1
|
Sharma M, Pal P, Gupta SK. Microglial mediators in autoimmune Uveitis: Bridging neuroprotection and neurotoxicity. Int Immunopharmacol 2024; 136:112309. [PMID: 38810304 DOI: 10.1016/j.intimp.2024.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Autoimmune uveitis, a severe inflammatory condition of the eye, poses significant challenges due to its complex pathophysiology and the critical balance between protective and detrimental immune responses. Central to this balance are microglia, the resident immune cells of the central nervous system, whose roles in autoimmune uveitis are multifaceted and dynamic. This review article delves into the dual nature of microglial functions, oscillating between neuroprotective and neurotoxic outcomes in the context of autoimmune uveitis. Initially, we explore the fundamental aspects of microglia, including their activation states and basic functions, setting the stage for a deeper understanding of their involvement in autoimmune uveitis. The review then navigates through the intricate mechanisms by which microglia contribute to disease onset and progression, highlighting both their protective actions in immune regulation and tissue repair, and their shift towards a pro-inflammatory, neurotoxic profile. Special emphasis is placed on the detailed pathways and cellular interactions underpinning these dual roles. Additionally, the review examines the potential of microglial markers as diagnostic and prognostic indicators, offering insights into their clinical relevance. The article culminates in discussing future research directions, and the ongoing challenges in translating these findings into effective clinical applications. By providing a comprehensive overview of microglial mechanisms in autoimmune uveitis, this review underscores the critical balance of microglial activities and its implications for disease management and therapy development.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
2
|
Ying Y, Sun Y, Sheng Q, Zhai R, Fan X, Kong X. Steroid-Dependency in Posner-Schlossman Syndrome: A Suggested Topical 2% Ganciclovir and Gradual Decrement of Topical Steroid Combination Therapy from Shanghai PSS Study. Ocul Immunol Inflamm 2024; 32:513-519. [PMID: 37703505 DOI: 10.1080/09273948.2023.2251576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE This study focused on the prevalence, unique features, and required treatment of steroid-dependent Posner-Schlossman syndrome (SD-PSS), and analyzed the outcome of 2% Ganciclovir and gradual decrement steroid combination therapy in SD-PSS patients. METHODS Retrospective comparative and interventional study. SD-PSS was defined as PSS patients with continuous steroid use for over 3 months and relapsed within 2 weeks after steroid withdrawal or tapered dosage. Totally 74 SD-PSS eyes were compared with 78 randomly chosen non-steroid dependent PSS eyes. SD-PSS patients who underwent 2% GCV and gradual decrement steroid therapy with at least two follow-ups (n = 50) were analyzed for the treatment outcome. RESULTS The prevalence of SD-PSS is 26.87% (97/361) in our PSS patients. SD-PSS patients demonstrated significantly younger onset age, longer disease course, higher intraocular pressure (IOP), and higher degree of iris depigmentation at the first visit. They required significantly more IOP-lowering medication and stronger steroid after the first visit. Our 2% GCV and gradual decrement steroid therapy helped 66% (33/50) SD-PSS patients with steroid withdrawal (median stable time: 13 weeks) and another 32% (16/50) SD-PSS managed to lower the dose or strength of topical steroid. Steroid-induced ocular hypertension happened in 5.26% (19/361) of the PSS patients. CONCLUSION Young onset age, high IOP, and high iris depigmentation level during acute stage are indicators of steroid dependency in PSS patients. SD-PSS patients require more medical surveillance. Two percent ganciclovir and gradual decrement steroid combination therapy help with steroid withdrawal and minimize steroid use.
Collapse
Affiliation(s)
- Yue Ying
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yanan Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Qilian Sheng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Ruyi Zhai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xintong Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xiangmei Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Mo L, Deng M, Chen J, Huai S, Du L, Xu X, Guo Q, Chen H, Li X, Bao Z. Subconjunctival injection of rapamycin-loaded polymeric microparticles for effective suppression of noninfectious uveitis in rats. Int J Pharm 2024; 657:124178. [PMID: 38692499 DOI: 10.1016/j.ijpharm.2024.124178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Noninfective uveitis is a major cause of vision impairment, and corticosteroid medication is a mainstay clinical strategy that causes severe side effects. Rapamycin (RAPA), a potent immunomodulator, is a promising treatment for noninfective uveitis. However, because high and frequent dosages are required, it is a great challenge to implement its clinical translation for noninfective uveitis therapy owing to its serious toxicity. In the present study, we engineered an injectable microparticulate drug delivery system based on biodegradable block polymers (i.e., polycaprolactone-poly (ethylene glycol)-polycaprolactone, PCEC) for efficient ocular delivery of RAPA via a subconjunctival injection route and investigated its therapeutic efficacy in an experimental autoimmune uveitis (EAU) rat model. RAPA-PCEC microparticles were fabricated using the emulsion-evaporation method and thoroughly characterized using scanning electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The formed microparticles exhibited slow in vitro degradation over 28 days, and provided both in vitro and in vivo sustained release of RAPA over 4 weeks. Additionally, a single subconjunctival injection of PCEC microparticles resulted in high ocular tolerance. More importantly, subconjunctival injection of RAPA-PCEC microparticles significantly attenuated the clinical signs of EAU in a dose-dependent manner by reducing inflammatory cell infiltration (i.e., CD45+ cells and Th17 cells) and inhibiting microglial activation. Overall, this injectable microparticulate system may be promising vehicle for intraocular delivery of RAPA for the treatment of noninfective uveitis.
Collapse
Affiliation(s)
- Lihua Mo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengyun Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinrun Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuo Huai
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lulu Du
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoning Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qi Guo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Zhishu Bao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
4
|
Xiang S, Chen J, Deng M, Wang Z, Li X, Lin D, Zhou J. Celastrol ameliorates experimental autoimmune uveitis through STAT3 targeting and gut microenvironment reprofiling. Int Immunopharmacol 2024; 127:111339. [PMID: 38064813 DOI: 10.1016/j.intimp.2023.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Extensive research has revealed the favorable effects of celastrol (CEL) against various diseases, but the role of CEL in autoimmune uveitis remains unexplored. METHODS We first assessed the prophylactical and therapeutical effects of CEL on autoimmune uveitis via rat experimental autoimmune uveitis model. After network pharmacology, functional enrichment and molecular docking analyses, we predicted the potential target of CEL and validated its effect on EAU by clinical and histopathological scores, Evans blue staining, immunofluorescence assay and western blotting. Then we evaluated the role of CEL in the gut environment by 16S rRNA sequencing and untargeted metabolomic analysis. RESULTS We confirmed that CEL treatment suppressed the pathological TH17 response, inhibited the migration of inflammatory cells, and preserved the integrity of BRB via targeting STAT3-IL17 pathway. Furthermore, CEL was found to reduce the relative abundance of opportunistic pathogenic bacteria including Clostridium_sensu_stricto_1, Parasutterella and GCA-900066575, and enrich the relative abundance of beneficial Oscillospirales and Ruminococcus_torques_group in EAU rats by fecal 16S rRNA sequencing. Meanwhile, CEL treatment reshaped the gut metabolites in the EAU rats by increasing the relative concentrations of cholic acid, progesterone and guggulsterone, and decreasing the relative levels of isoproterenol, creatinine and phenylacetylglutamine. CONCLUSIONS CEL exerts its ameliorative effects on the experimental autoimmune uveitis through the dual mechanisms of targeting STAT3 and reprofiling the gut microenvironment.
Collapse
Affiliation(s)
- Shengjin Xiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinrun Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengyun Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zixiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dan Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jianhong Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
5
|
Zhou L, Ho BM, Chan HYE, Tong Y, Du L, He JN, Ng DSC, Tham CC, Pang CP, Chu WK. Emerging Roles of cGAS-STING Signaling in Mediating Ocular Inflammation. J Innate Immun 2023; 15:739-750. [PMID: 37778330 PMCID: PMC10616671 DOI: 10.1159/000533897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS), a sensor of cytosolic DNA, recognizes cytoplasmic nucleic acids to activate the innate immune responses via generation of the second messenger cGAMP and subsequent activation of the stimulator of interferon genes (STINGs). The cGAS-STING signaling has multiple immunologic and physiological functions in all human vital organs. It mediates protective innate immune defense against DNA-containing pathogen infection, confers intrinsic antitumor immunity via detecting tumor-derived DNA, and gives rise to autoimmune and inflammatory diseases upon aberrant activation by cytosolic leakage of self-genomic and mitochondrial DNA. Disruptions in these functions are associated with the pathophysiology of various immunologic and neurodegenerative diseases. Recent evidence indicates important roles of the cGAS-STING signaling in mediating inflammatory responses in ocular inflammatory and inflammation-associated diseases, such as keratitis, diabetic retinopathy, age-related macular degeneration, and uveitis. In this review, we summarize the recently emerging evidence of cGAS-STING signaling in mediating ocular inflammatory responses and affecting pathogenesis of these complex eye diseases. We attempt to provide insightful perspectives on future directions of investigating cGAS-STING signaling in ocular inflammation. Understanding how cGAS-STING signaling is modulated to mediate ocular inflammatory responses would allow future development of novel therapeutic strategies to treat ocular inflammation and autoimmunity.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Bo Man Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Hoi Ying Emily Chan
- Medicine Programme Global Physician-Leadership Stream, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yan Tong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lin Du
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Danny Siu-Chun Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Clement C. Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
6
|
Zhang M, Zhang X. T cells in ocular autoimmune uveitis: Pathways and therapeutic approaches. Int Immunopharmacol 2023; 114:109565. [PMID: 36535124 DOI: 10.1016/j.intimp.2022.109565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune uveitis is a non-infectious intraocular condition that affects the uveal tract of the eye and threatens vision if not treated properly. Increasing evidence suggests that activated CD4+ T cells are associated with progressive and permanent destruction of photoreceptors in ocular autoimmune diseases. As such, the purpose of this review is to offer an overview of the role of CD4+ T cells in autoimmune uveitis as well as a justification for the current development and assessment of innovative autoimmune uveitis medications targeting CD4+ T cells. With an emphasis on T helper (Th)17, Th1, and Th2 cells, follicular helper CD4+ T cells, and regulatory T cells, this review presents a summary of recent research related to the pathways and signaling that encourage CD4+ T cells to develop into specialized effector cells. We also describe immunotherapeutic approaches based on CD4+ T cell subsets and their potential as therapeutic agents for autoimmune disorders.
Collapse
Affiliation(s)
- Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|