1
|
Jiao J, Zhang D, Peng J, Li Y. MDM2 interacts with PTEN to inhibit endothelial cell development and promote deep vein thrombosis via the JAK/STAT signaling pathway. Mol Med Rep 2025; 31:31. [PMID: 39575482 PMCID: PMC11600099 DOI: 10.3892/mmr.2024.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Deep vein thrombosis (DVT) is a prevalent clinical condition, which markedly affects patients' quality of life, commonly leading to post‑thrombotic syndrome. The present study aimed to elucidate the intricate interplay between murine double minute‑2 (MDM2) and phosphatase and tensin homolog (PTEN), thus shedding new light on their role in the pathogenesis of DVT. The results showed that both MDM2 and PTEN were upregulated in venous blood samples obtained from patients with DVT. However, MDM2 or PTEN knockdown markedly increased the proliferation, migration, invasion, apoptosis and angiogenesis of oxidized low‑density lipoprotein‑treated human umbilical vein endothelial cells (HUVECs). Furthermore, MDM2 silencing downregulated PTEN. The association between MDM2 and PTEN was verified through comprehensive analyses, including Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis and co‑immunoprecipitation assays. The effect of PTEN on DVT was evaluated by Kyoto Encyclopedia of Genes and Genomes and STRING analysis, which demonstrated that PTEN displayed an inhibitory role in the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. Notably, treatment with AG‑490, an inhibitor of JAK/STAT signaling, reversed the protective effect of PTEN knockdown on the behavior of HUVECs. In summary, the results of the current study indicated that both MDM2 and PTEN were upregulated in patients with DVT. The interaction between MDM2 and PTEN was also verified, thus providing novel insights into their potential collaborative role in the development of DVT. Overall, MDM2 and PTEN may interact to inhibit endothelial cell development and promote the occurrence of DVT via inhibiting the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Vascular Surgery, Fengyang County People's Hospital, Chuzhou, Anhui 233100, P.R. China
| | - Deng Zhang
- Department of Vascular Surgery, Fengyang County People's Hospital, Chuzhou, Anhui 233100, P.R. China
| | - Jianbo Peng
- Department of Vascular Surgery, Fengyang County People's Hospital, Chuzhou, Anhui 233100, P.R. China
| | - Yunsai Li
- Department of Vascular Surgery, Fengyang County People's Hospital, Chuzhou, Anhui 233100, P.R. China
| |
Collapse
|
2
|
Ronan G, Yang J, Zorlutuna P. Small Extracellular Vesicles Isolated from Cardiac Tissue Matrix or Plasma Display Distinct Aging-Related Changes in Cargo Contributing to Chronic Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627231. [PMID: 39713371 PMCID: PMC11661072 DOI: 10.1101/2024.12.06.627231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs). While young EVs showed notable overlap of miRNA cargo, aged EVs differed substantially, indicating differential age-related changes between TEVs and PEVs. TEVs overall were uniquely enriched in miRNAs which directly or indirectly demonstrate cardioprotective effects, with 45 potential therapeutic agents implicated in our analysis. Both populations also showed increased predisposition to disease with aging, though through different mechanisms. PEVs were largely correlated with chronic systemic inflammation, while TEVs were more related to cardiac homeostasis and local inflammation. From this, 17 protein targets unique to TEVs were implicated as aging-related changes which likely contribute to the development of cardiovascular disease.
Collapse
|
3
|
Najd-Hassan-Bonab L, Daneshpour MS, Jafarinia M, Akbarzadeh M, Moazzam-Jazi M, Asgarian S, Khalili D. Exploring sex-specific genetic architecture of coronary artery disease in Tehran: a cardiometabolic genetic study. Expert Rev Mol Diagn 2024:1-10. [PMID: 39639470 DOI: 10.1080/14737159.2024.2436399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The development of coronary artery disease (CAD) is influenced by sex and genetic factors. Genome-wide association studies (GWAS) have linked genetic loci to CAD, mostly in European populations. The study aims to find sex-related genetic differences in the Iranian population. RESEARCH DESIGN AND METHODS We conducted a sex-stratified GWAS with 4519 subjects (1832 males and 2687 females) in the discovery group and 922 subjects (495 males and 427 females) in the confirmation group of an Iranian cohort. We analyzed 9,141,124 variants using a genome-wide complex trait analysis (GCTA) tool. RESULTS We detected distinct genetic variants associated with CAD in males: rs34952209 [OR = 1.79; p = 5.216E-8], rs1432687863 [OR = 1.95; p = 8.477E-8], and in females, rs7314741 [OR = 1.67; p = 7.142-8E] positively influenced CAD risk. The CAD-associated SNPs that were obtained have been confirmed using independent samples. Rs3495229 May impact histone mark and Pou2f2 motifs, while rs7314741 in the LEM Domain Containing 3 (LEMD3) promoter may affect a regulatory motif for the STAT transcription factor. According to Roadmap and ENCODE data, Rs1432687863 is a new variant affecting CAD in males, potentially through H3K9me3 in the heart. CONCLUSIONS Our findings highlight the role of sex-specific genetic differences in CAD development, providing novel insights into disease pathways which is not appropriate using a sex-combined strategy. [Figure: see text].
Collapse
Affiliation(s)
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Jafarinia
- Department of biology, Marvdasht branch, Islamic Azad University, Marvdasht, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Asgarian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Jiang L, Xiong W, Yang Y, Qian J. Insight into Cardioprotective Effects and Mechanisms of Dexmedetomidine. Cardiovasc Drugs Ther 2024; 38:1139-1159. [PMID: 38869744 DOI: 10.1007/s10557-024-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
5
|
Eriten B, Kucukler S, Gur C, Ayna A, Diril H, Caglayan C. Protective Effects of Carvacrol on Mercuric Chloride-Induced Lung Toxicity Through Modulating Oxidative Stress, Apoptosis, Inflammation, and Autophagy. ENVIRONMENTAL TOXICOLOGY 2024; 39:5227-5237. [PMID: 39105374 DOI: 10.1002/tox.24397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mercuric chloride (HgCl2) is extremely toxic to both humans and animals. It could be absorbed via ingestion, inhalation, and skin contact. Exposure to HgCl2 can cause severe health effects, including damages to the gastrointestinal, respiratory, and central nervous systems. The purpose of this work was to explore if carvacrol (CRV) could protect rats lungs from damage caused by HgCl2. Intraperitoneal injections of HgCl2 at a dose of 1.23 mg/kg body weight were given either alone or in conjunction with oral CRV administration at doses of 25 and 50 mg/kg body weight for 7 days. The study included biochemical and histological techniques to examine the lung tissue's oxidative stress, apoptosis, inflammation, and autophagy processes. HgCl2-induced reductions in GSH levels and antioxidant enzymes (SOD, CAT, and GPx) activity were enhanced by CRV co-administration. Furthermore, MDA levels were lowered by CRV. The inflammatory mediators NF-κB, IκB, NLRP3, TNF-α, IL-1β, IL6, COX-2, and iNOS were all reduced by CRV. When exposed to HgCl2, the levels of apoptotic Bax, caspase-3, Apaf1, p53, caspase-6, and caspase-9 increased, but the levels of antiapoptotic Bcl-2 reduced after CRV treatment. CRV decreased levels of Beclin-1, LC3A, and LC3B, which in turn decreased HgCl2-induced autophagy damage. After HgCl2 treatment, higher pathological damage was observed in terms of alveolar septal thickening, congestion, edema, and inflammatory cell infiltration compared to the control group while CRV ameliorated these effects. Consequently, by preventing HgCl2-induced increases in oxidative stress and the corresponding inflammation, autophagy, apoptosis, and disturbance of tissue integrity in lung tissues, CRV might be seen as a useful therapeutic alternative.
Collapse
Affiliation(s)
- Berna Eriten
- Department of Pathology, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Türkiye
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Cihan Gur
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Türkiye
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, Bingol University, Bingol, Türkiye
| | - Halit Diril
- Medical Biochemistry Laboratory, Dursun Odabaş Medical Center, Van Yüzüncü Yıl University, Türkiye
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Türkiye
| |
Collapse
|
6
|
Shi J, Liang Z, Liu Z, Pan L, Hu X, Tian Y, Jin H, Liu Y, Cheng Y, Zhang M. Identification of Novel Proteins Mediating Causal Association Between Smoking and Essential Hypertension: A Mendelian Randomization Study. J Am Heart Assoc 2024:e036202. [PMID: 39604029 DOI: 10.1161/jaha.124.036202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/06/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Smoking is a factor for hypertension. We aim to reveal novel plasma proteins mediating the relationship of smoking with hypertension and identify potential drug targets for hypertension on the basis of Mendelian randomization design. METHODS AND RESULTS Data for smoking were selected from the largest genome-wide association study meta-analysis performed by the Genome-Wide Association Study and Sequencing Consortium of Alcohol and Nicotine Use. Data for plasma proteins were selected from the deCODE Health study and the UK Biobank Pharma Proteomics Project. Data for hypertension were extracted from the FinnGen Study. Moreover, proteome-wide Mendelian randomization and colocalization analyses, 2-step Mendelian randomization, and gene function and network prediction, as well as druggability assessment were performed. We finally identified 8 proteins (ANXA4 [annexin A4], DLK1 [protein delta homolog 1], KLB [β-klotho], MMP8 [matrix metallopeptidase 8], PLAT [tissue-type plasminogen activator], POSTN [periostin], SAT2 [thialysine N-ε-acetyltransferase], and IFNLR1 [interferon λ receptor 1]) mediating association of smoking with hypertension. PLAT and IFNLR1 were identified to be involved in the complement and coagulation cascades and the Janus kinase/signal transducer and activator of transcription signaling pathway. ANXA4, KLB, MMP8, PLAT, and IFNLR1 had druggability. Moreover, IFNLR1 had strong evidence of genetic colocalization, because the posterior probability for H4 of IFNLR1 was 91.3%. CONCLUSIONS This study identified the 8 proteins that mediate causal association between smoking and essential hypertension. Interferon λ receptor agonist targeting IFNLR1 may open a new avenue for treating hypertension. Our discoveries provide new insights into protein pathogenesis of hypertension and to better guide hypertension prevention and treatment among smokers.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Clinical Nutrition Peking University Shenzhen Hospital Shenzhen China
| | - Zhuoshuai Liang
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Zhantong Liu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Lingfeng Pan
- Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar Technical University of Munich Munich Germany
| | - Xinmeng Hu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yuyang Tian
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Huizhen Jin
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yi Cheng
- The Cardiovascular Center The First Hospital of Jilin University Changchun Jilin China
| | - Ming Zhang
- Department of Clinical Nutrition Peking University Shenzhen Hospital Shenzhen China
| |
Collapse
|
7
|
Li P, Huang D. Targeting the JAK-STAT pathway in colorectal cancer: mechanisms, clinical implications, and therapeutic potential. Front Cell Dev Biol 2024; 12:1507621. [PMID: 39659524 PMCID: PMC11628519 DOI: 10.3389/fcell.2024.1507621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and fatal malignancies worldwide, consistently ranking among the top three in terms of incidence and mortality. Despite notable advancements in early detection and therapeutic interventions, survival outcomes for advanced-stage CRC are still dismal, largely due to issues such as drug resistance and metastasis. Recent research has increasingly implicated the JAK-STAT signaling pathway as a pivotal contributor to CRC pathogenesis. This evolutionarily conserved pathway plays a key role in transmitting extracellular signals to the nucleus, thereby modulating gene expression involved in numerous fundamental biological processes. In CRC, dysregulation of the JAK-STAT pathway is frequently observed and is strongly associated with tumor progression, including processes such as cellular proliferation, apoptosis, metastasis, immune evasion, and the sustenance of cancer stem cells. Given its integral role in CRC advancement, the JAK-STAT pathway has gained recognition as a viable therapeutic target. Extensive evidence from preclinical and clinical models supports the efficacy and safety of targeting components of the JAK-STAT pathway, presenting new therapeutic possibilities for patients with CRC, particularly in addressing drug resistance and enhancing treatment outcomes. This review offers a detailed exploration of the JAK-STAT pathway, focusing on its regulatory mechanisms in CRC-related malignancies. Moreover, it examines the association between JAK-STAT protein expression, clinical features, prognosis, and its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2024. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
9
|
Li W, Liu J, Jiao R, Liu Z, Zhang T, Chai D, Meng L, Yang Z, Liu Y, Gu X, Li X, Yang C. Baricitinib alleviates cardiac fibrosis and inflammation induced by chronic sympathetic activation. Int Immunopharmacol 2024; 140:112894. [PMID: 39126736 DOI: 10.1016/j.intimp.2024.112894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cardiac fibrosis is characterized by the over-proliferation, over-transdifferentiation and over-deposition of extracellular matrix (ECM) of cardiac fibroblasts (CFs). Cardiac sympathetic activation is one of the leading causes of myocardial fibrosis. Meanwhile, cardiac fibrosis is often together with cardiac inflammation, which accelerates fibrosis by mediating inflammatory cytokines secretion. Recently, the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling pathway has been confirmed by its vital role during the progression of cardiac fibrosis. Thus, JAK/STAT3 signaling pathway is thought to be a potential therapeutic target for cardiac fibrosis. Baricitinib (BR), a novel JAK1/2 inhibitor, has been reported excellent effects of anti-fibrosis in multiple fibrotic diseases. However, little is known about whether and how BR ameliorates cardiac fibrosis caused by chronic sympathetic activation. Isoproterenol (ISO), a β-Adrenergic receptor (β-AR) nonselective agonist, was used to modulate chronic sympathetic activation in mice. As expected, our results proved that BR ameliorated ISO-induced cardiac dysfunction. Meanwhile, BR attenuated ISO-induced cardiac fibrosis and cardiac inflammation in mice. Moreover, BR also inhibited ISO-induced cardiac fibroblasts activation and macrophages pro-inflammatory secretion. As for mechanism studies, BR reduced ISO-induced cardiac fibroblasts by JAK2/STAT3 and PI3K/Akt signaling, while reduced ISO-induced macrophages pro-inflammatory secretion by JAK1/STAT3 and NF-κB signaling. In summary, BR alleviates cardiac fibrosis and inflammation caused by chronic sympathetic activation. The underlying mechanism involves BR-mediated suppression of JAK1/2/STAT3, PI3K/Akt and NF-κB signaling.
Collapse
Affiliation(s)
- Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Jing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Ran Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Zhigang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Lingxin Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Zhongyi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Yuming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin 300457, China.
| |
Collapse
|
10
|
Kosanam S, Pasupula R. Effect of Methyl Glycoside on Apoptosis and Oxidative Stress in Hypoxia Induced-Reoxygenated H9C2 Cell Lines. Cell Biochem Biophys 2024:10.1007/s12013-024-01539-8. [PMID: 39292425 DOI: 10.1007/s12013-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This study focuses on key genes (Caspase-3, JAK2, BCL2L1 and MAPK8) and their modulation in response to hypoxia-induced stress using Methyl Glycoside (MG), a small molecule spectroscopically screened from Aganosma dichotoma. Hypoxia/reoxygenation (H/R) induced H9C2 cells, pre- treated with MG, were subjected to cell viability assay, free radical scavenging activities (catalase, GST, GSH-Px, SOD), caspase activity, mitochondrial membrane potential, and gene expression profiling through standard assays and molecular techniques. Results indicated that MG treatment, has potential protective effects against H/R induced stress in H9C2 cell lines. Cell viability assays showed that MG maintained cellular viability with significant protection (P < 0.05) observed from 10 µM. Free radical scavenging assays revealed that MG, enhanced detoxification mechanisms and exhibited potential antioxidant effect in a significantly (P < 0.05) in a dose dependant manner. MG pre-treatment in H9C2 cells protected cellular damage from caspase activity, cells exhibited high mitochondrial membrane potential, and gene expression profiles, including upregulation of anti-apoptotic BCL2L1 and modulation of stress-responsive genes like CASP3, JAK2 and MAPK8. Hence, MG exhibited concentration-dependent protective effects on viability, oxidative stress, and apoptosis-related pathways, laying the foundation for further exploration and translational applications in cardiovascular interventions.
Collapse
Affiliation(s)
- Sreya Kosanam
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Rajeshwari Pasupula
- Department. of Pharmacology, College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh, India.
| |
Collapse
|
11
|
Zhuang Z, Jia W, Wu L, Li Y, Lu Y, Xu M, Bai H, Bi Y, Wang Z, Chen S, Jiang Y, Chang G. Threonine Deficiency Increases Triglyceride Deposition in Primary Duck Hepatocytes by Reducing STAT3 Phosphorylation. Int J Mol Sci 2024; 25:8142. [PMID: 39125712 PMCID: PMC11312044 DOI: 10.3390/ijms25158142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024] Open
Abstract
Liver lipid metabolism disruption significantly contributes to excessive fat buildup in waterfowl. Research suggests that the supplementation of Threonine (Thr) in the diet can improve liver lipid metabolism disorder, while Thr deficiency can lead to such metabolic disorders in the liver. The mechanisms through which Thr regulates lipid metabolism remain unclear. STAT3 (signal transducer and activator of transcription 3), a crucial transcription factor in the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway, participates in various biological processes, including lipid and energy metabolism. This research investigates the potential involvement of STAT3 in the increased lipid storage seen in primary duck hepatocytes as a result of a lack of Thr. Using small interfering RNA and Stattic, a specific STAT3 phosphorylation inhibitor, we explored the impact of STAT3 expression patterns on Thr-regulated lipid synthesis metabolism in hepatocytes. Through transcriptome sequencing, we uncovered pathways related to lipid synthesis and metabolism jointly regulated by Thr and STAT3. The results showed that Thr deficiency increases lipid deposition in primary duck hepatocytes (p < 0.01). The decrease in protein and phosphorylation levels of STAT3 directly caused this deposition (p < 0.01). Transcriptomic analysis revealed that Thr deficiency and STAT3 knockdown jointly altered the mRNA expression levels of pathways related to long-chain fatty acid synthesis and energy metabolism (p < 0.05). Thr deficiency, through mediating STAT3 inactivation, upregulated ELOVL7, PPARG, MMP1, MMP13, and TIMP4 mRNA levels, and downregulated PTGS2 mRNA levels (p < 0.01). In summary, these results suggest that Thr deficiency promotes lipid synthesis, reduces lipid breakdown, and leads to lipid metabolism disorders and triglyceride deposition by downregulating STAT3 activity in primary duck hepatocytes.
Collapse
Affiliation(s)
- Zhong Zhuang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Wenqian Jia
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Lei Wu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Yongpeng Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Yijia Lu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Minghong Xu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
| | - Yulin Bi
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Zhixiu Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Shihao Chen
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Yong Jiang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Guobin Chang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| |
Collapse
|
12
|
Fu H, Ge Y, Liu X, Deng S, Li J, Tan P, Yang Y, Wu Z. Exposure to the environmental pollutant chlorpyrifos induces hepatic toxicity through activation of the JAK/STAT and MAPK pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:171711. [PMID: 38494025 DOI: 10.1016/j.scitotenv.2024.171711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Chlorpyrifos (CHP) is an inexpensive highly effective organophosphate insecticide used worldwide. The unguided and excessive use of CHP by farmers has led to its significant accumulation in crops as well as contamination of water sources, causing health problems for humans and animals. Therefore, this study evaluated the toxicological effects of exposure to the environmental pollutant CHP at low, medium, and high (2.5, 5, and 10 mg·kg-1 BW) levels on rat liver by examining antioxidant levels, inflammation, and apoptosis based on the no observed adverse effect levels (NOAEL) (1 mg·kg-1 BW) and the CHP dose that does not cause any visual symptoms (5 mg·kg-1 BW). Furthermore, the involvement of the JAK/STAT and MAPK pathways in CHP-induced toxic effects was identified. The relationship between the expression levels of key proteins (p-JAK/JAK, p-STAT/STAT, p-JNK/JNK, p-P38/P38, and p-ERK/ERK) in the pathways and changes in the expression of markers associated with inflammation [inflammatory factors (IL-1β, IL-6, IL-10, TNF-α), chemokines (GCLC and GCLM), and inflammatory signaling pathways (NF-кB, TLR2, TLR4, NLRP3, ASC, MyD88, IFN-γ, and iNOS)] and apoptosis [Bad, Bax, Bcl-2, Caspase3, Caspase9, and the cleavage substrate of Caspase PARP1] were also determined. The results suggest that CHP exposure disrupts liver function and activates the JAK/STAT and MAPK pathways via oxidative stress, exacerbating inflammation and apoptosis. Meanwhile, the JAK/STAT and MAPK pathways are involved in CHP-induced hepatotoxicity. These findings provide a novel direction for effective prevention and amelioration of health problems caused by CHP abuse in agriculture and households.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Jun Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Xie Z, Huang M, Xu W, Liu F, Huang D. USP18 Curbs the Progression of Metabolic Hypertension by Suppressing JAK/STAT Pathway. Cardiovasc Toxicol 2024; 24:576-586. [PMID: 38691302 DOI: 10.1007/s12012-024-09860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Rats
- Apoptosis/drug effects
- Blood Pressure/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/enzymology
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/pathology
- Hypertension/enzymology
- Janus Kinases/metabolism
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Metabolic Syndrome/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Signal Transduction
- STAT Transcription Factors/metabolism
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Zhihong Xie
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
| | - Mingshan Huang
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Wang Xu
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Fuwei Liu
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Donghua Huang
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
14
|
Kim TS, Hong CY, Oh SJ, Choe YH, Hwang TS, Kim J, Lee SL, Yoon H, Bok EY, Cho AR, Do YJ, Kim E. RNA sequencing provides novel insights into the pathogenesis of naturally occurring myxomatous mitral valve disease stage B1 in beagle dogs. PLoS One 2024; 19:e0300813. [PMID: 38753730 PMCID: PMC11098313 DOI: 10.1371/journal.pone.0300813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024] Open
Abstract
Myxomatous mitral valve disease (MMVD) is the most common cardiovascular disorder in dogs with a high prevalence, accounting for approximately 75% of all canine heart disease cases. MMVD is a complex disease and shows variable progression from mild valve leakage to severe regurgitation, potentially leading to heart failure. However, the molecular mechanisms and age-related changes that govern disease progression, especially at the early stage (B1) before the development of discernable clinical signs, remain poorly understood. In this prospective study, we aimed to compare gene expression differences between blood samples of aged beagle dogs with stage B1 MMVD and those of healthy controls using RNA sequencing. Clinical evaluation was also conducted, which revealed minimal differences in radiographic and echocardiographic measurements despite distinct biomarker variations between the two groups. Comparative transcriptomics revealed differentially expressed genes associated with extracellular matrix remodeling, prostaglandin metabolism, immune modulation, and interferon-related pathways, which bear functional relevance for MMVD. In particular, the top 10 over- and under-expressed genes represent promising candidates for influencing pathogenic changes in MMVD stage B1. Our research findings, which include identified variations in clinical markers and gene expression, enhance our understanding of MMVD. Furthermore, they underscore the need for further research into early diagnosis and treatment strategies, as, to the best of our knowledge, no prior studies have explored the precise molecular mechanisms of stage B1 in MMVD through total RNA sequencing.
Collapse
Affiliation(s)
- Tae-Seok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Chae-Yeon Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Yong-Ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Tae-Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Hakyoung Yoon
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, Republic of Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - A-ra Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
15
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|