1
|
Cao W, Huang B, Xu Q, Xie H, Gao J, Mai X, Lin X, Tian C, Huang X, Zhang H. Multiplex qPCR development for the simultaneous and rapid detection of largemouth bass virus and infectious spleen and kidney necrosis virus in aquaculture. J Virol Methods 2024; 330:115012. [PMID: 39214420 DOI: 10.1016/j.jviromet.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Largemouth bass virus (LMBV) and infectious spleen and kidney necrosis virus (ISKNV) are both belong to Iridoviridae that cause considerable economic losses in the fish industry. There is no reported literature that can detect these two viruses simultaneously. In this study, we established a multiplex quantitative polymerase chain reaction (qPCR) assay that can specifically and simultaneously detect both LMBV and ISKNV in fish samples. The specificity experiment showed that the method only amplified LMBV and ISKNV but not the other 10 common fish viruses. The slope (m), efficiency (E) and linearity (R2) determined from the generated standard curve were all within the optimal range of qPCR values. The detection limit of the multiplex qPCR assay was as low as 4 copies/μL for LMBV DNA and 7 copies/μL for ISKNV DNA, respectively. The established method exhibited adequate repeatability and reproducibility, and the intra- and inter-assay coefficients of variation were both less than 3 %. The accuracy of the multiplex qPCR method was validated using 229 fish samples and was more precise than that of the conventional PCR assay. In summary, the established multiplex qPCR assay can simultaneously detect LMBV and ISKNV to monitor the risk of infection LMBV and ISKNV and control the disease early.
Collapse
Affiliation(s)
- Weiwei Cao
- College of Food Science and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China
| | - Baiqi Huang
- College of Food Science and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China
| | - Qian Xu
- College of Food Science and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China
| | - Hui Xie
- Guangdong Xuanda Testing Technology Service Co., Ltd., Guangzhou 510320, China
| | - Jinyan Gao
- Guangzhou Double Helix Gene Technology Co., Ltd., Guangzhou 510320, China
| | - Xiaodong Mai
- Xinjiang Agricultural University, Xinjiang 830046, China
| | - Xuejin Lin
- Guangzhou Double Helix Gene Technology Co., Ltd., Guangzhou 510320, China
| | - Chi Tian
- Lianyungang Xuanda Testing Technology Service Co., Ltd., Jiangsu 222000, China
| | - Xianpei Huang
- Shanwei Marine Industry Institute, Shanwei 516600, China.
| | - Huang Zhang
- Guangzhou Double Helix Gene Technology Co., Ltd., Guangzhou 510320, China.
| |
Collapse
|
2
|
Hamilton AN, Maes F, Reyes GYC, Almeida G, Li D, Uyttendaele M, Gibson KE. Machine Learning and Imputation to Characterize Human Norovirus Genotype Susceptibility to Sodium Hypochlorite. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:492-505. [PMID: 39259473 PMCID: PMC11525273 DOI: 10.1007/s12560-024-09613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Human norovirus (HuNoV) is the leading cause of foodborne illness in the developed world and a major contributor to gastroenteritis globally. Its low infectious dose and environmental persistence necessitate effective disinfection protocols. Sodium hypochlorite (NaOCl) bleach is a widely used disinfectant for controlling HuNoV transmission via contaminated fomites. This study aimed to evaluate the susceptibility of HuNoV genotypes (n = 11) from genogroups I, II, and IV to NaOCl in suspension. HuNoV was incubated for 1 and 5 min in diethyl pyrocarbonate (DEPC) treated water containing 50 ppm, 100 ppm, or 150 ppm NaOCl, buffered to maintain a pH between 7.0 and 7.5. Neutralization was achieved by a tenfold dilution into 100% fetal bovine serum. RNase pre-treatment followed by RT-qPCR was used to distinguish between infectious and non-infectious HuNoV. Statistical methods, including imputation, machine learning, and generalized linear models, were applied to process and analyze the data. Results showed that NaOCl reduced viral loads across all genotypes, though efficacy varied. Genotypes GI.1, GII.4 New Orleans, and GII.4 Sydney were the least susceptible, while GII.6 and GII.13 were the most susceptible. All NaOCl concentrations above 0 ppm were statistically indistinguishable, and exposure duration did not significantly affect HuNoV reduction, suggesting rapid inactivation at effective concentrations. For instance, some genotypes were completely inactivated within 1 min, rendering extended exposure unnecessary, while other genotypes maintained the initial concentration at both 1 and 5 min, indicating a need for longer contact times. These findings underscore the critical role of HuNoV genotype selection in testing disinfection protocols and optimizing NaOCl concentrations. Understanding HuNoV susceptibility to NaOCl bleach informs better disinfection strategies, aiding public health and food safety authorities in reducing HuNoV transmission and outbreaks.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Flor Maes
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- BESTMIX® Software, Vlaanderen, Maldegem, Belgium
| | - Génesis Yosbeth Chávez Reyes
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Steuben Foods Inc., Bozeman, Montana, United States
| | - Giselle Almeida
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Arkansas Children's Hospital, Little Rock, Arkansas, United States
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore (NUS), Singapore, 117542, Singapore
| | - Mieke Uyttendaele
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
3
|
Liu X, Shangguan N, Zhang F, Duan R. Aronia-derived anthocyanins and metabolites ameliorate TNFα-induced disruption of myogenic differentiation in satellite cells. Biochem Biophys Res Commun 2024; 733:150687. [PMID: 39278091 DOI: 10.1016/j.bbrc.2024.150687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
This study investigates the effects of Aronia berries, their primary anthocyanins and other second metabolites-mimicking dietary anthocyanin consumption-on enhancing muscular myogenesis under chronic inflammation. Murine muscle satellite cells (MuSCs) were cultured ex vivo, allowing for expansion and differentiation into myotubes. Myogenic differentiation was disrupted by TNFα at both early and terminal stages, with treatment using Aronia berries applied at physiologically relevant concentrations alongside TNFα. The results demonstrated that Aronia berries treatments, particularly phenolic metabolites, significantly stimulated the proliferative capacity of MuSCs. Furthermore, Aronia berries treatment enhanced early-stage myogenesis, marked by increased MymX and MyoG expression and nascent myotube formation, with metabolites showing the most pronounced effects. Aronia berry powder and individual anthocyanins exerted milder regulatory effects. Similar trends were observed during terminal differentiation, where Aronia berries treatment promoted myotube growth and inhibited TNFα-induced inflammatory atrophic ubiquitin-conjugating activity. Additionally, the secondary metabolites of Aronia berries significantly prevented muscle-specific ubiquitination in the dexamethasone-induced atrophy model. Overall, the treatment with Aronia berries enhanced myogenesis in a cellular model of chronic muscular inflammation, with Aronia-derived metabolites showing the strongest response, likely through TLR4/NF-κB modulation. In this case, enhanced regeneration capacity and anti-atrophy potential were associated with TLR4/NF-κB modulation.
Collapse
Affiliation(s)
- Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Nina Shangguan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Fulong Zhang
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Claverie D, Cressant A, Thomasson J, Castellarin C, Grandperret V, Barbier L, Troubat R, Canini F, Belzung C, El-Hage W. rTMS mechanisms for posttraumatic stress disorder treatment in a mouse model. J Psychiatr Res 2024; 179:33-43. [PMID: 39241409 DOI: 10.1016/j.jpsychires.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a psychiatric disease that may follow traumatic exposure. Current treatments fail in about 30% of patients. Although repeated transcranial magnetic stimulation (rTMS) applied to the prefrontal cortex has been shown to be effective in the treatment of PTSD, the mechanisms need further investigation. OBJECTIVE Using a PTSD animal model, we verify the beneficial effect of rTMS, and explore the changes it induces on two putative PTSD mechanisms, GABA/glutamate neurotransmission and neuroinflammation. METHODS PTSD-like symptoms were elicited in twenty-six mice using a foot-shock conditioning procedure. Fourteen of the 26 were then treated using rTMS (12 were untreated). In the control group (n = 30), 18 were treated with rTMS and 12 were untreated. Animals were sacrificed after re-exposure. The infralimbic (IL) cortex, basolateral amygdala (BLA) and ventral CA1 (vCA1) were isolated using laser microdissection. mRNA was then investigated using PCR array analysis targeting GABA/glutamate and inflammatory pathways. RESULTS The rTMS treatment significantly decreased the contextual fear memory phenotype. These changes were associated with reduced mRNA expression related to inflammation in the IL cortex and the vCA1, and lowered mRNA-related glutamate neurotransmission and increased GABA neurotransmission in the BLA. CONCLUSION Our results suggest that our rTMS treatment was associated with local anti-inflammatory effects and limbic effects, which seemed to counteract PTSD effects. Several of these changes (both stress- and rTMS-induced) have implications for the drug sensitivity of limbic brain areas, and may help in the design of future therapeutic protocols.
Collapse
Affiliation(s)
- Damien Claverie
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Réseau ABC des Psychotraumas, France(2).
| | - Arnaud Cressant
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Tours, France; Equipe Neurobiologie de la prise de décision, Département Neurosciences cognitives et des réseaux, Institut des Neurosciences de Paris-Saclay, Saclay, France
| | - Julien Thomasson
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Cédric Castellarin
- Unité d'Imagerie, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Vincent Grandperret
- Unité de Biologie Moléculaire, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Laure Barbier
- Unité de Biologie Moléculaire, Département Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Romain Troubat
- Unité de Neurophysiologie du Stress, Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Réseau ABC des Psychotraumas, France(2); Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Tours, France
| | - Frédéric Canini
- Laboratoire Inter-Universitaire de Psychologie. Personnalité, Cognition, Changement Social (LIP - PC2S), Université Grenoble Alpes, Université Savoie Mont Blanc, Grenoble, France
| | - Catherine Belzung
- Réseau ABC des Psychotraumas, France(2); Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Tours, France
| | - Wissam El-Hage
- Réseau ABC des Psychotraumas, France(2); Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Tours, France
| |
Collapse
|
5
|
Juutinen A, Tiwari A, Hokajärvi AM, Luomala O, Kolehmainen A, Nurmi E, Salmivirta E, Pitkänen T, Lipponen A. The effects of RT-qPCR standards on reproducibility and comparability in monitoring SARS-CoV-2 levels in wastewater. Sci Rep 2024; 14:25582. [PMID: 39462074 PMCID: PMC11513023 DOI: 10.1038/s41598-024-77155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Reverse transcription-quantitative PCR (RT-qPCR) is widely used for monitoring viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in wastewater. Various materials, including plasmid DNA, synthetic nucleic acids, PCR amplicons, genomic DNA, and cDNA, are currently used for SARS-CoV-2 quantification by generating standard curves. We assessed three common standards on quantifying SARS-CoV-2 RNA across nine wastewater treatment plants in Finland, as part of the national wastewater surveillance effort. We pairwise compared RT-qPCR results from 148 wastewater samples, using both IDT (#10006625, IDT, USA) and CODEX standards (#SC2-RNAC-1100, CODEX DNA), and 179 samples using both IDT and EURM019 standards (#EURM-019, European Commission, Joint Research Centre) in our assessment. Amongst the tested standards, the CODEX standard consistently yielded more stable results than either the IDT or EURM019 standards. We found that SARS-CoV-2 levels were higher with the IDT standard (4.36 Log10 GC/100 mL) compared to the CODEX standard (4.05 Log10 GC/100 mL). Similarly, quantification using the IDT standard was higher (5.27 Log10 GC/100 mL) than values obtained with the EURM019 (4.81 Log10 GC/100 mL). SARS-CoV-2 RNA quantified with IDT and CODEX standards exhibited stronger concordance (Spearman's correlation rho median of 0.79) compared to those quantified with IDT and EURM019 standards (rho median of 0.59). This study highlights the significant impact of standard material selection on SARS-CoV-2 RNA quantification, emphasizing the need for harmonization in standard material.
Collapse
Affiliation(s)
- Aapo Juutinen
- Department of Public Health, The Welfare Epidemiology and Monitoring Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki, 00271, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ananda Tiwari
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna-Maria Hokajärvi
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Oskari Luomala
- Department of Public Health, The Welfare Epidemiology and Monitoring Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki, 00271, Finland
| | - Aleksi Kolehmainen
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Eveliina Nurmi
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Elisa Salmivirta
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tarja Pitkänen
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anssi Lipponen
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland.
- Department of Medicine, Unit of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Katebi A, Nouri M, Behrouzi A, Ajdary S, Riazi-Rad F. The pro-inflammatory responses of innate immune cells to Leishmania RNA virus 2-infected L. major support the survival and proliferation of the parasites. Biochimie 2024:S0300-9084(24)00241-4. [PMID: 39455049 DOI: 10.1016/j.biochi.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Infection of Leishmania by Leishmania RNA virus (LRV) has been proposed as a pathogenic factor that induces pro-inflammatory responses through the TLR3/TLR4 signaling pathway. We investigated the effect of L. major infection by LRV2 on innate immune cell responses (human neutrophil (HL-60) and macrophage (THP-1) cell lines). The expression levels of pro- and anti-inflammatory cytokine and chemokine genes as well as genes involved in the amino acid metabolism of arginine were then investigated by RT-qPCR. Moreover, the expression of TLR genes and their downstream signaling pathways were compared in THP-1 cells infected with the two isolates. Apoptosis was also evaluated in infected THP-1 and HL-60 cells using the PI/Annexin V flow cytometry assay. In both cell lines, the expression of pro-inflammatory cytokines increased in response to LRV2+ L. major (Lm+), and the expression of chemokines shifted toward macrophage recruitment. In contrast to LRV2- L. major (Lm-), Lm + infected THP-1 cells acquired the M2-like phenotype. The presence of LRV2 increased the gene expression of TLRs and their signaling pathways, especially TLR3 and TLR4, which was proportional to the increase in pro-inflammatory cytokines. In addition, Lm + increased the expression of IL-10 and IFN-β, which contribute to the survival and growth of the parasite in the phagolysosome. Altogether, our results showed that Lm + could stimulate pro-inflammatory responses that promote parasite replication and stabilization in the host.
Collapse
Affiliation(s)
- Asal Katebi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ava Behrouzi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi-Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Bertão-Santos A, Dias LDS, Ribeiro-Alves M, Pinheiro RO, Moraes MO, Manta FSDN, Costa ADT. Validation of the performance of a point of care molecular test for leprosy: From a simplified DNA extraction protocol to a portable qPCR. PLoS Negl Trop Dis 2024; 18:e0012032. [PMID: 39374296 DOI: 10.1371/journal.pntd.0012032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
The study aimed to optimize qPCR reactions using oligonucleotides from the first Brazilian molecular diagnostic kit for leprosy on a portable platform (Q3-Plus). In addition, we sought to develop a simplified protocol for DNA extraction that met point-of-care criteria. During optimization on the Q3-Plus, optical parameters, thresholds, and cutoffs for the 16S rRNA and RLEP targets of M. leprae were established using synthetic DNA, purified DNA from M. leprae, and pre-characterized clinical samples. For the simplified extraction protocol, different lysis solutions were evaluated using chaotropic agents, and purification was carried out by transferring the lysed material to FTA cards. The complete protocol (simplified extraction + qPCR on the portable platform) was then evaluated with pre-characterized clinical skin biopsy samples and compared with standard equipment (QuantStudio-5). LOD95% for the optimized reactions was 113.31 genome-equivalents/μL for 16S rRNA and 17.70 genome-equivalents/μL for RLEP. Among the lysis solutions, the best-performing was composed of urea (2 M), which provided good dissolution of the skin fragment and a lower Ct value, indicating higher concentrations of DNA. The complete technological solution showed a sensitivity of 52% in reactions. Our results highlight the need for additional optimization to deal with paucibacillary samples, but also demonstrate the feasibility of the portable platform for the qPCR detection of M. leprae DNA in low infrastructure settings.
Collapse
Affiliation(s)
- Amanda Bertão-Santos
- Laboratório de Ciências e Tecnologias Aplicadas à Saúde (LaCTAS), Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Larisse da Silva Dias
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Alexandre Dias Tavares Costa
- Laboratório de Ciências e Tecnologias Aplicadas à Saúde (LaCTAS), Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| |
Collapse
|
8
|
Belák Á, Kovács M, Ittzés A, Pomázi A. Development of a qPCR method for classification of botrytized grape berries originated from Tokaj wine region. Food Microbiol 2024; 123:104582. [PMID: 39038888 DOI: 10.1016/j.fm.2024.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024]
Abstract
One of the best-known Hungarian products on world wine market is Aszú, which belongs to the family of Tokaj wine specialties and is made from aszú berries. An important condition for the formation of aszú berries is the noble rot of technologically mature grapes, which is caused by Botrytis cinerea. At the same time botrytized sweet wines are produced not only in Hungary, but in many locations of wine-producing areas of Europe as well as in certain wine growing regions of other continents. The determination of botrytization is mostly based on sensory evaluations, which is a highly subjective procedure and largely depends on the training and experience of the evaluator. Currently, the classification of aszú berries (class I and class II) is based only on visual inspection and determination of sugar content. Based on these facts the primary goal of our work was to develop a qPCR assay capable for objective rating and classification of aszú berries. The developed qPCR is highly specific and sensitive as can clearly distinguish between B. cinerea and other filamentous fungi and yeast species occur on grapes. Moreover, it is suitable for categorizing berries colonized by B. cinerea to varying degrees. Thus, the developed qPCR method can be a useful technique for classification of the grape berries into four quality groups: healthy, semi-shrivelled, Aszú Class II and Aszú Class I.
Collapse
Affiliation(s)
- Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary.
| | - Mónika Kovács
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary
| | - András Ittzés
- Department of Applied Statistics, Institute of Mathematics and Basic Science, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Villányi út 29-43. Hungary; Department of Methodology for Business Analysis, Faculty of Commerce, Hospitality and Tourism, Budapest Business University, Alkotmány Street 9-11, 1054, Budapest, Hungary
| | - Andrea Pomázi
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary
| |
Collapse
|
9
|
McCaw BA, Leonard AM, Stevenson TJ, Lancaster LT. A role of epigenetic mechanisms in regulating female reproductive responses to temperature in a pest beetle. INSECT MOLECULAR BIOLOGY 2024; 33:516-533. [PMID: 38864655 DOI: 10.1111/imb.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Many species are threatened by climate change and must rapidly respond to survive in changing environments. Epigenetic modifications, such as DNA methylation, can facilitate plastic responses by regulating gene expression in response to environmental cues. Understanding epigenetic responses is therefore essential for predicting species' ability to rapidly adapt in the context of global environmental change. Here, we investigated the functional significance of different methylation-associated cellular processes on temperature-dependent life history in seed beetles, Callosobruchus maculatus Fabricius 1775 (Coleoptera: Bruchidae). We assessed changes under thermal stress in (1) DNA methyltransferase (Dnmt1 and Dnmt2) expression levels, (2) genome-wide methylation and (3) reproductive performance, with (2) and (3) following treatment with 3-aminobenzamide (3AB) and zebularine (Zeb) over two generations. These drugs are well-documented to alter DNA methylation across the tree of life. We found that Dnmt1 and Dnmt2 were expressed throughout the body in males and females, but were highly expressed in females compared with males and exhibited temperature dependence. However, whole-genome methylation did not significantly vary with temperature, and only marginally or inconclusively with drug treatment. Both 3AB and Zeb led to profound temperature-dependent shifts in female reproductive life history trade-off allocation, often increasing fitness compared with control beetles. Mismatch between magnitude of treatment effects on DNA methylation versus life history effects suggest potential of 3AB and Zeb to alter reproductive trade-offs via changes in DNA repair and recycling processes, rather than or in addition to (subtle) changes in DNA methylation. Together, our results suggest that epigenetic mechanisms relating to Dnmt expression, DNA repair and recycling pathways, and possibly DNA methylation, are strongly implicated in modulating insect life history trade-offs in response to temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Aoife M Leonard
- Centre for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tyler J Stevenson
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
10
|
Takahashi WY, Galvão CW, Cassán FD, Urrea-Valencia S, Stremel AC, Stets MI, Stroka Kremer MA, Jesus EDC, Etto RM. Tracking maize colonization and growth promotion by Azospirillum reveals strain-specific behavior and the influence of inoculation method. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108979. [PMID: 39094483 DOI: 10.1016/j.plaphy.2024.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Inoculation of Azospirillum in maize has become a standard practice in Latin America. However, information on the behavior and population survival of the Azospirillum post-inoculation is scarce, making standardization difficult and generating variations in inoculation efficiency across assays. In this study, we tracked the colonization of three agriculturally relevant Azospirillum strains (Ab-V5, Az39, and the ammonium excreting HM053) after different inoculation methods in maize crops by qPCR. Besides, we assessed their ability to promote maize growth by measuring biometric parameters after conducting a greenhouse essay over 42 days. Inoculated plants exhibited Azospirillum population ranging from 103 to 107 cells plant-1 throughout the experiment. While all strains efficiently colonized roots, only A. argentinense Az39 demonstrated bidirectional translocation between roots and shoots, which characterizes a systemic behavior. Optimal inoculation methods for plant growth promotion varied among strains: soil inoculation promoted the best maize growth for the Ab-V5 and Az39 strains, while seed inoculation proved most effective for HM053. The findings of this study demonstrate that the inoculation method affects the behavior of Azospirillum strains and their effectiveness in promoting maize growth, thereby guiding practices to enhance crop yield.
Collapse
Affiliation(s)
- Willian Yuiti Takahashi
- Microbial Molecular Biology Laboratory (LABMOM), State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Carolina Weigert Galvão
- Microbial Molecular Biology Laboratory (LABMOM), State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Fabrício Dario Cassán
- Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), National University of Rio Cuarto (UNRC), Rio Cuarto, Córdoba, Argentina
| | - Salomé Urrea-Valencia
- Microbial Molecular Biology Laboratory (LABMOM), State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Anna Cecília Stremel
- Microbial Molecular Biology Laboratory (LABMOM), State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Maria Isabel Stets
- Microbial Molecular Biology Laboratory (LABMOM), State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | | | | | - Rafael Mazer Etto
- Microbial Molecular Biology Laboratory (LABMOM), State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
11
|
Iuffrida L, Wathsala RHGR, Musella M, Palladino G, Candela M, Franzellitti S. Stability and expression patterns of housekeeping genes in Mediterranean mussels (Mytilus galloprovincialis) under field investigations. Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110047. [PMID: 39313016 DOI: 10.1016/j.cbpc.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The use of marine mussels as biological models encompasses a broad range of research fields, in which the application of RNA analyses disclosed novel biomarkers of environmental stress and investigated biochemical mechanisms of action. Quantitative real-time PCR (qPCR) is the gold standard for these studies, and despite its wide use and available protocols, it may be affected by technical flaws requiring reference gene data normalization. In this study, stability of housekeeping genes commonly employed as reference genes in qPCR analyses with Mytilus galloprovincialis was explored under field conditions. Mussels were collected from farms in the Northwestern Adriatic Sea. The sampling strategy considered latitudinal gradients of environmental parameters (proxied by location), gender, and their interactions with seasonality. Analyses of gene stability were performed using different algorithms. BestKeeper and geNorm agreed that combination of the ribosomal genes 18S ribosomal RNA (18S) and 28S ribosomal RNA (28S) was the best normalization strategy in the conditions tested, which agrees with available evidence. NormFinder provided different normalization strategies, involving combinations of tubulin (TUB)/28S (Gender/Season effect) or TUB/helicase (HEL) (Location/Season effect). Since NormFinder considers data grouping and computes both intra- and inter-group stability variations, it should work better with complex experimental designs and dataset structuring. Under the selected normalization strategies, expressions of the variable housekeeping genes actin (ACT) and elongation factor-1α (EF1) correlated with seasonal and latitudinal changes of abiotic environmental factors and mussel physiological status. Results point to consider ACT and EF1 expressions as molecular biomarkers of mussel general physiological status in field studies.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | | | - Margherita Musella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy.
| |
Collapse
|
12
|
Rajapaksha RD, Brooks C, Rascon A, Fadem A, Nguyen I, Kuehl PJ, Farmer JT. Comparative analysis of high-throughput RNA extraction kits in Naïve Non-Human Primate (NHP) tissues for downstream applications utilizing Xeno Internal Positive Control (IPC). J Pharmacol Toxicol Methods 2024; 129:107549. [PMID: 39236994 DOI: 10.1016/j.vascn.2024.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Ribonucleic acid (RNA) extraction and purification play pivotal roles in molecular biology and cell and gene therapy, where the quality and integrity of RNA are critical for downstream applications. Automated high-throughput systems have gained interest due to their potential for scalability and reduced labor requirements compared to manual methods. However, ensuring high-throughput capabilities, reproducibility, and reliability while maintaining RNA yield and purity remains challenging. This study evaluated and compared the performance of four commercially available high-throughput magnetic bead-based RNA extraction kits across six types of naïve non-human primate (NHP) tissue matrices: brain, heart, kidney, liver, lung, and spleen. The assessment focused on RNA purity, yield, and extraction efficiency (EE) using Xeno Internal Positive Control (IPC) spiking. Samples (∼50 mg) were homogenized via bead-beating and processed according to the manufacturer's protocol on the KingFisher Flex platform in eight replicates. RNA purity and yield were measured using a NanoDrop® spectrophotometer, while EE was evaluated via real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The findings indicate consistent high RNA purity across all tested extraction kits, yet substantial variation in RNA yield. Extraction efficiency exhibited variations across tissue types, with decreasing trends observed from brain to lung tissues. These results underscore the importance of careful kit selection and method optimization for achieving reliable downstream applications. The MagMAX™ mirVana™ Total RNA Isolation Kit stands out as the most accurate and reproducible, making it the preferred choice for applications requiring high RNA quality and consistency. Other kits, such as the Maxwell® HT simplyRNA Kit, offer a good balance between cost and performance, though with some trade-offs in precision. These findings highlight the importance of selecting the appropriate RNA isolation method based on the specific needs of the research, underscoring the critical role of accurate nucleic acid extraction in gene and cell therapy research. In conclusion, this study highlights the critical factors influencing RNA extraction performance, emphasizing the need for researchers and practitioners to consider both kit performance and tissue characteristics when designing experimental protocols. These insights contribute to the ongoing efforts to enhance the reproducibility and reliability of RNA extraction methods in molecular biology and cell/gene therapy applications.
Collapse
Affiliation(s)
- Ruwini D Rajapaksha
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America.
| | - Catherine Brooks
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Adriana Rascon
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Adam Fadem
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Ivy Nguyen
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - Philip J Kuehl
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| | - John T Farmer
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, United States of America
| |
Collapse
|
13
|
Guo L, Ze X, Jiao Y, Song C, Zhao X, Song Z, Mu S, Liu Y, Ge Y, Jing Y, Yao S. Development and validation of a PMA-qPCR method for accurate quantification of viable Lacticaseibacillus paracasei in probiotics. Front Microbiol 2024; 15:1456274. [PMID: 39171269 PMCID: PMC11335531 DOI: 10.3389/fmicb.2024.1456274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The effectiveness of probiotic products hinges on the viability and precise quantification of probiotic strains. This study addresses this crucial requirement by developing and validating a precise propidium monoazide combination with quantitative polymerase chain reaction (PMA-qPCR) method for quantifying viable Lacticaseibacillus paracasei in probiotic formulations. Initially, species-specific primers were meticulously designed based on core genes from the whole-genome sequence (WGS) of L. paracasei, and they underwent rigorous validation against 462 WGSs, 25 target strains, and 37 non-target strains across various taxonomic levels, ensuring extensive inclusivity and exclusivity. Subsequently, optimal PMA treatment conditions were established using 25 different L. paracasei strains to effectively inhibit dead cell DNA amplification while preserving viable cells. The developed method exhibited a robust linear relationship (R 2 = 0.994) between cycle threshold (Cq) values and viable cell numbers ranging from 103 to 108 CFU/mL, with an impressive amplification efficiency of 104.48% and a quantification limit of 7.30 × 103 CFU/mL. Accuracy assessments revealed biases within ±0.5 Log10 units, while Bland-Altman analysis demonstrated a mean bias of 0.058 Log10, with 95% confidence limits of -0.366 to 0.482 Log10. Furthermore, statistical analysis (p = 0.76) indicated no significant differences between theoretical and measured values. This validated PMA-qPCR method serves as a robust and accurate tool for quantifying viable L. paracasei in various sample matrices, including pure cultures, probiotics as food ingredients, and composite probiotic products, thereby enhancing probiotic product quality assurance and contributing to consumer safety and regulatory compliance.
Collapse
Affiliation(s)
- Lizheng Guo
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Xiaolei Ze
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Yingxin Jiao
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Chengyu Song
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Xi Zhao
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Zhiquan Song
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Shuaicheng Mu
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yiru Liu
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yuanyuan Ge
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yu Jing
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Su Yao
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| |
Collapse
|
14
|
Dong C, Li F, Sun Y, Long D, Chen C, Li M, Wei T, Martins RP, Chen T, Mak PI. A syndromic diagnostic assay on a macrochannel-to-digital microfluidic platform for automatic identification of multiple respiratory pathogens. LAB ON A CHIP 2024; 24:3850-3862. [PMID: 37961846 DOI: 10.1039/d3lc00728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The worldwide COVID-19 pandemic has changed people's lives and the diagnostic landscape. The nucleic acid amplification test (NAT) as the gold standard for SARS-CoV-2 detection has been applied in containing its transmission. However, there remains a lack of an affordable on-site detection system at resource-limited areas. In this study, a low cost "sample-in-answer-out" system incorporating nucleic acid extraction, purification, and amplification was developed on a single macrochannel-to-digital microfluidic chip. The macrochannel fluidic subsystem worked as a world-to-chip interface receiving 500-1000 μL raw samples, which then underwent bead-based extraction and purification processes before being delivered to DMF. Electrodes actuate an eluent dispensed to eight independent droplets for reverse transcription quantitative polymerase chain reaction (RT-qPCR). By reading with 4 florescence channels, the system can accommodate a maximum of 32 detection targets. To evaluate the proposed platform, a comprehensive assessment was conducted on the microfluidic chip as well as its functional components (i.e., extraction and amplification). The platform demonstrated a superior performance. In particular, using clinical specimens, the chip targeting SARS-CoV-2 and Flu A/B exhibited 100% agreement with off-chip diagnoses. Furthermore, the fabrication of chips is ready for scaled-up manufacturing and they are cost-effective for disposable use since they are assembled using a printed circuit board (PCB) and prefabricated blocks. Overall, the macrochannel-to-digital microfluidic platform coincides with the requirements of point-of-care testing (POCT) because of its advantages: low-cost, ease of use, comparable sensitivity and specificity, and availability for mass production.
Collapse
Affiliation(s)
- Cheng Dong
- School of Intelligent Systems Science and Engineering/JNU-Industry School of Artificial Intelligence, Jinan University, Zhuhai 519000, China
| | - Fei Li
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- Digifluidic Biotech Ltd., Zhuhai 519000, China.
| | - Yun Sun
- Digifluidic Biotech Ltd., Zhuhai 519000, China.
| | - Dongling Long
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519087, China
| | - Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, USA
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China
| | - Rui P Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macau SAR, 999078, China.
| | | | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macau SAR, 999078, China.
- Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
15
|
Negi N, Selvamani SB, Ramasamy GG, Nagarjuna Reddy KV, Pathak J, Thiruvengadam V, Mohan M, Dubey VK, Sushil SN. Identification and expression dynamics of CYPome across different developmental stages of Maconellicoccus hirsutus (Green). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101305. [PMID: 39128380 DOI: 10.1016/j.cbd.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Maconellicoccus hirsutus is a highly polyphagous insect pest, posing a substantial threat to various crop sp., especially in the tropical and sub-tropical regions of the world. While extensive physiological and biological studies have been conducted on this pest, the lack of genetic information has hindered our understanding of the molecular mechanisms underlying its growth, development, and xenobiotic metabolism. The Cytochrome P450 gene, a member of the CYP gene superfamily ubiquitous in living organisms is associated with growth, development, and the metabolism of both endogenous and exogenous substances, contributing to the insect's adaptability in diverse environments. To elucidate the specific role of the CYP450 gene family in M. hirsutus which has remained largely unexplored, a de novo transcriptome assembly of the pink mealybug was constructed. A total of 120 proteins were annotated as CYP450 genes through homology search of the predicted protein sequences across different databases. Phylogenetic studies resulted in categorizing 120 CYP450 genes into four CYP clans. A total of 22 CYP450 families and 30 subfamilies were categorized, with CYP6 forming the dominant family. The study also revealed five genes (Halloween genes) associated with the insect hormone biosynthesis pathway. Further, the expression of ten selected CYP450 genes was studied using qRT-PCR across crawler, nymph, and adult stages, and identified genes that were expressed at specific stages of the insects. Thus, the findings of this study reveal the expression dynamics and possible function of the CYP450 gene family in the growth, development, and adaptive strategies of M. hirsutus which can be further functionally validated.
Collapse
Affiliation(s)
- Nikita Negi
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India; Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur - 492012, India. https://twitter.com/NegiNikita92892
| | - Selva Babu Selvamani
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India. https://twitter.com/MithranSelva
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India.
| | - K V Nagarjuna Reddy
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India; Department of Entomology, School of Agriculture, Lovely Professional University, Punjab - 144411, India. https://twitter.com/arjun06001332
| | - Jyoti Pathak
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Muthugounder Mohan
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Vinod Kumar Dubey
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur - 492012, India
| | - Satya N Sushil
- ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| |
Collapse
|
16
|
Aguilera-Lizarraga J, Ritoux A, Bulmer DC, Smith ESJ. Intestinal barrier function in the naked mole-rat: an emergent model for gastrointestinal insights. Am J Physiol Gastrointest Liver Physiol 2024; 327:G188-G201. [PMID: 38915279 DOI: 10.1152/ajpgi.00080.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The intestinal barrier plays a crucial role in homeostasis by both facilitating the absorption of nutrients and fluids and providing a tight shield to prevent the invasion by either pathogen or commensal microorganisms. Intestinal barrier malfunction is associated with systemic inflammation, oxidative stress, and decreased insulin sensitivity, which may lead to the dysregulation of other tissues. Therefore, a deeper understanding of physiological aspects related to an enhanced barrier function is of significant scientific and clinical relevance. The naked mole-rat has many unusual biological features, including attenuated colonic neuron sensitivity to acid and bradykinin and resistance to chemical-induced intestinal damage. However, insight into their intestinal barrier physiology is scarce. Here, we observed notable macroscopic and microscopic differences in intestinal tissue structure between naked mole-rats and mice. Moreover, naked mole-rats showed increased number of larger goblet cells and elevated mucus content. In measuring gut permeability, naked mole-rats showed reduced permeability compared with mice, measured as transepithelial electrical resistance, especially in ileum. Furthermore, intestinal ion secretion induced by serotonin, bradykinin, histamine, and capsaicin was significantly reduced in naked mole-rats compared with mice, despite the expression of receptors for all these agonists. In addition, naked mole-rats exhibited reduced prosecretory responses to the nonselective adenylate cyclase activator forskolin. Collectively, these findings indicate that naked mole-rats possess a robust and hard-to-penetrate gastrointestinal barrier that is resistant to environmental and endogenous irritants. Naked mole-rats may therefore provide valuable insights into the physiology of the intestinal barrier and set the stage for the development of innovative and effective therapies.NEW & NOTEWORTHY This is the first study to characterize the intestinal function of naked mole-rats. We found that these animals show a robust gut tissue structure, displaying thicker intestinal layers, longer villi, and larger crypts. Naked mole-rats showed more and larger goblet cells, with increased mucus content. Intestinal permeability, especially in the ileum, was substantially lower than that of mice. Finally, naked mole-rats showed reduced intestinal anion secretion in response to serotonin, bradykinin, histamine, capsaicin, and forskolin.
Collapse
Affiliation(s)
| | - Anne Ritoux
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Li R, Zhu Z, Guo Y, Yang L. Quadruplex Droplet Digital PCR Assay for Screening and Quantification of SARS-CoV-2. Int J Mol Sci 2024; 25:8157. [PMID: 39125726 PMCID: PMC11311395 DOI: 10.3390/ijms25158157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since early 2020, has highlighted the need for sensitive and reliable diagnostic methods. Droplet digital PCR (ddPCR) has demonstrated superior performance over the gold-standard reverse transcription PCR (RT-PCR) in detecting SARS-CoV-2. In this study, we explored the development of a multiplex ddPCR assay that enables sensitive quantification of SARS-CoV-2, which could be utilized for antiviral screening and the monitoring of COVID-19 patients. We designed a quadruplex ddPCR assay targeting four SARS-CoV-2 genes and evaluated its performance in terms of specificity, sensitivity, linearity, reproducibility, and precision using a two-color ddPCR detection system. The results showed that the quadruplex assay had comparable limits of detection and accuracy to the simplex ddPCR assays. Importantly, the quadruplex assay demonstrated significantly improved performance for samples with low viral loads and ambiguous results compared to the standard qRT-PCR approach. The developed multiplex ddPCR represents a valuable alternative and complementary tool for the diagnosis of SARS-CoV-2 and potentially other pathogens in various application scenarios beyond the current COVID-19 pandemic. The improved sensitivity and reliability of this assay could contribute to more effective disease monitoring and antiviral screening during the ongoing public health crisis.
Collapse
Affiliation(s)
- Rong Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.L.); (Y.G.)
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zaobing Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yongkun Guo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.L.); (Y.G.)
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.L.); (Y.G.)
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| |
Collapse
|
18
|
Mirabile A, Sangiorgio G, Bonacci PG, Bivona D, Nicitra E, Bonomo C, Bongiorno D, Stefani S, Musso N. Advancing Pathogen Identification: The Role of Digital PCR in Enhancing Diagnostic Power in Different Settings. Diagnostics (Basel) 2024; 14:1598. [PMID: 39125474 PMCID: PMC11311727 DOI: 10.3390/diagnostics14151598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Digital polymerase chain reaction (dPCR) has emerged as a groundbreaking technology in molecular biology and diagnostics, offering exceptional precision and sensitivity in nucleic acid detection and quantification. This review highlights the core principles and transformative potential of dPCR, particularly in infectious disease diagnostics and environmental surveillance. Emphasizing its evolution from traditional PCR, dPCR provides accurate absolute quantification of target nucleic acids through advanced partitioning techniques. The review addresses the significant impact of dPCR in sepsis diagnosis and management, showcasing its superior sensitivity and specificity in early pathogen detection and identification of drug-resistant genes. Despite its advantages, challenges such as optimization of experimental conditions, standardization of data analysis workflows, and high costs are discussed. Furthermore, we compare various commercially available dPCR platforms, detailing their features and applications in clinical and research settings. Additionally, the review explores dPCR's role in water microbiology, particularly in wastewater surveillance and monitoring of waterborne pathogens, underscoring its importance in public health protection. In conclusion, future prospects of dPCR, including methodological optimization, integration with innovative technologies, and expansion into new sectors like metagenomics, are explored.
Collapse
Affiliation(s)
- Alessia Mirabile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Paolo Giuseppe Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| |
Collapse
|
19
|
Arya V, Narayana S, Sinha T, Kandan A, Satyanarayana Raju SV. A simple PCR-based quick detection of the economically important oriental fruit fly, Bactrocera dorsalis (Hendel) from India. FRONTIERS IN PLANT SCIENCE 2024; 15:1399718. [PMID: 39045589 PMCID: PMC11263087 DOI: 10.3389/fpls.2024.1399718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a significant economic and quarantine pest due to its polyphagous nature. The accurate identification of B. dorsalis is challenging at the egg, maggot, and pupal stages, due to lack of distinct morphological characters and its similarity to other fruit flies. Adult identification requires specialized taxonomist. Existing identification methods are laborious, time consuming, and expensive. Rapid and precise identification is crucial for timely management. By analyzing the variations in the mitochondrial cytochrome oxidase-1 gene sequence (Insect barcoding gene), we developed a species-specific primer (SSP), DorFP1/DorRP1, for accurate identification of B. dorsalis. The optimal annealing temperature for the SSP was determined to be 66°C, with no cross-amplification or primer-dimer formation observed. The SSP was validated with B. dorsalis specimens from various locations in northern and eastern India and tested for cross-specificity with six other economically significant fruit fly species in India. The primer specificity was further confirmed by the analysis of critical threshold (Ct) value from a qPCR assay. Sensitivity analysis showed the primer could detect template DNA concentrations as low as 1 pg/µl, though sensitivity decreased at lower concentrations. Sequencing of the SSP-amplified product revealed over >99% similarity with existing B. dorsalis sequences in the NCBI GenBank. The developed SSP reliably identifies B. dorsalis across all developmental stages and sexes. This assay is expected to significantly impact pest identification, phytosanitary measures, and eradication programs for B. dorsalis.
Collapse
Affiliation(s)
- Varun Arya
- Insects Molecular Biology Laboratory, Institute of Agricultural Sciences, Department of Entomology and Agricultural Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Srinivasa Narayana
- Insects Molecular Biology Laboratory, Institute of Agricultural Sciences, Department of Entomology and Agricultural Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Twinke Sinha
- Insects Molecular Biology Laboratory, Institute of Agricultural Sciences, Department of Entomology and Agricultural Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Aravindaram Kandan
- Indian Council of Agricultural Research-National Bureau of Agricultural Insect Resources, Bengaluru, Karnataka, India
| | - Samantapudi Venkata Satyanarayana Raju
- Insect Physiology and Toxicology Laboratory, Institute of Agricultural Sciences, Department of Entomology and Agricultural Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
20
|
Albuja-Quintana M, Armijos CE, Montero-Oleas A, Torres MDL. Development of novel species-specific and genus-specific primers for the detection of Babaco Mosaic Virus (BabMV). Lett Appl Microbiol 2024; 77:ovae070. [PMID: 39020264 DOI: 10.1093/lambio/ovae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
Babaco is a hybrid cultivar native to the Andean region of Ecuador and Colombia, commercially attractive for its fruit. Babaco production in Ecuador faces losses from plant pathogens like babaco mosaic virus (BabMV), an RNA virus that causes chlorosis, leaf mottling, and deformation. Phylogenetic studies link BabMV to papaya mosaic virus (PapMV), alternanthera mosaic virus, and senna mosaic virus. To address this threat, we developed novel species-specific primers to detect BabMV targeting a 165 bp region of the coat protein (CP). Genus-specific primers were designed to validate the species-specific primers and attest their ability to discriminate between BabMV and its closest relatives. These primers targeted a 175 bp fragment of the CP region. The most effective sets of primers were chosen for reverse transcription polymerase chain reaction (RT-PCR) and SYBR® Green-based quantitative reverse transcription polymerase chain reaction (RT-qPCR) in symptomatic and asymptomatic babaco plants. Among 28 plants tested, 25 were positive and 3 were negative for BabMV using species-specific and genus-specific primers in RT-PCR and RT-qPCR, while the PapMV positive control was detected with the genus-specific primers and was negative for the species-specific primers. These primers represent a valuable molecular tool for detecting BabMV, potentially enhancing crop management.
Collapse
Affiliation(s)
- Martina Albuja-Quintana
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Carolina E Armijos
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Andrea Montero-Oleas
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Maria de Lourdes Torres
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| |
Collapse
|
21
|
Kamińska A, Pardyak L, Lustofin S, Gielata K, Arent Z, Pietsch-Fulbiszewska A, Hejmej A. 9-cis-retinoic acid signaling in Sertoli cells regulates their immunomodulatory function to control lymphocyte physiology and Treg differentiation. Reprod Biol Endocrinol 2024; 22:75. [PMID: 38926848 PMCID: PMC11202360 DOI: 10.1186/s12958-024-01246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Testis is an immune privileged organ, which prevents the immune response against sperm antigens and inflammation. Testicular cells responsible for immune tolerance are mainly Sertoli cells, which form the blood-testis barrier and produce immunosuppressive factors. Sertoli cells prevent inflammation in the testis and maintain immune tolerance by inhibiting proliferation and inducing lymphocyte apoptosis. It has been shown that 9-cis-retinoic acid (9cRA) blocks ex vivo apoptosis of peripheral blood lymphocytes and promotes the differentiation of Treg cells in the gut. However, the role of retinoid signaling in regulating the immune privilege of the testes remains unknown. OBJECTIVE The aim of this study was to determine whether 9cRA, acting via the retinoic acid receptors (RAR) and the retinoic X receptors (RXR), controls the immunomodulatory functions of Sertoli cells by influencing the secretion of anti-inflammatory/pro-inflammatory factors, lymphocyte physiology and Treg cell differentiation. METHODS Experiments were performed using in vitro model of co-cultures of murine Sertoli cells and T lymphocytes. Agonists and antagonists of retinoic acid receptors were used to inhibit/stimulate retinoid signaling in Sertoli cells. RESULTS Our results have demonstrated that 9cRA inhibits the expression of immunosuppressive genes and enhances the expression of pro-inflammatory factors in Sertoli cells and lymphocytes, increases lymphocyte viability and decreases apoptosis rate. Moreover, we have found that 9cRA blocks lymphocyte apoptosis acting through both RAR and RXR and inhibiting FasL/Fas/Caspase 8 and Bax/Bcl-2/Caspase 9 pathways. Finally, we have shown that 9cRA signaling in Sertoli cells inhibits Treg differentiation. CONCLUSION Collectively, our results indicate that retinoid signaling negatively regulates immunologically privileged functions of Sertoli cells, crucial for ensuring male fertility. 9cRA inhibits lymphocyte apoptosis, which can be related to the development of autoimmunity, inflammation, and, in consequence, infertility.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland.
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Kraków, Krakow, 30-248, Poland
| | - Sylwia Lustofin
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Karolina Gielata
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University of Agriculture in Kraków, Krakow, 30-248, Poland
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Krakow, 30-059, Poland
| | | | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| |
Collapse
|
22
|
Osathanunkul M. Species-specific eDNA assay development for enhanced box jellyfish risk management in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172900. [PMID: 38697547 DOI: 10.1016/j.scitotenv.2024.172900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Human interaction with marine creatures holds both positive and negative dimensions. Coastal communities benefit from marine environments, relying on them for sustenance and livelihoods. Fishing activities support economies, and marine biodiversity contributes to overall ecosystem health. However, challenges like overfishing, habitat destruction, and pollution pose threats to both marine life and human communities. Recently, there has been widespread concern regarding the potential increase in jellyfish populations across global marine ecosystems, attributed mainly to environmental factors such as climate drivers and anthropogenic forces, or their complex interactions. Encounters with hazardous marine species, such as box jellyfish, exemplify the dangers associated with coastal activities. Unintended interactions may lead to stings, injuries, and even fatalities, necessitating proactive measures and advanced technologies. This study addresses the inadequacies of existing measures in preventing box jellyfish incidents by introducing environmental DNA (eDNA) assays for detecting the deadly Chiropsoides buitendijki and focuses on developing qPCR and dPCR-based eDNA assays. Emphasising prevention over treatment, the study establishes a proactive system to assess C. buitendijki distribution across 63 tourist beaches in the Gulf of Thailand. Comparative analysis highlights the superior performance of dPCR over qPCR and traditional surveys. The dPCR experiment yielded positive results for all eDNA samples collected at sites where C. buitendijki had previously been identified. Remarkably, the eDNA testing also detected positive results in 16 additional sample locations where no physical specimens were collected, despite reported jellyfish stings at some of these sites. These findings underscore the precision and efficacy of the proposed eDNA detection technology in the early detection and assessment of box jellyfish distribution. This advancement therefore not only aids ecological research but also serves as a valuable tool for safeguarding public health, providing an early warning system for potential jellyfish encounters. Balancing positive human-marine interactions with effective risk mitigation strategies is crucial for sustainable coexistence, the preservation of marine ecosystems, and human well-being.
Collapse
Affiliation(s)
- Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
23
|
Leyton J, Fernández J, Acosta P, Quiroga A, Codony F. Reduction of Helicobacter pylori cells in rural water supply using slow sand filtration. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:619. [PMID: 38878080 PMCID: PMC11180159 DOI: 10.1007/s10661-024-12764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/25/2024] [Indexed: 06/19/2024]
Abstract
Helicobacter pylori is a microorganism that infects 60% of the population and is considered the main cause of atrophic gastritis, gastric and duodenal ulcers, and gastric cancer. Different emerging pathogens have been found in drinking water and their presence is considered to be an important public health problem. For this reason, it is necessary to carry out the validation of reliable technologies for this type of pathogens and evaluate their performance. This paper reports, for the first time, H. pylori reduction in a drinking water pilot plant of two slow sand filters (SSF). Inlet water was taken from a gravel filtration system of a rural water supply in Colombia and then inoculated with viable cells of H. pylori. By determining the Genomic Units (GU) through quantitative Polymerase Chain Reaction (qPCR), the concentration of GU/sample was measured. In the inlet water amplification for SSF1 and SSF2 were 5.13 × 102 ± 4.48 × 102 and 6.59 × 102 ± 7.32 × 102, respectively, while for the treated water they were 7.0 ± 5.6 and 2.05 × 101 ± 2.9 × 101 GU/sample for SSF1 and SSF2, respectively. The SSF pilot plant reached up to 3 log reduction units of H. pylori; therefore, since there is not an H. pylori contamination indicator and its periodic monitoring is financially complicated, the SSF could guarantee the drinking water quality necessity that exists in rural areas and small municipalities in developing countries, where infection rates and prevalence of this pathogen are high.
Collapse
Affiliation(s)
- Javier Leyton
- Department of Environmental and Sanitary Engineering, Faculty of Civil Engineering, Universidad del Cauca, Popayán, Colombia.
| | - Javier Fernández
- Department of Environmental and Sanitary Engineering, Faculty of Civil Engineering, Universidad del Cauca, Popayán, Colombia
| | - Patricia Acosta
- Department of Physiological Sciences, Faculty of Health Sciences, Universidad del Cauca, Popayán, Colombia
| | - Andrés Quiroga
- Department of Physiological Sciences, Faculty of Health Sciences, Universidad del Cauca, Popayán, Colombia
| | | |
Collapse
|
24
|
Wei W, Li S, Zhang Y, Deng S, He Q, Zhao X, Xu Y, Yu L, Ye J, Zhao W, Jiang Z. Analytical validation of the DropXpert S6 system for diagnosis of chronic myelocytic leukemia. LAB ON A CHIP 2024; 24:3080-3092. [PMID: 38747247 DOI: 10.1039/d4lc00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Digital PCR is a powerful method for absolute nucleic acid quantification and is widely used in the absolute quantification of viral copy numbers, tumor marker detection, and prenatal diagnosis. However, for most of the existing droplet-based dPCR systems, the droplet generation, PCR reaction, and droplet detection are performed separately using different instruments. Making digital PCR both easy to use and practical by integrating the qPCR workflow into a superior all-in-one walkaway solution is one of the core ideas. A new innovative and integrated digital droplet PCR platform was developed that utilizes cutting-edge microfluidics to integrate dPCR workflows onto a single consumable chip. This makes previously complex workflows fast and simple; the whole process of droplet generation, PCR amplification, and droplet detection is completed on one chip, which meets the clinical requirement of "sample in, result out". It provides high multiplexing capabilities and strong sensitivity while all measurements were within the 95% confidence interval. This study is the first validation of the DropXpert S6 system and focuses primarily on verifying its reliability, repeatability, and consistency. In addition, the accuracy, detection limit, linearity, and precision of the system were evaluated after sample collection. Among them, the accuracy assessment by calculating the absolute bias of each target gene yielded a range from -0.1 to 0.08, all within ±0.5 logarithmic orders of magnitude; the LOB for the assay was set at 0, and the LoD value calculated using probit curves is MR4.7 (0.002%); the linearity evaluation showed that the R2 value of the BCR-ABL was 0.9996, and the R2 value of the ABL metrics calculated using the ERM standard was 0.9999; and the precision evaluation showed that all samples had a CV of less than 4% for intra-day, inter-day, and inter-instrument variation. The CV of inter-batch variation was less than 7%. The total CV was less than 5%. The results of the study demonstrate that dd-PCR can be applied to molecular detection and the clinical evaluation of CML patients and provide more precise personal treatment guidance, and its reproducibility predicts the future development of a wide range of clinical applications.
Collapse
Affiliation(s)
- Wenjia Wei
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Shujun Li
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Ying Zhang
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Simin Deng
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Qun He
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Xielan Zhao
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Yajing Xu
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Linfen Yu
- Shenzhen Biorain Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Junwei Ye
- Shenzhen Biorain Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Weiwei Zhao
- Rehabilitation Medical Center of Jiangning Hospital, Nanjing, Jiangsu, China
| | - Zhiping Jiang
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| |
Collapse
|
25
|
Boxman ILA, Molin R, Persson S, Juréus A, Jansen CCC, Sosef NP, Le Guyader SF, Ollivier J, Summa M, Hautaniemi M, Suffredini E, Di Pasquale S, Myrmel M, Khatri M, Jamnikar-Ciglenecki U, Kusar D, Moor D, Butticaz L, Lowther JA, Walker DI, Stapleton T, Simonsson M, Dirks RAM. An international inter-laboratory study to compare digital PCR with ISO standardized qPCR assays for the detection of norovirus GI and GII in oyster tissue. Food Microbiol 2024; 120:104478. [PMID: 38431324 DOI: 10.1016/j.fm.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
An optimized digital RT-PCR (RT-dPCR) assay for the detection of human norovirus GI and GII RNA was compared with ISO 15216-conform quantitative real-time RT-PCR (RT-qPCR) assays in an interlaboratory study (ILS) among eight laboratories. A duplex GI/GII RT-dPCR assay, based on the ISO 15216-oligonucleotides, was used on a Bio-Rad QX200 platform by six laboratories. Adapted assays for Qiagen Qiacuity or ThermoFisher QuantStudio 3D were used by one laboratory each. The ILS comprised quantification of norovirus RNA in the absence of matrix and in oyster tissue samples. On average, results of the RT-dPCR assays were very similar to those obtained by RT-qPCR assays. The coefficient of variation (CV%) of norovirus GI results was, however, much lower for RT-dPCR than for RT-qPCR in intra-laboratory replicates (eight runs) and between the eight laboratories. The CV% of norovirus GII results was in the same range for both detection formats. Had in-house prepared dsDNA standards been used, the CV% of norovirus GII could have been in favor of the RT-dPCR assay. The ratio between RT-dPCR and RT-qPCR results varied per laboratory, despite using the distributed RT-qPCR dsDNA standards. The study indicates that the RT-dPCR assay is likely to increase uniformity of quantitative results between laboratories.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Ramia Molin
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Sofia Persson
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Anna Juréus
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - Claudia C C Jansen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Nils P Sosef
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| | - Soizick F Le Guyader
- French Research Institute for Exploitation of the Sea (Ifremer) - Laboratoire de Santé, Environnement et Microbiologie, Nantes, France.
| | - Joanna Ollivier
- French Research Institute for Exploitation of the Sea (Ifremer) - Laboratoire de Santé, Environnement et Microbiologie, Nantes, France.
| | | | | | - Elisabetta Suffredini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | - Simona Di Pasquale
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | - Mette Myrmel
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Virology Unit, Ås, Norway.
| | - Mamata Khatri
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Virology Unit, Ås, Norway.
| | - Urska Jamnikar-Ciglenecki
- University of Ljubljana Veterinary Faculty, Institute of Food Safety, Feed and Environment, Ljubljana, Slovenia.
| | - Darja Kusar
- University of Ljubljana Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia.
| | - Dominik Moor
- Federal Institute of Metrology METAS, Biological Analysis and References Laboratory, Bern, Switzerland.
| | - Lisa Butticaz
- Federal Institute of Metrology METAS, Biological Analysis and References Laboratory, Bern, Switzerland.
| | - James A Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - Tina Stapleton
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom.
| | - Magnus Simonsson
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden.
| | - René A M Dirks
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
26
|
Bonilla DA, Orozco CA, Forero DA, Odriozola A. Techniques, procedures, and applications in host genetic analysis. ADVANCES IN GENETICS 2024; 111:1-79. [PMID: 38908897 DOI: 10.1016/bs.adgen.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter overviews genetic techniques' fundamentals and methodological features, including different approaches, analyses, and applications that have contributed to advancing health and disease. The aim is to describe laboratory methodologies and analyses employed to understand the genetic landscape of different biological contexts, from conventional techniques to cutting-edge technologies. Besides describing detailed aspects of the polymerase chain reaction (PCR) and derived types as one of the principles for many novel techniques, we also discuss microarray analysis, next-generation sequencing, and genome editing technologies such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems. These techniques study several phenotypes, ranging from autoimmune disorders to viral diseases. The significance of integrating diverse genetic methodologies and tools to understand host genetics comprehensively and addressing the ethical, legal, and social implications (ELSI) associated with using genetic information is highlighted. Overall, the methods, procedures, and applications in host genetic analysis provided in this chapter furnish researchers and practitioners with a roadmap for navigating the dynamic landscape of host-genome interactions.
Collapse
Affiliation(s)
- Diego A Bonilla
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá, Colombia.
| | - Carlos A Orozco
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, Colombia
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
27
|
Schmidt S, Klampfleuthner FAM, Renkawitz T, Diederichs S. Cause and chondroprotective effects of prostaglandin E2 secretion during mesenchymal stromal cell chondrogenesis. Eur J Cell Biol 2024; 103:151412. [PMID: 38608422 DOI: 10.1016/j.ejcb.2024.151412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) that are promising for cartilage tissue engineering secrete high amounts of prostaglandin E2 (PGE2), an immunoactive mediator involved in endochondral bone development. This study aimed to identify drivers of PGE2 and its role in the inadvertent MSC misdifferentiation into hypertrophic chondrocytes. PGE2 release, which rose in the first three weeks of MSC chondrogenesis, was jointly stimulated by endogenous BMP, WNT, and hedgehog activity that supported the exogenous stimulation by TGF-β1 and insulin to overcome the PGE2 inhibition by dexamethasone. Experiments with PGE2 treatment or the inhibitor celecoxib or specific receptor antagonists demonstrated that PGE2, although driven by prohypertrophic signals, exerted broad autocrine antihypertrophic effects. This chondroprotective effect makes PGE2 not only a promising option for future combinatorial approaches to direct MSC tissue engineering approaches into chondral instead of endochondral development but could potentially have implications for the use of COX-2-selective inhibitors in osteoarthritis pain management.
Collapse
Affiliation(s)
- Sven Schmidt
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany
| | - Felicia A M Klampfleuthner
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany
| | - Tobias Renkawitz
- Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany.
| |
Collapse
|
28
|
Rossi F, Del Matto I, Ricchiuti L, Marino L. Selection and Multiplexing of Reverse Transcription-Quantitative PCR Tests Targeting Relevant Honeybee Viral Pathogens. Microorganisms 2024; 12:1105. [PMID: 38930487 PMCID: PMC11205706 DOI: 10.3390/microorganisms12061105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Verifying the inclusivity of molecular detection methods gives indications about the reliability of viral infection diagnosis because of the tendency of viral pathogens to undergo sequence variation. This study was aimed at selecting inclusive probes based on reverse transcription-quantitative PCR (RT-qPCR) assays for the diagnosis of the most widespread and detrimental viruses infecting honeybees, namely the acute bee paralysis virus (ABPV), the black queen cell virus (BQCV), the chronic paralysis bee virus (CBPV), the deformed wing virus variants A (DWVA) and B (DWVB), and the sacbrood virus (SBV). Therefore, previously described detection methods were re-evaluated in silico for their specificity and inclusivity. Based on this evaluation, selected methods were modified, or new ones were designed and tested in duplex RT-qPCR reactions. The limits of detection (LODs), effect of multiplexing on sensitivity and the viral RNA quantification potential in bees and hive debris were assessed. This study made available diagnostic assays able to detect an increased number of virus variants compared with previously described tests and two viral pathogens in a single PCR reaction.
Collapse
Affiliation(s)
- Franca Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy; (I.D.M.); (L.R.); (L.M.)
| | | | | | | |
Collapse
|
29
|
Cole-Osborn LF, McCallan SA, Prifti O, Abu R, Sjoelund V, Lee-Parsons CWT. The role of the Golden2-like (GLK) transcription factor in regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT CELL REPORTS 2024; 43:141. [PMID: 38743349 PMCID: PMC11093837 DOI: 10.1007/s00299-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.
Collapse
Affiliation(s)
- Lauren F Cole-Osborn
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Shannon A McCallan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Olga Prifti
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Rafay Abu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Virginie Sjoelund
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA.
| |
Collapse
|
30
|
Li G, Tan T, Chen L, Bao J, Han D, Yu F. Clinical Performance of Self-Collected Purified Water Gargle for Detection of Influenza a Virus Infection by Real-Time RT-PCR. Infect Drug Resist 2024; 17:1903-1910. [PMID: 38766678 PMCID: PMC11102144 DOI: 10.2147/idr.s450991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Self-collected specimens are increasingly being used as alternatives to swab-based methods for the detection of respiratory viruses. While saliva is well accepted, gargle specimens are a potential alternative with characteristics that are more favorable for laboratory handling. This study assessed the performance of gargle specimens in the detection of influenza A viruses (IAVs). Patients and Methods We performed a prospective head-to-head comparison between combined nasopharyngeal and oropharyngeal swabs (NPS&OPS) and purified water gargle (PWG) among adult outpatients with febrile respiratory symptoms to detect IAVs using real-time RT-PCR during two influenza seasons. Results During study periods 1 (July 13 to 26, 2022, H3N2 predominated) and 2 (February 25 to March 10, 2023, H1N1 pdm09 predominated), a total of 459 patients were recruited. The overall agreement between the NPS&OPS and PWG was 85.0% (390/459, κ = 0.697), with 88.0% in period 1 and 82.6% in period 2. The detection rate of IAVs in PWG (51.6%, 237/459) was lower than that in NPS&OPS (62.3%, 286/459) (p < 0.0001). The overall sensitivity and specificity were 96.6% (93.7-98.3%) and 100% (97.1-100%) in NPS&OPS and were 80.1% (75.0-84.4%) and 100% (97.1-100%) in PWG, respectively. Among the 227 pairs of concordant positive specimens, cycle threshold (Ct) values were significantly lower in NPS&OPS than in PWG (median Ct values: 24.2, 28.2, p < 0.0001). Conclusion Although self-collected PWG specimens offer acceptable performance for IAVs molecular testing, NPS&OPS remain a reliable option. Given the convenience of collection, nonviscous gargles are recommended for viral detection during emergencies or under specific conditions.
Collapse
Affiliation(s)
- Guiling Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Medicine Zhejiang University, Hangzhou, 310003, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hang-zhou, 310003, People’s Republic of China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Tianyang Tan
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, People’s Republic of China
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Clinical in vitro Diagnostic Techniques, Hangzhou, 310003, People’s Republic of China
| | - Luting Chen
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, People’s Republic of China
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Clinical in vitro Diagnostic Techniques, Hangzhou, 310003, People’s Republic of China
| | - Jiaqi Bao
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, People’s Republic of China
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Clinical in vitro Diagnostic Techniques, Hangzhou, 310003, People’s Republic of China
| | - Dongsheng Han
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, People’s Republic of China
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Clinical in vitro Diagnostic Techniques, Hangzhou, 310003, People’s Republic of China
| | - Fei Yu
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, People’s Republic of China
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Zhejiang Key Laboratory of Clinical in vitro Diagnostic Techniques, Hangzhou, 310003, People’s Republic of China
| |
Collapse
|
31
|
Newman T, Chang HFK, Jabbari H. DinoKnot: Duplex Interaction of Nucleic Acids With PseudoKnots. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:348-359. [PMID: 38345958 DOI: 10.1109/tcbb.2024.3362308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Interaction of nucleic acid molecules is essential for their functional roles in the cell and their applications in biotechnology. While simple duplex interactions have been studied before, the problem of efficiently predicting the minimum free energy structure of more complex interactions with possibly pseudoknotted structures remains a challenge. In this work, we introduce a novel and efficient algorithm for prediction of Duplex Interaction of Nucleic acids with pseudoKnots, DinoKnot follows the hierarchical folding hypothesis to predict the secondary structure of two interacting nucleic acid strands (both homo- and hetero-dimers). DinoKnot utilizes the structure of molecules before interaction as a guide to find their duplex structure allowing for possible base pair competitions. To showcase DinoKnots's capabilities we evaluated its predicted structures against (1) experimental results for SARS-CoV-2 genome and nine primer-probe sets, (2) a clinically verified example of a mutation affecting detection, and (3) a known nucleic acid interaction involving a pseudoknot. In addition, we compared our results against our closest competition, RNAcofold, further highlighting DinoKnot's strengths. We believe DinoKnot can be utilized for various applications including screening new variants for potential detection issues and supporting existing applications involving DNA/RNA interactions, adding structural considerations to the interaction to elicit functional information.
Collapse
|
32
|
Lovatto M, Vidigal Filho PS, Gonçalves-Vidigal MC, Vaz Bisneta M, Calvi AC, Gilio TAS, Nascimento EA, Melotto M. Alterations in Gene Expression during Incompatible Interaction between Amendoim Cavalo Common Bean and Colletotrichum lindemuthianum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1245. [PMID: 38732460 PMCID: PMC11085365 DOI: 10.3390/plants13091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 05/13/2024]
Abstract
Anthracnose, caused by the fungus Colletotrichum lindemuthianum, poses a significant and widespread threat to the common bean crop. The use of plant genetic resistance has proven to be the most effective strategy for managing anthracnose disease. The Amendoim Cavalo (AC) Andean cultivar has resistance against multiple races of C. lindemuthianum, which is conferred by the Co-AC gene. Fine mapping of this resistance gene to common bean chromosome Pv01 enabled the identification of Phvul.001G244300, Phvul.001G244400, and Phvul.001G244500 candidate genes for further validation. In this study, the relative expression of Co-AC candidate genes was assessed, as well as other putative genes in the vicinity of this locus and known resistance genes, in the AC cultivar following inoculation with the race 73 of C. lindemuthianum. Gene expression analysis revealed significantly higher expression levels of Phvul.001G244500. Notably, Phvul.001G244500 encodes a putative Basic Helix-Loop-Helix transcription factor, suggesting its involvement in the regulation of defense responses. Furthermore, a significant modulation of the expression of defense-related genes PR1a, PR1b, and PR2 was observed in a time-course experiment. These findings contribute to the development of improved strategies for breeding anthracnose-resistant common bean cultivars, thereby mitigating the impact of this pathogen on crop yields and ensuring sustainable bean production.
Collapse
Affiliation(s)
- Maike Lovatto
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | | | | | - Mariana Vaz Bisneta
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Alexandre Catto Calvi
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | | | - Eduardo A. Nascimento
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
33
|
Bu T, Wang L, Wu X, Gao S, Li X, Yun D, Yang X, Li L, Cheng CY, Sun F. The Planar Cell Polarity Protein Fat1 in Sertoli Cell Function. Endocrinology 2024; 165:bqae041. [PMID: 38553880 DOI: 10.1210/endocr/bqae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 04/30/2024]
Abstract
Fat (FAT atypical cadherin) and Dchs (Dachsous cadherin-related protein) in adjacent Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interfaces create an important intercellular bridge whose adhesive function is in turn supported by Fjx1, a nonreceptor Ser/Thr protein kinase. This concept is derived from earlier studies of Drosophila, which has been confirmed in this and earlier reports as well. Herein, we use the approach of knockdown of Fat1 by RNAi using primary cultures of Sertoli cells that mimicked the blood-testis barrier (BTB) in vivo, and a series of coherent experiments including functional assays to monitor the Sertoli cell tight junction (TJ) permeability barrier and a functional in vitro TJ integrity assay to assess the role of Fat1 in the testis. It was shown that planar cell polarity (PCP) protein Fat1 affected Sertoli cell function through its modulation of actin and microtubule cytoskeletal function, altering their polymerization activity through the Fat1/Fjx1 complex. Furthermore, Fat1 is intimately associated with β-catenin and α-N-catenin, as well as with Prickle 1 of the Vangl1/Prickle 1 complex, another PCP core protein to support intercellular interactions to confer PCP. In summary, these findings support the notion that the Fat:Dchs and the Vangl2:Fzd PCP intercellular bridges are tightly associated with basal ES/TJ structural proteins to stabilize PCP function at the Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interface to sustain spermatogenesis.
Collapse
Affiliation(s)
- Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Linxi Li
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuen Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
34
|
Sancha Dominguez L, Cotos Suárez A, Sánchez Ledesma M, Muñoz Bellido JL. Present and Future Applications of Digital PCR in Infectious Diseases Diagnosis. Diagnostics (Basel) 2024; 14:931. [PMID: 38732345 PMCID: PMC11083499 DOI: 10.3390/diagnostics14090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Infectious diseases account for about 3 million deaths per year. The advent of molecular techniques has led to an enormous improvement in their diagnosis, both in terms of sensitivity and specificity and in terms of the speed with which a clinically useful result can be obtained. Digital PCR, or 3rd generation PCR, is based on a series of technical modifications that result in more sensitive techniques, more resistant to the action of inhibitors and capable of direct quantification without the need for standard curves. This review presents the main applications that have been developed for the diagnosis of viral, bacterial, and parasitic infections and the potential prospects for the clinical use of this technology.
Collapse
Affiliation(s)
- Laura Sancha Dominguez
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (L.S.D.); (A.C.S.)
- Research Group IIMD-16, Institute for Biomedical Research of Salamanca (IBSAL), SACYL, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Ana Cotos Suárez
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (L.S.D.); (A.C.S.)
- Research Group IIMD-16, Institute for Biomedical Research of Salamanca (IBSAL), SACYL, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - María Sánchez Ledesma
- Infectious Diseases Unit, Hospital Universitario de Salamanca, 37007 Salamanca, Spain;
| | - Juan Luis Muñoz Bellido
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (L.S.D.); (A.C.S.)
- Research Group IIMD-16, Institute for Biomedical Research of Salamanca (IBSAL), SACYL, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biomedical and Diagnosis Sciences, Faculty of Medicine, Universidad de Salamanca, 37007 Salamanca, Spain
- Center for Research on Tropical Diseases, Universidad de Salamanca (CIETUS), 37007 Salamanca, Spain
| |
Collapse
|
35
|
Anitua E, Zalduendo M, Tierno R, Alkhraisat MH. Plasma Rich in Growth Factors in Bone Regeneration: The Proximity to the Clot as a Differential Factor in Osteoblast Cell Behaviour. Dent J (Basel) 2024; 12:122. [PMID: 38786520 PMCID: PMC11119057 DOI: 10.3390/dj12050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The osteogenic differentiation process, by which bone marrow mesenchymal stem cells and osteoprogenitors transform into osteoblasts, is regulated by several growth factors, cytokines, and hormones. Plasma Rich in Growth Factors (PRGF) is a blood-derived preparation consisting of a plethora of bioactive molecules, also susceptible to containing epigenetic factors such as ncRNAs and EVs, that stimulates tissue regeneration. The aim of this study was to investigate the effect of the PRGF clot formulation on osteogenic differentiation. Firstly, osteoblast cells were isolated and characterised. The proliferation of bone cells cultured onto PRGF clots or treated with PRGF supernatant was determined. Moreover, the gene expression of Runx2 (ID: 860), SP7 (ID: 121340), and ALPL (ID: 249) was analysed by one-step real-time quantitative polymerase chain reaction (RT-qPCR). Additionally, alkaline phosphatase (ALPL) activity determination was performed. The highest proliferative effect was achieved by the PRGF supernatant in all the study periods analysed. Concerning gene expression, the logRGE of Runx2 increased significantly in osteoblasts cultured with PRGF formulations compared with the control group, while that of SP7 increased significantly in osteoblasts grown on the PRGF clots. On the other hand, despite the fact that the PRGF supernatant induced ALPL up-regulation, significantly higher enzyme activity was detected for the PRGF clots in comparison with the supernatant formulation. According to our results, contact with the PRGF clot could promote a more advanced phase in the osteogenic process, associated to higher levels of ALPL activity. Furthermore, the PRGF clot releasate stimulated a higher proliferation rate in addition to reduced SP7 expression in the cells located at a distant ubication, leading to a less mature osteoblast stage. Thus, the spatial relationship between the PRGF clot and the osteoprogenitors cells could be a factor that influences regenerative outcomes.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Roberto Tierno
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| |
Collapse
|
36
|
Kamińska A, Lustofin S, Brzoskwinia M, Duliban M, Cyran-Gryboś J, Bilińska B, Hejmej A. Androgens and Notch signaling cooperate in seminiferous epithelium to regulate genes related to germ cell development and apoptosis. Reprod Biol 2024; 24:100878. [PMID: 38490111 DOI: 10.1016/j.repbio.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/17/2024]
Abstract
It was reported previously that in adult males disruption of both androgen and Notch signaling impairs spermatid development and germ cell survival in rodent seminiferous epithelium. To explain the molecular mechanisms of these effects, we focused on the interaction between Notch signaling and androgen receptor (AR) in Sertoli cells and investigate its role in the control of proteins involved in apical ectoplasmic specializations, actin remodeling during spermiogenesis, and induction of germ cell apoptosis. First, it was revealed that in rat testicular explants ex vivo both testosterone and Notch signaling modulate AR expression and cooperate in the regulation of spermiogenesis-related genes (Nectin2, Afdn, Arp2, Eps8) and apoptosis-related genes (Fasl, Fas, Bax, Bcl2). Further, altered expression of these genes was found following exposure of Sertoli cells (TM4 cell line) and germ cells (GC-2 cell line) to ligands for Notch receptors (Delta-like1, Delta-like4, and Jagged1) and/or Notch pathway inhibition. Finally, direct interactions of Notch effector, Hairy/enhancer-of-split related with YRPW motif protein 1, and the promoter of Ar gene or AR protein were revealed in TM4 Sertoli cells. In conclusion, Notch pathway activity in Sertoli and germ cells regulates genes related to germ cell development and apoptosis acting both directly and indirectly by influencing androgen signaling in Sertoli cells.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Sylwia Lustofin
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Michał Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Joanna Cyran-Gryboś
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
37
|
Mondal S, Mor A, Reddy IJ, Nandi S, Gupta PSP. Effect of heat exposure on prostaglandin production and expression of COX-2, PGES, PGFS, ITGAV and LGALS15 mRNAs in endometrial epithelial cells of buffalo (Bubalus bubalis). Mol Biol Rep 2024; 51:405. [PMID: 38457014 DOI: 10.1007/s11033-024-09361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Early embryonic mortality is one of the major intriguing factors of reproductive failure that causes considerable challenge to the mammalian cell biologists. Heat stress is the major factor responsible for reduced fertility in farm animals. The present study aimed to investigate the influence of heat stress on prostaglandin production and the expression of key genes, including COX-2, PGES, PGFS, ITGAV and LGALS15, in buffalo endometrial epithelial cells. METHODS AND RESULTS Buffalo genitalia containing ovaries with corpus luteum (CL) were collected immediately post-slaughter. The stages of the estrous cycle were determined based on macroscopic observations of the ovaries. Uterine lumens of the mid-luteal phase (days 6-10 of the estrous cycle) were washed and treated with trypsin to isolate epithelial cells, which were then cultured at control temperature (38.5 °C for 24 h) or exposed to elevated temperatures [38.5 °C for 6 h, 40.5 °C for 18 h; Heat Stressed (HS)]. The supernatant and endometrial epithelial cells were collected at various time points (0, 3, 6, 12, and 24 h) from both the control and treatment groups. Although heat stress (40.5 °C) significantly (P < 0.05) increased COX-2, PGES, and PGFS transcripts in epithelial cells but it did not affect the in vitro production of PGF2α and PGE2. The expression of ITGAV and LGALS15 mRNAs in endometrial epithelial cells remained unaltered under elevated temperature conditions. CONCLUSION It can be concluded that elevated temperature did not directly modulate prostaglandin production but, it promoted the expression of COX-2, PGES and PGFS mRNA in buffalo endometrial epithelial cells.
Collapse
Affiliation(s)
- S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, 560 030, India.
| | - A Mor
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, 560 030, India
| | - I J Reddy
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, 560 030, India
| | - S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, 560 030, India
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, 560 030, India
| |
Collapse
|
38
|
Lunghi E, Bilandžija H. Telomere length and dynamics in Astyanax mexicanus cave and surface morphs. PeerJ 2024; 12:e16957. [PMID: 38435987 PMCID: PMC10908260 DOI: 10.7717/peerj.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Background Telomeres are non-coding DNA repeats at the chromosome ends and their shortening is considered one of the major causes of aging. However, they also serve as a biomarker of environmental exposures and their length and attrition is affected by various stressors. In this study, we examined the average telomere length in Astyanax mexicanus, a species that has both surface-dwelling and cave-adapted populations. The cave morph descended from surface ancestors and adapted to a markedly different environment characterized by specific biotic and abiotic stressors, many of which are known to affect telomere length. Our objective was to explore whether telomere length differs between the two morphs and whether it serves as a biological marker of aging or correlates with the diverse environments the morphs are exposed to. Methods We compared telomere length and shortening between laboratory-reared Pachón cavefish and Rio Choy surface fish of A. mexicanus across different tissues and ages. Results Astyanax mexicanus surface fish exhibited longer average telomere length compared to cavefish. In addition, we did not observe telomere attrition in either cave or surface form as a result of aging in adults up to 9 years old, suggesting that efficient mechanisms prevent telomere-mediated senescence in laboratory stocks of this species, at least within this time frame. Our results suggest that telomere length in Astyanax may be considered a biomarker of environmental exposures. Cavefish may have evolved shorter and energetically less costly telomeres due to the absence of potential stressors known to affect surface species, such as predator pressure and ultra-violet radiation. This study provides the first insights into telomere dynamics in Astyanax morphs and suggests that shorter telomeres may have evolved as an adaptation to caves.
Collapse
Affiliation(s)
- Enrico Lunghi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Helena Bilandžija
- Division of Molecular Biology, Ruder Bošković Institute, Zagreb, Croatia
| |
Collapse
|
39
|
Wen X, Chen Y, Zhang S, Su AT, Huang D, Zhou G, Xie X, Wang J. Resistance to preservatives and the viable but non-culturable state formation of Asaia lannensis in flavored syrups. Front Microbiol 2024; 15:1345800. [PMID: 38435685 PMCID: PMC10904602 DOI: 10.3389/fmicb.2024.1345800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Food security is a crucial issue that has caused extensive concern, and the use of food flavors has become prevalent over time. we used the molecular biological techniques, preservative susceptibility testing, viable but non-culturable (VBNC) state induction testing, and a transcriptome analysis to examine the bacterial contamination of favored syrup and identify the causes and develop effective control measures. The results showed that Asaia lannensis WLS1-1 is a microorganism that can spoil food and is a member of the acetic acid bacteria families. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests showed that WLS1-1 was susceptible to potassium sorbate (PS), sodium benzoate (SB), and sodium sulffte (SS) at pH 4.0. It revealed a progressive increase in resistance to these preservatives at increasing pH values. WLS1-1 was resistant to PS, SB and SS with an MIC of 4.0, 2.0 and 0.5 g/L at pH 5.0, respectively. The MIC values exceed the maximum permissible concentrations that can be added. The induction test of the VBNC state demonstrated that WLS1-1 lost its ability to grow after 321 days of PS induction, 229 days of SB induction and 52 days of SS induction combined with low temperature at 4°C. Additionally, laser confocal microscopy and a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay showed that WLS1-1 was still alive after VBNC formation. There were 7.192 ± 0.081 (PS), 5.416 ± 0.149 (SB) and 2.837 ± 0.134 (SS) log10(CFU/mL) of viable bacteria. An analysis of the transcriptome data suggests that Asaia lannensis can enter the VBNC state by regulating oxidative stress and decreasing protein synthesis and metabolic activity in response to low temperature and preservatives. The relative resistance of Asaia lannensis to preservatives and the induction of the VBNC state by preservatives are the primary factors that contribute to the contamination of favored syrup by this bacterium. To our knowledge, this study represents the first evidence of the ability of Asaia lannensis to enter the VBNC state and provides a theoretical foundation for the control of organisms with similar types of activity.
Collapse
Affiliation(s)
- Xia Wen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuyao Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ai-ting Su
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Di Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
40
|
Marole TA, Sibanda T, Buys EM. Assessing probiotic viability in mixed species yogurt using a novel propidium monoazide (PMAxx)-quantitative PCR method. Front Microbiol 2024; 15:1325268. [PMID: 38389538 PMCID: PMC10882272 DOI: 10.3389/fmicb.2024.1325268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Viability is a prerequisite for any therapeutic benefits associated with the ingestion of probiotic bacteria. Current culture-based techniques are inadequate for the enumeration of probiotics in mixed-species food products. This study utilized a quantitative PCR (qPCR) method coupled with propidium monoazide (PMAxx), and novel species-specific tuf gene primers to selectively enumerate Lacticaseibacillus rhamnosus, Bifidobacterium spp., and yogurt starter cultures in mixed-species probiotic yogurt. The method was optimized for PMAxx concentration and specificity and evaluated for efficiency and applicability. PMAxx-qPCR showed high specificity to the target organisms in mixed-species yogurt, quantifying only viable cells. The linear dynamic ranges were established over five to seven orders of magnitude. The assay was reliable with an efficiency of 91-99%, R2 values > 0.99, and a good correlation to the plate count method (r = 0.882). The results of this study demonstrate the high selectivity, improved lead time, and reliability of PMAxx-qPCR over the culture-dependent method, making it a valuable tool for inline viability verification during processing and improving probiotic quality assurance for processors and consumers.
Collapse
Affiliation(s)
- Tlaleo A Marole
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
41
|
Hays A, Wissel M, Colletti K, Soon R, Azadeh M, Smith J, Doddareddy R, Chalfant M, Adamowicz W, Ramaswamy SS, Dholakiya SL, Guelman S, Gullick B, Durham J, Rennier K, Nagilla P, Muruganandham A, Diaz M, Tierney C, John K, Valentine J, Lockman T, Liu HY, Moritz B, Ouedraogo JP, Piche MS, Smet M, Murphy J, Koenig K, Zybura A, Vyhlidal C, Mercier J, Jani N, Kubista M, Birch D, Morse K, Johansson O. Recommendations for Method Development and Validation of qPCR and dPCR Assays in Support of Cell and Gene Therapy Drug Development. AAPS J 2024; 26:24. [PMID: 38316745 DOI: 10.1208/s12248-023-00880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
The emerging use of qPCR and dPCR in regulated bioanalysis and absence of regulatory guidance on assay validations for these platforms has resulted in discussions on lack of harmonization on assay design and appropriate acceptance criteria for these assays. Both qPCR and dPCR are extensively used to answer bioanalytical questions for novel modalities such as cell and gene therapies. Following cross-industry conversations on the lack of information and guidelines for these assays, an American Association of Pharmaceutical Scientists working group was formed to address these gaps by bringing together 37 industry experts from 24 organizations to discuss best practices to gain a better understanding in the industry and facilitate filings to health authorities. Herein, this team provides considerations on assay design, development, and validation testing for PCR assays that are used in cell and gene therapies including (1) biodistribution; (2) transgene expression; (3) viral shedding; (4) and persistence or cellular kinetics of cell therapies.
Collapse
Affiliation(s)
- Amanda Hays
- BioAgilytix Laboratories, Durham, North Carolina, USA.
| | - Mark Wissel
- Eurofins Viracor BioPharma Services, Inc., Lenexa, Kansas, USA
| | | | - Russell Soon
- BioMarin Pharmaceutical Inc., Novato, California, USA
| | - Mitra Azadeh
- Ultragenyx Pharmaceutical Inc., Novato, Calfornia, USA
| | | | | | | | - Wendy Adamowicz
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | | | | | | | - Bryan Gullick
- BioAgilytix Laboratories, Durham, North Carolina, USA
| | | | | | - Pruthvi Nagilla
- Asher Biotherapeutics, Inc., South San Francisco, California, USA
| | | | - Manisha Diaz
- Eurofins Viracor BioPharma Services, Inc., Lenexa, Kansas, USA
| | | | | | | | - Timothy Lockman
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | - Hsing-Yin Liu
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | | | | | | | - Jacqueline Murphy
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Kaylyn Koenig
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | - Agnes Zybura
- Labcorp Drug Development, Greenfield, Indiana, USA
| | - Carrie Vyhlidal
- KCAS Bioanalytical and Biomarker Services, Shawnee, Kansas, USA
| | | | - Niketa Jani
- BioAgilytix Laboratories, Boston, Massachusetts, USA
| | - Mikael Kubista
- Institute of Biotechnology Czech Academy of Sciences, Prague, Czech Republic
| | - Donald Birch
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | - Karlin Morse
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | | |
Collapse
|
42
|
Quijano Cardé EM, Anenson K, Waldbieser G, Brown CT, Griffin M, Henderson E, Yun S, Soto E. Acipenserid herpesvirus 2 genome and partial validation of a qPCR for its detection in white sturgeon Acipenser transmontanus. DISEASES OF AQUATIC ORGANISMS 2024; 157:45-59. [PMID: 38299849 DOI: 10.3354/dao03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
White sturgeon Acipenser transmontanus is the primary species used for caviar and sturgeon meat production in the USA. An important pathogen of white sturgeon is acipenserid herpesvirus 2 (AciHV-2). In this study, 4 archived isolates from temporally discrete natural outbreaks spanning the past 30 yr were sequenced via Illumina and Oxford Nanopore Technologies platforms. Assemblies of approximately 134 kb were obtained for each isolate, and the putative ATPase subunit of the terminase gene was selected as a potential quantitative PCR (qPCR) target based on sequence conservation among AciHV-2 isolates and low sequence homology with other important viral pathogens. The qPCR was repeatable and reproducible, with a linear dynamic range covering 5 orders of magnitude, an efficiency of approximately 96%, an R2 of 0.9872, and an analytical sensitivity of 103 copies per reaction after 35 cycles. There was no cross-reaction with other known viruses or closely related sturgeon species, and no inhibition by sturgeon DNA. Clinical accuracy was assessed from white sturgeon juveniles exposed to AciHV-2 by immersion. Viral culture (gold standard) and qPCR were in complete agreement for both cell culture negative and cell culture positive samples, indicating that this assay has 100% relative accuracy compared to cell culture during an active outbreak. The availability of a whole-genome sequence for AciHV-2 and a highly specific and sensitive qPCR assay for detection of AciHV-2 in white sturgeon lays a foundation for further studies on host-pathogen interactions while providing a specific and rapid test for AciHV-2 in captive and wild populations.
Collapse
Affiliation(s)
| | - Kelsey Anenson
- University of California-Davis, Davis, California 95616, USA
| | - Geoffrey Waldbieser
- United States Department of Agriculture - Agricultural Research Service, Stoneville, Mississippi 38776, USA
| | - C Titus Brown
- University of California-Davis, Davis, California 95616, USA
| | - Matt Griffin
- Mississippi State University, Stoneville, Mississippi 38776, USA
| | | | - Susan Yun
- University of California-Davis, Davis, California 95616, USA
| | - Esteban Soto
- University of California-Davis, Davis, California 95616, USA
| |
Collapse
|
43
|
Fu H, Fleitas MC, Sarkes A, Wang L, Yang Y, Zahr K, Harding MW, Feindel D, Kutcher R, Feng J. Detection and Differentiation of Xanthomonas translucens Pathovars translucens and undulosa from Wheat and Barley by Duplex Quantitative PCR. PLANT DISEASE 2024; 108:270-277. [PMID: 37669171 DOI: 10.1094/pdis-05-23-0887-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Two probe-based quantitative PCR (qPCR) systems, namely P-Xtt and P-Xtu, were developed to diagnose cereal bacterial leaf streak pathogens Xanthomonas translucens pv. translucens and pv. undulosa, respectively. P-Xtt is specific to pv. translucens, and P-Xtu is specific to pv. undulosa, pv. cerealis, pv. secalis, and pv. pistaciae. P-Xtt and P-Xtu worked on all accessible strains of pv. translucens and pv. undulosa, respectively. Both systems could detect 100 copies of the target gBlock DNA. The two systems could be used in both singleplex qPCR and duplex qPCR with similar efficiencies. On genomic DNA from strains of various X. translucens pathovars, both singleplex and duplex qPCR could specifically detect and differentiate pv. translucens and pv. undulosa. The duplex qPCR could detect pv. translucens and pv. undulosa from genomic DNA of 1,000 bacterial cells. On infected barley and wheat grain samples and on one infected wheat leaf sample, the duplex qPCR showed similar efficiency compared to a previously published qPCR system but with the additional capability of pathovar differentiation. The duplex qPCR system developed in this study will be useful in studies on bacterial leaf streak and detection/differentiation of the pathogens.
Collapse
Affiliation(s)
- Heting Fu
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | | | - Alian Sarkes
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | - Lipu Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Yalong Yang
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | - Kher Zahr
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | | | - David Feindel
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | - Randy Kutcher
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Jie Feng
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| |
Collapse
|
44
|
Gamal M, Ibrahim MA. Introducing the f 0% method: a reliable and accurate approach for qPCR analysis. BMC Bioinformatics 2024; 25:17. [PMID: 38212692 PMCID: PMC10782791 DOI: 10.1186/s12859-024-05630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND qPCR is a widely used technique in scientific research as a basic tool in gene expression analysis. Classically, the quantitative endpoint of qPCR is the threshold cycle (CT) that ignores differences in amplification efficiency among many other drawbacks. While other methods have been developed to analyze qPCR results, none has statistically proven to perform better than the CT method. Therefore, we aimed to develop a new qPCR analysis method that overcomes the limitations of the CT method. Our f0% [eff naught percent] method depends on a modified flexible sigmoid function to fit the amplification curve with a linear part to subtract the background noise. Then, the initial fluorescence is estimated and reported as a percentage of the predicted maximum fluorescence (f0%). RESULTS The performance of the new f0% method was compared against the CT method along with another two outstanding methods-LinRegPCR and Cy0. The comparison regarded absolute and relative quantifications and used 20 dilution curves obtained from 7 different datasets that utilize different DNA-binding dyes. In the case of absolute quantification, f0% reduced CV%, variance, and absolute relative error by 1.66, 2.78, and 1.8 folds relative to CT; and by 1.65, 2.61, and 1.71 folds relative to LinRegPCR, respectively. While, regarding relative quantification, f0% reduced CV% by 1.76, 1.55, and 1.25 folds and variance by 3.13, 2.31, and 1.57 folds regarding CT, LinRegPCR, and Cy0, respectively. Finally, f0% reduced the absolute relative error caused by LinRegPCR by 1.83 folds. CONCLUSIONS We recommend using the f0% method to analyze and report qPCR results based on its reported advantages. Finally, to simplify the usage of the f0% method, it was implemented in a macro-enabled Excel file with a user manual located on https://github.com/Mahmoud0Gamal/F0-perc/releases .
Collapse
Affiliation(s)
- Mahmoud Gamal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
45
|
Somé BM, Guissou E, Da DF, Richard Q, Choisy M, Yameogo KB, Hien DF, Yerbanga RS, Ouedraogo GA, Dabiré KR, Djidjou-Demasse R, Cohuet A, Lefèvre T. Mosquito ageing modulates the development, virulence and transmission potential of pathogens. Proc Biol Sci 2024; 291:20232097. [PMID: 38166422 PMCID: PMC10762442 DOI: 10.1098/rspb.2023.2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/04/2024] Open
Abstract
Host age variation is a striking source of heterogeneity that can shape the evolution and transmission dynamic of pathogens. Compared with vertebrate systems, our understanding of the impact of host age on invertebrate-pathogen interactions remains limited. We examined the influence of mosquito age on key life-history traits driving human malaria transmission. Females of Anopheles coluzzii, a major malaria vector, belonging to three age classes (4-, 8- and 12-day-old), were experimentally infected with Plasmodium falciparum field isolates. Our findings revealed reduced competence in 12-day-old mosquitoes, characterized by lower oocyst/sporozoite rates and intensities compared with younger mosquitoes. Despite shorter median longevities in older age classes, infected 12-day-old mosquitoes exhibited improved survival, suggesting that the infection might act as a fountain of youth for older mosquitoes specifically. The timing of sporozoite appearance in the salivary glands remained consistent across mosquito age classes, with an extrinsic incubation period of approximately 13 days. Integrating these results into an epidemiological model revealed a lower vectorial capacity for older mosquitoes compared with younger ones, albeit still substantial owing to extended longevity in the presence of infection. Considering age heterogeneity provides valuable insights for ecological and epidemiological studies, informing targeted control strategies to mitigate pathogen transmission.
Collapse
Affiliation(s)
- Bernard M. Somé
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Edwige Guissou
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
- Ecole Normale Supérieure, BP 376 Koudougou, Burkina Faso
| | - Dari F. Da
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
| | - Quentin Richard
- IMAG, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Marc Choisy
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 700000, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Koudraogo B. Yameogo
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Domombabele FdS. Hien
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswende S. Yerbanga
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Georges A. Ouedraogo
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Kounbobr R. Dabiré
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| | - Thierry Lefèvre
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| |
Collapse
|
46
|
Kovács M, Wojnárovits L, Homlok R, Tegze A, Mohácsi-Farkas C, Takács E, Belák Á. Changes in the behavior of Staphylococcus aureus strains in the presence of oxacillin under the effect of gamma radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122843. [PMID: 37918768 DOI: 10.1016/j.envpol.2023.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Staphylococcus aureus (S. aureus) as a major pathogen is implicated in a wide range of foodborne and hospital-acquired infections, its methicillin resistant variants contribute to the spread of β-lactam antibiotic resistance. It is essentially important to destroy these pathogens, their resistance genes and the antibiotics in wastewaters. For this purpose reactions of reactive radicals (advanced oxidation processes), first of all hydroxyl radicals (•OH), are suggested. Here the radiolysis of water supplied these radicals. In the experiments B.01755 oxacillin sensitive and B.02174 resistant S. aureus strains were used to study their behaviorr in suspensions under the effect of irradiation in presence and absence of oxacillin. Oxacillin inactivation depended on concentration of the antibiotic used (0.042 and 1 g dm-3), higher concentration required a higher dose. When 106-109 CFU cm-3 S. aureus suspensions were irradiated with γ-radiation the bacteria were inactivated at low absorbed doses: 4 orders of magnitude decrease ocurred in the number of culturable cells at ∼0.6 kGy dose. Both cell membrane and DNA suffered considerable damages during irradiation. Due to the membrane damage the cells could not be stained, and the DNA content of cells in several days period was released into the solution. In DNA damage the oxacillin resistance mecA gene was also modified, it did not multiply in PCR test. These findings are important from the point of view of applying irradiation technology to stop the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Mónika Kovács
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary.
| | - László Wojnárovits
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Renáta Homlok
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Anna Tegze
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary.
| | - Erzsébet Takács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121, Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Budapest, Somlói út 14-16, Hungary.
| |
Collapse
|
47
|
Armenta-Leyva B, Munguía-Ramírez B, Cheng TY, Ye F, Henao-Díaz A, Giménez-Lirola LG, Zimmerman J. Normalizing real-time PCR results in routine testing. J Vet Diagn Invest 2024; 36:78-85. [PMID: 37919959 PMCID: PMC10734596 DOI: 10.1177/10406387231206080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Normalization, the process of controlling for normal variation in sampling and testing, can be achieved in real-time PCR assays by converting sample quantification cycles (Cqs) to "efficiency standardized Cqs" (ECqs). We calculated ECqs as E-ΔCq, where E is amplification efficiency and ΔCq is the difference between sample and reference standard Cqs. To apply this approach to a commercial porcine reproductive and respiratory syndrome virus (PRRSV) RT-qPCR assay, we created reference standards by rehydrating and then diluting (1 × 10-4) a PRRSV modified-live vaccine (PRRS MLV; Ingelvac) with serum or oral fluid (OF) to match the sample matrix to be tested. Sample ECqs were calculated using the mean E and reference standard Cq calculated from the 4 reference standards on each plate. Serum (n = 132) and OF (n = 130) samples were collected from each of 12 pigs vaccinated with a PRRSV MLV from -7 to 42 d post-vaccination, tested, and sample Cqs converted to ECqs. Mean plate Es were 1.75-2.6 for serum and 1.7-2.3 for OF. Mean plate reference standard Cqs were 29.1-31.3 for serum and 29.2-31.5 for OFs. Receiver operating characteristic analysis calculated the area under the curve for serum and OF sample ECqs as 0.999 (95% CI: 0.997, 1.000) and 0.947 (0.890, 1.000), respectively. For serum, diagnostic sensitivity and specificity of the commercial PRRSV RT-qPCR assay were estimated as 97.9% and 100% at an ECq cutoff ≥ 0.20, and for OF, 82.6% and 100%, respectively, at an ECq cutoff ≥ 0.45.
Collapse
Affiliation(s)
- Betsy Armenta-Leyva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| | - Berenice Munguía-Ramírez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, OH, USA
| | - Fangshu Ye
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | | | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| |
Collapse
|
48
|
Barido FH, Desti D, Pramono A, Abdurrahman ZH, Volkandari SD, Cahyadi M. Validating duplex-PCR targeting ND2 for bovine and porcine detection in meat products. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100181. [PMID: 37637373 PMCID: PMC10457504 DOI: 10.1016/j.fochms.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Food authentication is a mandatory effort to assure the fair-trade. This study developed a duplex polymerase chain reaction (PCR) from the NADH dehydrogenase subunit 2 (ND2) gene to amplify specific segments of a cattle and porcine DNA. A universal forward primer composed of nineteen base pairs (bp) (3'-CCAAACACAACTCCGAAAA-5') and species-specific reverse primers composed of twenty (3'-CCAAACACAACTCCGAAAA-5') and twenty-one (3'-TGGCAAGAATTAGGACGGTTA-5') bp were used to limit the amplified DNA segment for porcine and cattle. The PCR reaction would generate a product with a profile of 168 and 227 bp, respectively. To investigate the accuracy and limit of detection, an in vitro experiment was conducted using simplex and duplex PCR on commercial meatballs randomly purchased from a commercial market in Surakarta, Indonesia. The findings of this study indicated that ND2 could be used as an alternative genetic marker for the identification of porcine and beef species in meat-derived products.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126, Indonesia
- Halal Research Center and Services (HRCS), Institute for Research and Community Service, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126, Indonesia
| | - Desti Desti
- Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126, Indonesia
| | - Ahmad Pramono
- Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126, Indonesia
| | | | - Slamet Diah Volkandari
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Gunung Kidul, Daerah Istimewa, Yogyakarta 55861, Indonesia
| | - Muhammad Cahyadi
- Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126, Indonesia
- Halal Research Center and Services (HRCS), Institute for Research and Community Service, Universitas Sebelas Maret, Surakarta, Jawa Tengah 57126, Indonesia
| |
Collapse
|
49
|
Ding J, Xu X, Deng Y, Zheng X, Zhang T. Circulation of SARS-CoV-2 Omicron sub-lineages revealed by multiplex genotyping RT-qPCR assays for sewage surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166300. [PMID: 37591390 DOI: 10.1016/j.scitotenv.2023.166300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Sewage surveillance has proven to be an essential complementary tool to clinical diagnosis in combating the COVID-19 pandemic by tracking the spread of the SARS-CoV-2 virus and evaluating infection levels in populations. With the striking spreading and continuous evolution of SARS-CoV-2 Omicron VOC that characterized with higher transmissibility and potential immune evasion, there is an urgent need for the rapid surveillance of this prevalent strain and its sub-lineages in sewage. In this study, based on three multiplex allele-specific (AS) RT-qPCR assays, we established a rapid and high-throughput detection workflow for the simultaneous discrimination of Omicron sub-lineages BA.2.2, BA.2.12.1, BA.4 and BA.5 (hereafter referred to as BA.4/BA.5) to track their community circulation in Hong Kong. All primer-probe sets in the multiplex assays could correctly discriminate and quantitate their target genotypes with high sensitivity and specificity, even when multiple variants co-existed in the sewage samples. Using the established multiplex assays, the trends of SARS-CoV-2 total viral load and variant dynamics in influent samples collected from 11 wastewater treatment plants (WWTPs) during June 2022 and September 2022, aligned with the clinical data, successfully unveiling the swift emergence and predominance of Omicron BA.4/BA.5 in Hong Kong. The study highlights the feasibility and applicability of multiplex RT-qPCR assays for monitoring epidemic trends and tracking variant displacement dynamics in sewage samples, providing a more rapid, high-throughput and cost-effective alternative to enhance the current sewage surveillance system.
Collapse
Affiliation(s)
- Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
50
|
Avalos JG, Piotrowski ER, Northey AD, Crocker DE, Khudyakov JI. Intracellular negative feedback mechanisms in blubber and muscle moderate acute stress responses in fasting seals. J Exp Biol 2023; 226:jeb246694. [PMID: 38009222 DOI: 10.1242/jeb.246694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Animals may limit the cost of stress responses during key life history stages such as breeding and molting by reducing tissue sensitivity to energy-mobilizing stress hormones (e.g. cortisol). We measured expression of genes encoding glucocorticoid receptor (GR, NR3C1), GR inhibitor (FKBP5) and cortisol-inactivating enzyme (HSD11B2) in blubber and muscle of northern elephant seals before and after stress axis stimulation by adrenocorticotropic hormone (ACTH) early and late in a fasting period associated with molting. ACTH elevated cortisol levels for >24 h and increased FKBP5 and HSD11B2 expression while downregulating NR3C1 expression in blubber and muscle, suggesting robust intracellular negative feedback in peripheral tissues. This feedback was maintained over prolonged fasting, despite differences in baseline cortisol and gene expression levels between early and late molt, suggesting that fasting-adapted animals use multiple tissue-specific, intracellular negative feedback mechanisms to modulate downstream impacts of acute stress responses during key life history stages.
Collapse
Affiliation(s)
- Jessica G Avalos
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | - Allison D Northey
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|