agonist BMS-470539. In conclusion, the anti-angiogenic activity exerted by fingolimod in DR seems to be mediated not only through S1P1R, but also by melanocortin receptors.
Collapse
Affiliation(s)
- Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Sami Gharbia
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | | | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Alberto Della Corte
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Grieco
- Pharmacy Department, University of Naples Federico II, Naples, Italy
| | - Rosa Bellavita
- Pharmacy Department, University of Naples Federico II, Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
21
|
Kato A, Fujishima K, Takami K, Inoue N, Takase N, Suzuki N, Suzuki K, Kuwayama S, Yamada A, Sakai K, Horita R, Nozaki M, Yoshida M, Hirano Y, Yasukawa T, Ogura Y. Remote screening of diabetic retinopathy using ultra-widefield retinal imaging. Diabetes Res Clin Pract 2021; 177:108902. [PMID: 34102247 DOI: 10.1016/j.diabres.2021.108902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
AIMS To study the possibility of constructing a remote interpretation system for retinal images. METHODS An ultra-widefield (UWF) retinal imaging device was installed in the internal medicine department specializing in diabetes to obtain fundus images of patients with diabetes. Remote interpretation was conducted at Nagoya City University using a cloud server. The medical data, severity of retinopathy, and frequency of ophthalmologic visits were analyzed. RESULTS Four hundred ninety-nine patients (mean age, 62.5 ± 13.4 years) were included. The duration of diabetes in 240 (48.1%) patients was less than 10 years and 433 (86.7%) patients had a hemoglobin (Hb) A1c below 8%. Regarding the retinopathy severity, 360 (72.1%) patients had no diabetic retinopathy (NDR), 63 (12.6%) mild nonproliferative retinopathy (NPDR), 38 (7.64%) moderate NPDR, 13 (2.6%) severe NPDR, and 25 (5.0%) PDR. Two hundred forty-one (48.3%) patients had an ophthalmologic consultation within 1 year, 104 (20.8%) had no history of an ophthalmologic consultation. DR was not present in 86 (82.7%) patients who had never had an ophthalmologic examination, 30 (78.9%) patients with severe NPDR or PDR had had an ophthalmologic visit within 1 year. The frequency of ophthalmic visits was correlated negatively with age, diabetes duration, HbA1c, and severity of retinopathy. CONCLUSION Remote interpretation of DR using UWF retinal imaging was useful for retinopathy screening. During the COVID-19 pandemic, a remote screening system that can ensure compulsory social distancing and reduce the number of ophthalmic visits can be a safe system for patients and clinicians.
Collapse
Affiliation(s)
- Aki Kato
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | | | - Kazuhisa Takami
- Kizawa Memorial Hospital, 590 Shimokobi, Kobi-cho, Minokamo, Gifu 505-8503, Japan.
| | - Naomi Inoue
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Noriaki Takase
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Norihiro Suzuki
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Katsuya Suzuki
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Soichiro Kuwayama
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Akiko Yamada
- Kizawa Memorial Hospital, 590 Shimokobi, Kobi-cho, Minokamo, Gifu 505-8503, Japan.
| | - Katsuhisa Sakai
- Kizawa Memorial Hospital, 590 Shimokobi, Kobi-cho, Minokamo, Gifu 505-8503, Japan.
| | - Ryosuke Horita
- Kizawa Memorial Hospital, 590 Shimokobi, Kobi-cho, Minokamo, Gifu 505-8503, Japan.
| | - Miho Nozaki
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Munenori Yoshida
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Yoshio Hirano
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Tsutomu Yasukawa
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Yuichiro Ogura
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| |
Collapse
|