1
|
Myeloma Microenvironmental TIMP1 Induces the Invasive Phenotype in Fibroblasts to Modulate Disease Progression. Int J Mol Sci 2023; 24:ijms24032216. [PMID: 36768545 PMCID: PMC9917104 DOI: 10.3390/ijms24032216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are endogenous matrix metalloproteinase inhibitors. TIMP1 is produced by cancer cells and has pleiotropic activities. However, its role and source in multiple myeloma (MM) are unclear. Here, we evaluated TIMP1 protein and mRNA levels in bone marrow (BM) plasma cells and assessed the effects of TIMP1 expression on fibroblast invasive capacity using three-dimensional spheroid cell invasion assays. TIMP1 mRNA and protein levels were elevated when patients progressed from monoclonal gammopathy of undetermined significance or smouldering myeloma to MM. Furthermore, TIMP1 levels decreased at complete response and TIMP1 protein levels increased with higher international staging. TIMP1 mRNA levels were markedly higher in extramedullary plasmacytoma and MM with t(4;14). Overall survival and post-progression survival were significantly lower in MM patients with high TIMP1 protein. Recombinant TIMP1 did not directly affect MM cells but enhanced the invasive capacity of fibroblasts; this effect was suppressed by treatment with anti-TIMP1 antibodies. Fibroblasts supported myeloma cell invasion and expansion in extracellular matrix. Overall, these results suggested that MM-derived TIMP1 induces the invasive phenotype in fibroblasts and is involved in disease progression. Further studies are required to elucidate the specific roles of TIMP1 in MM and facilitate the development of novel therapies targeting the TIMP1 pathway.
Collapse
|
2
|
Melaccio A, Reale A, Saltarella I, Desantis V, Lamanuzzi A, Cicco S, Frassanito MA, Vacca A, Ria R. Pathways of Angiogenic and Inflammatory Cytokines in Multiple Myeloma: Role in Plasma Cell Clonal Expansion and Drug Resistance. J Clin Med 2022; 11:jcm11216491. [PMID: 36362718 PMCID: PMC9658666 DOI: 10.3390/jcm11216491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, and despite the introduction of innovative therapies, remains an incurable disease. Identifying early and minimally or non-invasive biomarkers for predicting clinical outcomes and therapeutic responses is an active field of investigation. Malignant plasma cells (PCs) reside in the bone marrow (BM) microenvironment (BMME) which comprises cells (e.g., tumour, immune, stromal cells), components of the extracellular matrix (ECM) and vesicular and non-vesicular (soluble) molecules, all factors that support PCs’ survival and proliferation. The interaction between PCs and BM stromal cells (BMSCs), a hallmark of MM progression, is based not only on intercellular interactions but also on autocrine and paracrine circuits mediated by soluble or vesicular components. In fact, PCs and BMSCs secrete various cytokines, including angiogenic cytokines, essential for the formation of specialized niches called “osteoblastic and vascular niches”, thus supporting neovascularization and bone disease, vital processes that modulate the pathophysiological PCs–BMME interactions, and ultimately promoting disease progression. Here, we aim to discuss the roles of cytokines and growth factors in pathogenetic pathways in MM and as prognostic and predictive biomarkers. We also discuss the potential of targeted drugs that simultaneously block PCs’ proliferation and survival, PCs–BMSCs interactions and BMSCs activity, which may represent the future goal of MM therapy.
Collapse
Affiliation(s)
- Assunta Melaccio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.M.); (R.R.); Tel.: +39-320-55-17-232 (A.M.)
| | - Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne 3004, Australia
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Maria Antonia Frassanito
- General Pathology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.M.); (R.R.); Tel.: +39-320-55-17-232 (A.M.)
| |
Collapse
|
3
|
Suzuki R, Kitamura Y, Ogiya D, Ogawa Y, Kawada H, Ando K. Anti-tumor activity of the pan-RAF inhibitor TAK-580 in combination with KPT-330 (selinexor) in multiple myeloma. Int J Hematol 2021; 115:233-243. [PMID: 34741230 DOI: 10.1007/s12185-021-03244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
RAS/RAF/MEK/ERK pathway inhibitors exhibit significant anti-tumor effects against various tumor types, including multiple myeloma (MM), and they are predicted to play a pivotal role in precision medicine. The XPO1 inhibitor KPT-330 has also exhibited promising efficacy in combination with other novel drugs in treating relapsed/refractory MM (RRMM). In this study, we explored the anti-tumor effects of a combination of the pan-RAF inhibitor TAK-580 and KPT-330. Importantly, TAK-580 enhanced KPT-330-induced cytotoxicity and apoptosis in human myeloma cell lines and primary myeloma cells from RRMM patients. Moreover, TAK-580 and KPT-330 synergistically inhibited nuclear phospho-FOXO3a and enhanced cytoplasmic phospho-FOXO3a in MM cells, leading to cytoplasmic enhanced Bim expression and finally apoptosis. This indicates that TAK-580 enhances KPT-330-induced cytotoxicity and apoptosis primarily via the FOXO3a-Bim axis. In addition, TAK-580 enhanced the cytotoxicity of KPT-330 against MM cells even in the presence of IGF-1. Taken together, our results demonstrate that a combination of pan-RAF inhibitor and XPO1 inhibitor is a potential therapeutic option in treating MM.
Collapse
Affiliation(s)
- Rikio Suzuki
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Yuka Kitamura
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Daisuke Ogiya
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yoshiaki Ogawa
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Kawada
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
4
|
Signaling Pathway Mediating Myeloma Cell Growth and Survival. Cancers (Basel) 2021; 13:cancers13020216. [PMID: 33435632 PMCID: PMC7827005 DOI: 10.3390/cancers13020216] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The bone marrow (BM) microenvironment plays a crucial role in pathogenesis of multiple myeloma (MM), and delineation of the intracellular signaling pathways activated in the BM microenvironment in MM cells is essential to develop novel therapeutic strategies to improve patient outcome. Abstract The multiple myeloma (MM) bone marrow (BM) microenvironment consists of different types of accessory cells. Both soluble factors (i.e., cytokines) secreted from these cells and adhesion of MM cells to these cells play crucial roles in activation of intracellular signaling pathways mediating MM cell growth, survival, migration, and drug resistance. Importantly, there is crosstalk between the signaling pathways, increasing the complexity of signal transduction networks in MM cells in the BM microenvironment, highlighting the requirement for combination treatment strategies to blocking multiple signaling pathways.
Collapse
|
5
|
Zigman-Hoffman E, Sredni B, Meilik B, Naparstek E, Tartakovsky B. Tellurium compound provides pro-apoptotic signaling in drug resistant multiple myeloma. Leuk Lymphoma 2020; 62:1146-1156. [PMID: 33334225 DOI: 10.1080/10428194.2020.1858292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Multiple Myeloma, effectively treated by chemotherapeutic drugs, relapses due to drug resistance. We tested here the capacity of mesenchymal stromal cells, from the bone marrow of patients or from adipose tissue of healthy individuals, to induce drug resistance in Myeloma cell lines. We show that drug resistance can be achieved by factors secreted by the various MSC's. Mass spectrometry analysis of MSC's conditioned media revealed that fibronectin, was particularly instrumental in providing anti-apoptotic signals to MM cells. Moreover, we demonstrate that SAS ([octa-O-bis-(R,R)tartarate ditellurane]), an immunomodulator Tellurium compound, is not only able of blocking the physical interaction between MM cells and fibronectin but is also capable of re-sensitizing the cells to the chemotherapeutic drugs. Finally, we show that this re-sensitization is coupled with the blocking of pAKT induction, in MM cells, by the MSC's. These results indicate that SAS may be useful in the treatment of drug resistant MM.
Collapse
Affiliation(s)
- Eti Zigman-Hoffman
- Bar Ilan University Mina and Everard Goodman Faculty of Life Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| | - Benjamin Sredni
- Bar Ilan University Mina and Everard Goodman Faculty of Life Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Benjamin Meilik
- Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ella Naparstek
- Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| | - Boris Tartakovsky
- Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| |
Collapse
|
6
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
7
|
Gaudio A, Xourafa A, Rapisarda R, Zanoli L, Signorelli SS, Castellino P. Hematological Diseases and Osteoporosis. Int J Mol Sci 2020; 21:ijms21103538. [PMID: 32429497 PMCID: PMC7279036 DOI: 10.3390/ijms21103538] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
Secondary osteoporosis is a common clinical problem faced by bone specialists, with a higher frequency in men than in women. One of several causes of secondary osteoporosis is hematological disease. There are numerous hematological diseases that can have a deleterious impact on bone health. In the literature, there is an abundance of evidence of bone involvement in patients affected by multiple myeloma, systemic mastocytosis, thalassemia, and hemophilia; some skeletal disorders are also reported in sickle cell disease. Recently, monoclonal gammopathy of undetermined significance appears to increase fracture risk, predominantly in male subjects. The pathogenetic mechanisms responsible for these bone loss effects have not yet been completely clarified. Many soluble factors, in particular cytokines that regulate bone metabolism, appear to play an important role. An integrated approach to these hematological diseases, with the help of a bone specialist, could reduce the bone fracture rate and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Agostino Gaudio
- Correspondence: ; Tel.: +39-095-3781842; Fax: +39-095-378-2376
| | | | | | | | | | | |
Collapse
|
8
|
Chen XY, Sun RX, Zhang WY, Liu T, Zheng YH, Wu Y. [Molecular mechanisms and relationship of M2-polarized macrophages with early response in multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 38:480-486. [PMID: 28655090 PMCID: PMC7342963 DOI: 10.3760/cma.j.issn.0253-2727.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
目的 探讨替代活化型巨噬细胞(M2 MΦ)和多发性骨髓瘤(MM)早期治疗反应的关系及其在发病机制中的可能作用。 方法 采用免疫组化法标记240例MM患者骨髓标本中的MΦ;建立体外M2 MΦ诱导培养体系,构建Transwell共培养模型与RPMI 8226和U266细胞共培养,CCK-8法检测M2 MΦ对细胞增殖的影响,流式细胞术检测对地塞米松(1 µ mol/L)诱导骨髓瘤细胞凋亡的影响,ELISA法检测对TNF-α和IL-6表达的影响,real time PCR法检测对趋化因子、血管内皮生长因子(VEGF)及其受体表达的影响。 结果 ①依据骨髓组织M2 MΦ浸润程度将患者分为高浸润组(92例)和低浸润组(148例),高浸润组患者早期治疗有效率明显低于低浸润组,差异有统计学意义(23.9%对73.0%,χ2=60.31,P<0.001)。②培养24、36 h,共培养组细胞增殖能力较对照组显著上升:M2 MΦ+RPMI 8226细胞组与对照组比较,P值分别为0.005、0.020;M2 MΦ+U266细胞与对照组比较,P值分别为0.030、0.020。③地塞米松诱导后,共培养组与对照组比较,RPMI 8226细胞凋亡率下降(29.0%对71.0%,t=4.97,P=0.008),U266细胞凋亡率也下降(24.9%对67.7%,t=6.99,P=0.002)。④共培养48 h后,与对照组比较,加入M2 MΦ后可促进RPMI 8226和U266细胞分泌IL-6、TNF-α,促进表达CCL2、CCL3、CCR2、CCR5、VEGFA、VEGFR-1和VEGFR-2。 结论 MM患者骨髓组织M2 MΦ浸润程度和早期治疗反应相关。M2 MΦ通过促进骨髓瘤细胞分泌系列炎症因子、趋化因子和相关受体的表达,从而促进骨髓瘤细胞增殖以及保护骨髓瘤细胞免于凋亡。
Collapse
Affiliation(s)
- X Y Chen
- Department of Hematology and Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Bone disease is a defining characteristic of multiple myeloma (MM) and the major cause of morbidity. It manifests as lytic lesions or osteopenia and is often associated with severe pain, pathological fracture, spinal cord compression, vertebral collapse, and hypercalcemia. Here, we have reviewed recent data on understanding its biology and treatment. RECENT FINDINGS The imbalance between bone regeneration and bone resorption underlies the pathogenesis of osteolytic bone disease. Increased osteoclast proliferation and activity accompanied by inhibition of bone-forming osteoblasts leads to progressive bone loss and lytic lesions. Although tremendous progress has been made, MM remains an incurable disease. Novel agents targeting bone disease are under investigation with the goal of not only preventing bone loss and improving bone quality but also harnessing MM tumor growth. Current data illustrate that the interactions between MM cells and the tumor-bone microenvironment contribute to the bone disease and continued MM progression. A better understanding of this microenvironment is critical for novel therapeutic treatments of both MM and associated bone disease.
Collapse
Affiliation(s)
- Cristina Panaroni
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew J Yee
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Noopur S Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Bai SP, Huang Y, Luo YH, Wang LL, Ding XM, Wang JP, Zeng QF, Zhang KY. Effect of dietary nonphytate phosphorus content on ileal lymphocyte subpopulations and cytokine expression in the cecal tonsils and spleen of laying hens that were or were not orally inoculated withSalmonellaTyphimurium. Am J Vet Res 2015. [DOI: 10.2460/ajvr.76.8.710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Abstract
In patients with multiple myeloma (MM), the bone marrow (BM) contains hematopoietic stem cells (HSCs) and non-hematopoietic cells. HSCs are able to give rise to all types of mature blood cells, while the non hematopoietic component includes mesenchymal stem cells (MSCs), fibroblasts, osteoblasts, osteoclasts, chondroclasts, endothelial cells, endothelial progenitor cells (EPCs), B and T lymphocytes, NK cells, erythrocytes, megakaryocytes, platelets, macrophages and mast cells. All of these cells form specialized "niches" in the BM microenvironment which are close to the vasculature ("vascular niche") or to the endosteum ("osteoblast niche"). The "vascular niche" is rich in blood vessels where endothelial cells and mural cells (pericytes and smooth muscle cells) create a microenvironment that affects the behavior of several stem and progenitor cells. The vessel wall serves as an independent niche for the recruitment of endothelial progenitor cells, MSCs and HSCs. The activation by angiogenic factors and inflammatory cytokines switch the "vascular niche" to promote MM tumor growth and spread. This review will focus on the mechanisms involved in the generation of signals released by endothelial cells in the "vascular niche" that promote tumor growth and spread in MM.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy, National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| | - Michele Moschetta
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
12
|
Siveen KS, Mustafa N, Li F, Kannaiyan R, Ahn KS, Kumar AP, Chng WJ, Sethi G. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget 2015; 5:634-48. [PMID: 24504138 PMCID: PMC3996662 DOI: 10.18632/oncotarget.1596] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow. With the advent of novel targeted agents, the median survival rate has increased to 5−7 years. However, majority of patients with myeloma suffer relapse or develop chemoresistance to existing therapeutic agents. Thus, there is a need to develop novel alternative therapies for the treatment of MM. Thus in the present study, we investigated whether thymoquinone (TQ), a bioactive constituent of black seed oil, could suppress the proliferation and induce chemosensitization in human myeloma cells and xenograft mouse model. Our results show that TQ inhibited the proliferation of MM cells irrespective of their sensitivity to doxorubicin, melphalan or bortezomib. Interestingly, TQ treatment also resulted in a significant inhibition in the proliferation of CD138+ cells isolated from MM patient samples in a concentration dependent manner. TQ also potentiated the apoptotic effects of bortezomib in various MM cell lines through the activation of caspase-3, resulting in the cleavage of PARP. TQ treatment also inhibited chemotaxis and invasion induced by CXCL12 in MM cells. Furthermore, in a xenograft mouse model, TQ potentiated the antitumor effects of bortezomib (p < 0.05, vehicle versus bortezomib + TQ; p < 0.05, bortezomib versus bortezomib + TQ), and this correlated with modulation of various markers for survival and angiogenesis, such as Ki-67, vascular endothelial growth factor (VEGF), Bcl-2 and p65 expression. Overall, our results demonstrate that TQ can enhance the anticancer activity of bortezomib in vitro and in vivo and may have a substantial potential in the treatment of MM.
Collapse
|
13
|
Immunological dysregulation in multiple myeloma microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:198539. [PMID: 25013764 PMCID: PMC4071780 DOI: 10.1155/2014/198539] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/20/2014] [Indexed: 12/22/2022]
Abstract
Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target.
Collapse
|
14
|
Chronic inflammation enhances NGF-β/TrkA system expression via EGFR/MEK/ERK pathway activation in Sjögren’s syndrome. J Mol Med (Berl) 2014; 92:523-37. [DOI: 10.1007/s00109-014-1130-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
15
|
Safety assessment of myogenic stem cell transplantation and resulting tumor formation. Female Pelvic Med Reconstr Surg 2013; 19:362-8. [PMID: 24165451 DOI: 10.1097/spv.0000000000000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To assess for stem cell migration to liver and lung after transplantation in injured rat anal sphincters. To evaluate histological findings of unanticipated ectopic foci of growth. METHODS This is a prospective study involving 33 female virginal Sprague-Dawley rats. Anal sphincters were transected and repaired under sterile technique. Animals received injections of 5.0 × 10 myogenic stem cells (24 rats) or sham control (9 rats) and were killed on day 30. Liver and lung samples were obtained. Upon encountering abnormal foci of growth, further staining protocols were employed. Enzyme-linked immunosorbent assay studies evaluated stem cell media for in vitro growth factor secretion. RESULTS No evidence of cell migration to liver or lung was found at the time of euthanasia in any study animal. Ectopic foci of growth were noted in 2 transplant rats. Further histological evaluations of these growths were consistent with benign tumors: no nuclear abnormalities and no evidence of proliferation at day 30. Enzyme-linked immunosorbent assay studies demonstrated positive secretion of vascular endothelial growth factor and insulin growth factor into the media of cultured rat myogenic stem cells. CONCLUSIONS Whereas distant migration was not encountered in the liver or lung, 2 transplanted rats developed abnormal foci of growth, that is, tumors, from the external anal sphincter-raising further safety questions. Additional evaluation of these foci seemed benign. Possible explanations include cell trapping, stem cell overgrowth, and/or paracrine factors. The lack of cell migration supports that future investigation of safety parameters could focus locally.
Collapse
|
16
|
Phillip CJ, Zaman S, Shentu S, Balakrishnan K, Zhang J, Baladandayuthapani V, Taverna P, Redkar S, Wang M, Stellrecht CM, Gandhi V. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines. J Hematol Oncol 2013; 6:92. [PMID: 24326130 PMCID: PMC3878866 DOI: 10.1186/1756-8722-6-92] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MET is a receptor tyrosine kinase that is activated by the ligand HGF and this pathway promotes cell survival, migration, and motility. In accordance with its oncogenic role, MET is constitutively active, mutated, or over-expressed in many cancers. Corollary to its impact, inhibition of MET kinase activity causes reduction of the downstream signaling and demise of cells. In myeloma, a B-cell plasma malignancy, MET is neither mutated nor over-expressed, however, HGF is increased in plasma or serum obtained from myeloma patients and this was associated with poor prognosis. The small-molecule, amuvatinib, inhibits MET receptor tyrosine kinase. Based on this background, we hypothesized that targeting the HGF/MET signaling pathway is a rational approach to myeloma therapy and that myeloma cells would be sensitive to amuvatinib. METHODS Expression of MET and HGF mRNAs in normal versus malignant plasma cells was compared during disease progression. Cell death and growth as well as MET signaling pathway were assessed in amuvatinib treated primary myeloma cells and cell lines. RESULTS There was a progressive increase in the transcript levels of HGF (but not MET) from normal plasma cells to refractory malignant plasma cells. Amuvatinib readily inhibited MET phosphorylation in primary CD138+ cells from myeloma patients and in concordance, increased cell death. A 48-hr amuvatinib treatment in high HGF-expressing myeloma cell line, U266, resulted in growth inhibition. Levels of cytotoxicity were time-dependent; at 24, 48, and 72 h, amuvatinib (25 μM) resulted in 28%, 40%, and 55% cell death. Consistent with these data, there was an amuvatinib-mediated decrease in MET phosphorylation in the cell line. Amuvatinib at concentrations of 5, 10, or 25 μM readily inhibited HGF-dependent MET, AKT, ERK and GSK-3-beta phosphorylation. MET-mediated effects were not observed in myeloma cell line that has low MET and/or HGF expression. CONCLUSIONS These data suggest that at the cellular level MET/HGF pathway inclines with myeloma disease progression. Amuvatinib, a small molecule MET kinase inhibitor, is effective in inducing growth inhibition and cell death in myeloma cell lines as well as primary malignant plasma cells. These cytostatic and cytotoxic effects were associated with an impact on MET/HGF pathway.
Collapse
Affiliation(s)
- Cornel Joseph Phillip
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| | - Shadia Zaman
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shujun Shentu
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kumudha Balakrishnan
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| | - Jiexin Zhang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veera Baladandayuthapani
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| | | | | | - Michael Wang
- Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christine Marie Stellrecht
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| | - Varsha Gandhi
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
17
|
Gao L, Zhang C, Zhang X, Gao L, Hao L, Chen XH. Human umbilical cord blood-derived stromal cells: a new resource for the proliferation and apoptosis of myeloma cells. ACTA ACUST UNITED AC 2013; 19:148-57. [PMID: 23896383 DOI: 10.1179/1607845413y.0000000107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND/OBJECTIVE Bone marrow stromal cells (BMSCs) can support multiple myeloma (MM) disease progression and resistance to chemotherapy. The proliferation of MM cells may be suppressed by modifying the hematopoietic microenvironment (HME). We have previously isolated human umbilical cord blood-derived stromal cells (hUCBDSCs) and observed that hUCBDSCs suppressed proliferation and induced apoptosis in KM3 cells. To examine the mechanism by which hUCBDSCs drive the inhibition of MM, KM3 cells were co-cultured with hUCBDSCs. METHODS Interleukin (IL)-6 and soluble IL-6 receptor (sIL-6R) expression levels were measured by enzyme-linked immunosorbent assay. The expression levels of membrane IL-6 receptor (mIL-6R), intercellular cell adhesion molecule-1 (ICAM-1), B-cell lymphoma/leukemia-2 (Bcl-2), and Bcl-XL as well as the location of nuclear factor κB (NF-κB) were assessed by laser confocal microscopy. The expression profiles of mIL-6R and ICAM-1 were also more precisely examined by flow cytometry, and Bcl-2, Bcl-XL and inhibitor kappa B expression levels were analyzed by western blot. The mRNA expression levels of IL-6R, ICAM-1, Bcl-2, and Bcl-XL were assessed by real-time polymerase chain reaction. NF-κB DNA-binding activity was examined by electrophoretic mobility shift assay. RESULTS The protein expression levels of both sIL-6R and mIL-6R were reduced in culture conditions when KM3 cells were co-cultured with hUCBDSCs; moreover, the mRNA expression levels of IL-6R were also reduced. Nuclear translocation of the NF-κB p65 subunit was inhibited in KM3 cells by co-culture with hUCBDSCs. Moreover, hUCBDSCs inhibited NF-κB DNA-binding activity, thereby resulting in the downregulation of NF-κB-regulated proteins. CONCLUSION hUCBDSCs can suppress proliferation and induce apoptosis in KM3 cells by both downregulating IL-6R expression and inhibiting NF-κB activity.
Collapse
|
18
|
Lansdell TA, Hurchla MA, Xiang J, Hovde S, Weilbaecher KN, Henry RW, Tepe JJ. Noncompetitive modulation of the proteasome by imidazoline scaffolds overcomes bortezomib resistance and delays MM tumor growth in vivo. ACS Chem Biol 2013. [PMID: 23198928 DOI: 10.1021/cb300568r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiple myeloma (MM) is a malignant disorder of differentiated B-cells for which standard care involves the inhibition of the proteasome. All clinically used proteasome inhibitors, including the chemotherapeutic drug bortezomib, target the catalytic active sites of the proteasome and inhibit protein proteolysis by competing with substrate binding. However, nearly all (~97%) patients become intolerant or resistant to treatments within a few years, after which the average survival time is less than 1 year. We describe herein the inhibition of the human proteasome via a noncompetitive mechanism by the imidazoline scaffold, TCH-13. Consistent with a mechanism distinct from that of competitive inhibitors, TCH-013 acts additively with and overcomes resistance to bortezomib. Importantly, TCH-013 induces apoptosis in a panel of myeloma and leukemia cell lines, but in contrast, normal lymphocytes, primary bone marrow stromal cells (hBMSC), and macrophages are resistant to its cytotoxic effects. TCH-013 was equally effective in blocking MM cell growth in co-cultures of MM cells with hBMSC isolated from CD138 negative bone marrow (BM) samples of MM patients. The cellular activity translated well in vivo where TCH-013 delayed tumor growth in an MM xenograft model to a similar extent as bortezomib.
Collapse
Affiliation(s)
| | - Michelle A. Hurchla
- Department of Medicine, Division
of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jingyu Xiang
- Department of Medicine, Division
of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States
| | | | - Katherine N. Weilbaecher
- Department of Medicine, Division
of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States
| | | | | |
Collapse
|
19
|
Salem K, Brown CO, Schibler J, Goel A. Combination chemotherapy increases cytotoxicity of multiple myeloma cells by modification of nuclear factor (NF)-κB activity. Exp Hematol 2013; 41:209-18. [PMID: 23063726 PMCID: PMC3565034 DOI: 10.1016/j.exphem.2012.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/22/2022]
Abstract
The nuclear factor (NF)-κB signaling pathway is critical in myeloma cell proliferation, inhibition of apoptosis, and emergence of therapy resistance. The chemotherapeutic drugs, dexamethasone (Dex) and bortezomib (BTZ), are widely used in clinical protocols for multiple myeloma (MM) and inhibit the NF-κB signaling pathway by distinct mechanisms. This study evaluates the efficacy of combination therapy with Dex and BTZ and investigates the mechanistic underpinning of endogenous and therapy-induced NF-κB activation in MM. Human myeloma cells and bone marrow stromal cells (BMSCs) were used in monocultures and cocultures to determine the cytotoxic effects of Dex and/or BTZ. Our results show that combined treatment of Dex with BTZ enhanced direct apoptosis of drug-sensitive and drug-resistant myeloma cells. In the presence of BMSCs, Dex plus BTZ combination inhibited ionizing radiation-induced interleukin 6 secretion from BMSCs and induced myeloma cytotoxicity. Mechanistically, Dex treatment increased IκBα protein and mRNA expression and compensated for BTZ-induced IκBα degradation. Dex plus BTZ combination inhibited basal and therapy-induced NF-κB activity with cytotoxicity in myeloma cells resistant to BTZ. Furthermore, combination therapy downregulated the NF-κB-targeted gene expression of interleukin 6 and manganese superoxide dismutase, which can induce chemo- and radio-resistance in MM. This study provides a mechanistic rationale for combining the NF-κB-targeting drugs Dex and BTZ in myeloma therapy and supports potential combinations of these drugs with radiotherapy and additional chemotherapeutic drugs for clinical benefit in MM.
Collapse
Affiliation(s)
- Kelley Salem
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
20
|
Sosa MS, Bragado P, Debnath J, Aguirre-Ghiso JA. Regulation of tumor cell dormancy by tissue microenvironments and autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:73-89. [PMID: 23143976 DOI: 10.1007/978-1-4614-1445-2_5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The development of metastasis is the major cause of death in cancer patients. In certain instances, this occurs shortly after primary tumor detection and treatment, indicating these lesions were already expanding at the moment of diagnosis or initiated exponential growth shortly after. However, in many types of cancer, patients succumb to metastatic disease years and sometimes decades after being treated for a primary tumor. This has led to the notion that in these patients residual disease may remain in a dormant state. Tumor cell dormancy is a poorly understood phase of cancer progression and only recently have its underlying molecular mechanisms started to be revealed. Important questions that remain to be elucidated include not only which mechanisms prevent residual disease from proliferating but also which mechanisms critically maintain the long-term survival of these disseminated residual cells. Herein, we review recent evidence in support of genetic and epigenetic mechanisms driving dormancy. We also explore how therapy may cause the onset of dormancy in the surviving fraction of cells after treatment and how autophagy may be a mechanism that maintains the residual cells that are viable for prolonged periods.
Collapse
Affiliation(s)
- Maria Soledad Sosa
- Department of Medicine and Otolaryngology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
21
|
Strychnos nux-vomica Root Extract Induces Apoptosis in the Human Multiple Myeloma Cell Line—U266B1. Cell Biochem Biophys 2012; 66:443-50. [DOI: 10.1007/s12013-012-9492-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Zhu SS, Li WG. Advances in research of signaling pathways in cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2012; 20:2913-2919. [DOI: 10.11569/wcjd.v20.i30.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemiological data indicate that the incidence and mortality of cholangiocarcinoma (CC) show an increasing trend worldwide over the past several years. Many pathophysiologic aspects of this neoplasia are still unknown and need to be fully discovered. However, progress has been recently made in understanding molecular mechanisms involved in the transformation and growth of malignant cholangiocytes. It is found that cholangiocarcinogenesis is a multistep cellular process evolving from a normal condition of the epithelial biliary cells and ending with malignant transformation through a chronic inflammation status. The bad prognosis related to CC justifies why a better identification of the molecular mechanisms involved in the growth and progression of this cancer is required for the development of effective preventive measures and valid treatment regimens. Signaling pathways can regulate substance and energy metabolism in organisms and are closely related to biological growth and development. This paper mainly introduces signaling pathways which occur in cholangiocarcinoma and their roles in cholangiocarcinoma cells.
Collapse
|
23
|
Chen CY, Tsen HY, Lin CL, Yu B, Chen CS. Oral administration of a combination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poult Sci 2012; 91:2139-47. [PMID: 22912447 DOI: 10.3382/ps.2012-02237] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One-day-old chicks are susceptible to infection by strains of Salmonella enterica subspecies. Because multistrain probiotics are suggested to be more effective than monostrain probiotics due to the additive and synergistic effects, in this study, we prepared a multistrain formula A (MFA) consisting of 4 lactic acid bacteria (LAB) strains selected by enhancing the TNF-α production for mouse macrophage 264.7 cells. The antagonistic effect of this MFA against the cecal colonization, viscera invasiveness, as well as the inflammation of 1-d-old chicks challenged with Salmonella Typhimurium were then assayed. One-day-old chicks were fed with MFA from d 1 to d 3, and on d 4, chicks were challenged with Salmonella Typhimurium (200 μL, 10(6) cfu/mL). The livers, spleens, and cecal tonsils of chicks were then removed on d 3 and 6 postinfection. Compared with the multistrain formula B (MFB) which consisted of LAB strains selected at random, the efficacy of MFA to reduce the Salmonella counts recovered from the cecal tonsils, spleens, and livers of chicks were significantly higher. Moreover, when the levels of proinflammatory cytokines, such as IL-1β, IL-6, interferon (IFN)-γ, and anti-inflmmatory cytokine, that is, IL-10, in cecal tonsils were measured by reverse-transcription real-time quantitative PCR; it was found that chicks fed with MFA for 3 d had lower levels of IL-1β, IL-6, IFN-γ and a higher level of IL-10 in the cecal tonsils of chicks as compared with those of the chicks fed with MFB or without LAB. These results suggest that multistrain probiotics consisting of LAB strains selected by immunomodulatory activity and adherence are more effective than those consisting of strains selected at random in antagonistic effect against Salmonella colonization, invasion, and the induced inflammation.
Collapse
Affiliation(s)
- C-Y Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung County 402, Taiwan, R. O. C
| | | | | | | | | |
Collapse
|
24
|
Ribatti D, Vacca A. The role of microenvironment in tumor angiogenesis. GENES AND NUTRITION 2012; 3:29-34. [PMID: 18850197 DOI: 10.1007/s12263-008-0076-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor microenvironment is essential for tumor cell proliferation, angiogenesis, invasion and metastasis through its provision of survival signals, secretion of growth and pro-angiogenic factors, and direct adhesion molecule interactions. This review examines its importance in the induction of an angiogenic response in tumors and in multiple myeloma. The encouraging results of pre-clinical and clinical trials in which tumors have been treated by targeting the tumor microenvironment are also discussed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, 70124, Bari, Italy,
| | | |
Collapse
|
25
|
Fiala M, Avagyan H, Merino JJ, Bernas M, Valdivia J, Espinosa-Jeffrey A, Witte M, Weinand M. Chemotactic and mitogenic stimuli of neuronal apoptosis in patients with medically intractable temporal lobe epilepsy. ACTA ACUST UNITED AC 2012; 20:59-69. [PMID: 22444245 DOI: 10.1016/j.pathophys.2012.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To identify the upstream signals of neuronal apoptosis in patients with medically intractable temporal lobe epilepsy (TLE), we evaluated by immunohistochemistry and confocal microscopy brain tissues of 13 TLE patients and 5 control patients regarding expression of chemokines and cell-cycle proteins. The chemokine RANTES (CCR5) and other CC-chemokines and apoptotic markers (caspase-3, -8, -9) were expressed in lateral temporal cortical and hippocampal neurons of TLE patients, but not in neurons of control cases. The chemokine RANTES is usually found in cytoplasmic and extracellular locations. However, in TLE neurons, RANTES was displayed in an unusual location, the neuronal nuclei. In addition, the cell-cycle regulatory transcription factor E2F1 was found in an abnormal location in neuronal cytoplasm. The pro-inflammatory enzyme cyclooxygenase-2 and cytokine interleukin-1β were expressed both in neurons of patients suffering from temporal lobe epilepsy and from cerebral trauma. The vessels showed fibrin leakage, perivascular macrophages and expression of IL-6 on endothelial cells. In conclusion, the cytoplasmic effects of E2F1 and nuclear effects of RANTES might have novel roles in neuronal apoptosis of TLE neurons and indicate a need to develop new medical and/or surgical neuroprotective strategies against apoptotic signaling by these molecules. Both RANTES and E2F1 signaling are upstream from caspase activation, thus the antagonists of RANTES and/or E2F1 blockade might be neuroprotective for patients with medically intractable temporal lobe epilepsy. The results have implications for the development of new medical and surgical therapies based on inhibition of chemotactic and mitogenic stimuli of neuronal apoptosis in patients with medically intractable temporal lobe epilepsy.
Collapse
Affiliation(s)
- Milan Fiala
- Department of Medicine, Greater LA VA Medical Center, Los Angeles, CA 90073, United States; UCLA School of Medicine, Los Angeles, CA 90095, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Interleukin-6, osteopontin and Raf/MEK/ERK signaling modulate the sensitivity of human myeloma cells to alkylphosphocholines. Leuk Res 2012; 36:764-72. [PMID: 22421411 DOI: 10.1016/j.leukres.2012.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/12/2012] [Accepted: 02/20/2012] [Indexed: 11/22/2022]
Abstract
Alkylphosphocholines are highly active against multiple myeloma (MM) cells in vitro and are devoid of myelotoxicity. Little is known about the determinants of MM cell responsiveness or resistance to these drugs. In this study we investigated the effects of disease-relevant cytokines, such as interleukin-6 (IL-6) and osteopontin (OPN), on the in vitro antimyeloma activity of erufosine and perifosine. The role of the Raf/MEK/ERK pathway was also studied. Exogenous IL-6 reduced the cytotoxicity of erufosine against OPM-2 cells and, to a smaller extent, against U-266 cells. This was accompanied by inhibition of apoptosis in OPM-2 cells. The efficacy of perifosine was similarly affected, but to a greater extent. IL-6 slightly enhanced the sensitivity of RPMI-8226 cells to erufosine, thus emphasizing the heterogeneity of MM. Induced overexpression of OPN isoforms made OPM-2 cells less sensitive to erufosine. In all cases of IL-6- or OPN-induced resistance, the effective concentrations of erufosine were still within the clinically achievable range. Like other alkylphosphocholines, erufosine enhanced Raf/MEK/ERK signaling in MM cells but in some cases this contributed to cytotoxicity.
Collapse
|
27
|
Abstract
The mechanisms driving dormancy of disseminated tumor cells (DTCs) remain largely unknown. Here, we discuss experimental evidence and theoretical frameworks that support three potential scenarios contributing to tumor cell dormancy. The first scenario proposes that DTCs from invasive cancers activate stress signals in response to the dissemination process and/or a growth suppressive target organ microenvironment inducing dormancy. The second scenario asks whether therapy and/or micro-environmental stress conditions (e.g. hypoxia) acting on primary tumor cells carrying specific gene signatures prime new DTCs to enter dormancy in a matching target organ microenvironment that can also control the timing of DTC dormancy. The third and final scenario proposes that early dissemination contributes a population of DTCs that are unfit for immediate expansion and survive mostly in an arrested state well after primary tumor surgery, until genetic and/or epigenetic mechanisms activate their proliferation. We propose that DTC dormancy is ultimately a survival strategy that when targeted will eradicate dormant DTCs preventing metastasis. For these non-mutually exclusive scenarios we review experimental and clinical evidence in their support.
Collapse
|
28
|
Vangsted A, Klausen TW, Vogel U. Genetic variations in multiple myeloma I: effect on risk of multiple myeloma. Eur J Haematol 2011; 88:8-30. [PMID: 21883480 DOI: 10.1111/j.1600-0609.2011.01700.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Few risk factors have been established for the plasma cell disorder multiple myeloma, but some of these like African American ethnicity and a family history of B-cell lymphoproliferative diseases suggest a genetic component for the disease. Genetic variation represents the genetic basis of variability in a population. The complex interplay between environment and genes for the development of cancer may therefore be influenced by genetic variations. A genetic variation may change the function of the gene, and if the genetic variation is associated with the risk of disease, that particular gene may be involved in the pathogenesis of disease. Genes of interest are genes involved in the normal development and function of the plasma cell and genes that protect us against exposures from the environment, for example, genes involved in the metabolism of xenobiotics, metabolism of folate and methionine, as well as genes involved in inflammation and DNA repair. Identification of genes with potential influence on cancer risk may help us to establish relevant laboratory studies on exposure and dose-response assessment and may help us to test the hypothesis in epidemiological studies. Knowledge of individual at high risk of cancer may offer promising insight for the prevention of cancer.
Collapse
Affiliation(s)
- Annette Vangsted
- Department of Haematology, Roskilde Hospital, Copenhagen University, Roskilde, Denmark.
| | | | | |
Collapse
|
29
|
Novel therapies in MM: from the aspect of preclinical studies. Int J Hematol 2011; 94:344-354. [PMID: 21881879 DOI: 10.1007/s12185-011-0917-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
During the last decade, thalidomide, lenalidomide, and bortezomib have been approved by the US Food and Drug Administration for the treatment of MM; however, MM remains incurable. The development and progression of multiple myeloma (MM) is a complex multi-step process involving genetic abnormalities in tumor cells at both early and late stages. Moreover, soluble factors and cell-cell contact within the tumor bone marrow (BM) microenvironment promotes MM cell growth, survival, and drug resistance. A number of novel agents targeting both tumor cells and growth factors in the BM milieu have been developed. Currently they are under evaluation in preclinical studies, as single agents and/or in combination, to improve outcome of MM patients.
Collapse
|
30
|
Tagoug I, Sauty De Chalon A, Dumontet C. Inhibition of IGF-1 signalling enhances the apoptotic effect of AS602868, an IKK2 inhibitor, in multiple myeloma cell lines. PLoS One 2011; 6:e22641. [PMID: 21799925 PMCID: PMC3143180 DOI: 10.1371/journal.pone.0022641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma (MM) is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. IGF-1 signalling has been explored as a therapeutic target in this disease. We analyzed the effect of the IKK2 inhibitor AS602868, in combination with a monoclonal antibody targeting IGF-1 receptor (anti-IGF-1R) in human MM cell lines. We found that anti-IGF-1R potentiated the apoptotic effect of AS602868 in LP1 and RPMI8226 MM cell lines which express high levels of IGF-1R. Anti-IGF-1R enhanced the inhibitory effect of AS602868 on NF-κB pathway signalling and potentiated the disruption of mitochondrial membrane potential caused by AS602868. These results support the role of IGF-1 signalling in MM and suggest that inhibition of this pathway could sensitize MM cells to NF-κB inhibitors.
Collapse
Affiliation(s)
- Ines Tagoug
- Université de Lyon, Lyon, France
- INSERM U1052, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- HCL, Lyon, France
| | - Amélie Sauty De Chalon
- Université de Lyon, Lyon, France
- INSERM U1052, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- HCL, Lyon, France
| | - Charles Dumontet
- Université de Lyon, Lyon, France
- INSERM U1052, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- HCL, Lyon, France
- * E-mail:
| |
Collapse
|
31
|
Liang SB, Yang XZ, Trieu Y, Li Z, Zive J, Leung-Hagesteijn C, Wei E, Zozulya S, Coss CC, Dalton JT, Fantus IG, Trudel S. Molecular target characterization and antimyeloma activity of the novel, insulin-like growth factor 1 receptor inhibitor, GTx-134. Clin Cancer Res 2011; 17:4693-704. [PMID: 21632854 DOI: 10.1158/1078-0432.ccr-10-3097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapeutic strategies that target insulin-like growth factor 1 receptor (IGF-1R) hold promise in a wide variety of cancers including multiple myeloma (MM). In this study, we describe GTx-134, a novel small-molecule inhibitor of IGF-1R and insulin receptor (IR) and characterized its antitumor activity in preclinical models of MM. EXPERIMENTAL DESIGN The activity of GTx-134 as a single agent and in combination was tested in MM cell lines and primary patient samples. Downstream effector proteins and correlation with apoptosis was evaluated. Cytotoxcity in bone marrow stroma coculture experiments was assessed. Finally, the in vivo efficacy was evaluated in a human myeloma xenograft model. RESULTS GTx-134 inhibited the growth of 10 of 14 myeloma cell lines (<5 μmol/L) and induced apoptosis. Sensitivity to GTx-134 correlated with IGF-1R signal inhibition. Expression of MDR-1 and CD45 were associated with resistance to GTx-134. Coculture with insulin-growth factor-1 (IGF-1) or adherence to bone marrow stroma conferred modest resistance, but did not overcome GTx-134-induced cytotoxicity. GTx-134 showed in vitro synergies when combined with dexamethasone or lenalidomide. Further, GTx-134 enhanced the activity of PD173074, a fibroblast growth factor receptor 3 (FGFR3) inhibitor, against t(4;14) myeloma cells. Therapeutic efficacy of GTx-134 was shown against primary cells and xenograft tumors. Although dysregulation of glucose homeostasis was observed in GTx-134-treated mice, impairment of glucose tolerance was modest. CONCLUSIONS These studies support the potential therapeutic efficacy of GTx-134 in MM. Further, they provide a rationale for clinical application in combination with established antimyeloma treatments and novel targeted therapies.
Collapse
Affiliation(s)
- Sheng-Ben Liang
- Department of Medical Oncology-Hematology, Princess Margaret Hospital, McLaughlin Centre for Molecular Medicine, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang S, Farag SS. From cell biology to therapy: ENMD-2076 in the treatment of multiple myeloma. Expert Opin Investig Drugs 2011; 20:1015-28. [DOI: 10.1517/13543784.2011.584869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Somlo G, Lashkari A, Bellamy W, Zimmerman TM, Tuscano JM, O'Donnell MR, Mohrbacher AF, Forman SJ, Frankel P, Chen HX, Doroshow JH, Gandara DR. Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California Cancer Consortium trial. Br J Haematol 2011; 154:533-5. [PMID: 21517811 DOI: 10.1111/j.1365-2141.2011.08623.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Ge F, Tao S, Bi L, Zhang Z, Zhang X. Proteomics: addressing the challenges of multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2011; 43:89-95. [PMID: 21212069 DOI: 10.1093/abbs/gmq120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated B-lymphocytes that accounts for ~13% of all hematologic cancers. Despite a wealth of knowledge describing the molecular biology of MM as well as significant advances in therapeutics, this disease remains incurable. Since proteins govern the cellular structure and biological function, a wide selection of proteomic approaches holds great promise for increasing our understanding of this disease, such as by investigating the dynamic nature of protein expression, cellular and subcellular distribution, post-translational modifications, and interactions at both the cellular and subcellular levels. The aims of this review are to introduce the available and emerging proteomic technologies that have potential applications in the study of MM and to highlight the current status of proteomic studies of MM. To date, although there have been a limited number of proteomic studies in MM, those performed have provided valuable information with regard to MM diagnosis and therapy. The potential future application of proteomic technologies is expected to provide new avenues in MM diagnostics, individualized therapy design and therapy response surveillance for the clinician.
Collapse
Affiliation(s)
- Feng Ge
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
35
|
Lemaire M, Deleu S, De Bruyne E, Van Valckenborgh E, Menu E, Vanderkerken K. The microenvironment and molecular biology of the multiple myeloma tumor. Adv Cancer Res 2011; 110:19-42. [PMID: 21704227 DOI: 10.1016/b978-0-12-386469-7.00002-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a deadly plasma cell cancer that resides in the bone marrow (BM). Numerous studies have demonstrated the involvement of the BM microenvironment supporting tumor growth, angiogenesis, bone disease and drug resistance. Reciprocal interactions between the different components of the BM microenvironment and the MM cells are necessary to regulate migration, differentiation, proliferation and survival of the malignant plasma cells. In this review we focus on the interactions and molecular mechanisms by which the BM microenvironment exert these effects. Better understanding of these interactions and the study of the epigenetic changes that tumor cells undergo are necessary in order to improve current treatments and for the discovery of new therapies that may eventually lead to a potential cure.
Collapse
|
36
|
In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2. Blood 2010; 116:3635-44. [PMID: 20679527 DOI: 10.1182/blood-2010-03-274571] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepcidin is the principal iron-regulatory hormone and a pathogenic factor in anemia of inflammation. Patients with multiple myeloma (MM) frequently present with anemia. We showed that MM patients had increased serum hepcidin, which inversely correlated with hemoglobin, suggesting that hepcidin contributes to MM-related anemia. Searching for hepcidin-inducing cytokines in MM, we quantified the stimulation of hepcidin promoter-luciferase activity in HuH7 cells by MM sera. MM sera activated the hepcidin promoter significantly more than did normal sera. We then examined the role of bone morphogenetic proteins (BMPs) and interleukin-6 (IL-6), the major transcriptional regulators of hepcidin. Mutations in both BMP-responsive elements abrogated the activation dramatically, while mutations in the IL-6-responsive signal transducer and activator of transcription 3-binding site (STAT3-BS) had only a minor effect. Cotreatment with anti-BMP-2/4 or noggin-Fc blocked the promoter induction with all MM sera, anti-IL-6 blocked it with a minority of sera, whereas anti-BMP-4, -6, or -9 antibodies had no effect. BMP-2-immunodepleted MM sera had decreased promoter stimulatory capacity, and BMP-2 concentrations in MM sera were significantly higher than in normal sera. Our results demonstrate that BMP-2 is a major mediator of the hepcidin stimulatory activity of MM sera.
Collapse
|
37
|
GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood 2010; 115:3939-48. [PMID: 20190189 DOI: 10.1182/blood-2009-10-251660] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCS-100 is a galectin-3 antagonist with an acceptable human safety profile that has been demonstrated to have an antimyeloma effect in the context of bortezomib resistance. In the present study, the mechanisms of action of GCS-100 are elucidated in myeloma cell lines and primary tumor cells. GCS-100 induced inhibition of proliferation, accumulation of cells in sub-G(1) and G(1) phases, and apoptosis with activation of both caspase-8 and -9 pathways. Dose- and time-dependent decreases in MCL-1 and BCL-X(L) levels also occurred, accompanied by a rapid induction of NOXA protein, whereas BCL-2, BAX, BAK, BIM, BAD, BID, and PUMA remained unchanged. The cell-cycle inhibitor p21(Cip1) was up-regulated by GCS-100, whereas the procycling proteins CYCLIN E2, CYCLIN D2, and CDK6 were all reduced. Reduction in signal transduction was associated with lower levels of activated IkappaBalpha, IkappaB kinase, and AKT as well as lack of IkappaBalpha and AKT activation after appropriate cytokine stimulation (insulin-like growth factor-1, tumor necrosis factor-alpha). Primary myeloma cells showed a direct reduction in proliferation and viability. These data demonstrate that the novel therapeutic molecule, GCS-100, is a potent modifier of myeloma cell biology targeting apoptosis, cell cycle, and intracellular signaling and has potential for myeloma therapy.
Collapse
|
38
|
Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM, Roccaro AM, Ngo HT, Melhem MR, Sacco A, Jia X, Anderson KC, Lin CP, Rollins BJ, Ghobrial IM. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 2009; 114:619-29. [PMID: 19443661 PMCID: PMC2713475 DOI: 10.1182/blood-2009-01-199281] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/05/2009] [Indexed: 12/14/2022] Open
Abstract
The interaction of multiple myeloma (MM) cells with the bone marrow (BM) milieu plays a crucial role in MM pathogenesis. Stromal cell-derived factor-1 (SDF1) regulates homing of MM cells to the BM. In this study, we examined the role of RhoA and Rac1 GTPases in SDF1-induced adhesion and chemotaxis of MM. We found that both RhoA and Rac1 play key roles in SDF1-induced adhesion of MM cells to BM stromal cells, whereas RhoA was involved in chemotaxis and motility. Furthermore, both ROCK and Rac1 inhibitors reduced SDF1-induced polymerization of actin and activation of LIMK, SRC, FAK, and cofilin. Moreover, RhoA and Rac1 reduced homing of MM cells to BM niches. In conclusion, we characterized the role of RhoA and Rac1 GTPases in SDF1-induced adhesion, chemotaxis, and homing of MM cells to the BM, providing the framework for targeting RhoA and Rac1 GTPases as novel MM therapy.
Collapse
Affiliation(s)
- Abdel Kareem Azab
- Medical Oncology, Dana-Farber Cancer Institute, Massachusetts General Hospital, Harvard Medical School, 44 Binney Street, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Podar K, Tai YT, Hideshima T, Vallet S, Richardson PG, Anderson KC. Emerging therapies for multiple myeloma. Expert Opin Emerg Drugs 2009; 14:99-127. [PMID: 19249983 DOI: 10.1517/14728210802676278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy clinically characterized by osteolytic lesions, immunodeficiency, and renal disease. There are an estimated 750,000 people diagnosed with MM worldwide, with a median overall survival of 3 - 5 years. Besides chromosomal aberrations, translocations, and mutations in essential growth and tumor-suppressor genes, accumulating data strongly highlight the pathophysiologic role of the bone marrow (BM) microenvironment in MM pathogenesis. Based on this knowledge, several novel agents have been identified, and treatment options in MM have fundamentally changed during the last decade. Thalidomide, bortezomib, and lenalidomide have been incorporated into conventional cytotoxic and transplantation regimens, first in relapsed and refractory and now also in newly diagnosed MM. Despite these significant advances, there remains an urgent need for more efficacious and tolerable drugs. Indeed, a plethora of preclinical agents awaits translation from the bench to the bedside. This article reviews the scientific rationale of new therapy regimens and newly identified therapeutic agents - small molecules as well as therapeutic antibodies - that hold promise to further improve outcome in MM.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, Jia X, Wright R, Ospina B, Carlson AL, Alt C, Burwick N, Roccaro AM, Ngo HT, Farag M, Melhem MR, Sacco A, Munshi NC, Hideshima T, Rollins BJ, Anderson KC, Kung AL, Lin CP, Ghobrial IM. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113:4341-51. [PMID: 19139079 PMCID: PMC2676090 DOI: 10.1182/blood-2008-10-186668] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/31/2008] [Indexed: 12/11/2022] Open
Abstract
The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) provides a protective environment and resistance to therapeutic agents. We hypothesized that disruption of the interaction of MM cells with their BM milieu would lead to their sensitization to therapeutic agents such as bortezomib, melphalan, doxorubicin, and dexamethasone. We report that the CXCR4 inhibitor AMD3100 induces disruption of the interaction of MM cells with the BM reflected by mobilization of MM cells into the circulation in vivo, with kinetics that differed from that of hematopoietic stem cells. AMD3100 enhanced sensitivity of MM cell to multiple therapeutic agents in vitro by disrupting adhesion of MM cells to bone marrow stromal cells (BMSCs). Moreover, AMD3100 increased mobilization of MM cells to the circulation in vivo, increased the ratio of apoptotic circulating MM cells, and enhanced the tumor reduction induced by bortezomib. Mechanistically, AMD3100 significantly inhibited Akt phosphorylation and enhanced poly(ADP-ribose) polymerase (PARP) cleavage as a result of bortezomib, in the presence of BMSCs in coculture. These experiments provide a proof of concept for the use of agents that disrupt interaction with the microenvironment for enhancement of efficacy of cytotoxic agents in cancer therapy.
Collapse
Affiliation(s)
- Abdel Kareem Azab
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mylin AK, Andersen NF, Johansen JS, Abildgaard N, Heickendorff L, Standal T, Gimsing P, Knudsen LM. Serum YKL-40 and bone marrow angiogenesis in multiple myeloma. Int J Cancer 2009; 124:1492-4. [PMID: 19089918 DOI: 10.1002/ijc.24110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Yamashita T, Tamura H, Satoh C, Shinya E, Takahashi H, Chen L, Kondo A, Tsuji T, Dan K, Ogata K. Functional B7.2 and B7-H2 Molecules on Myeloma Cells Are Associated with a Growth Advantage. Clin Cancer Res 2009; 15:770-7. [DOI: 10.1158/1078-0432.ccr-08-0501] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Abstract
Nuclear factor kappaB (NF-kappaB) transcription factors have a key role in many physiological processes such as innate and adaptive immune responses, cell proliferation, cell death, and inflammation. It has become clear that aberrant regulation of NF-kappaB and the signalling pathways that control its activity are involved in cancer development and progression, as well as in resistance to chemotherapy and radiotherapy. This article discusses recent evidence from cancer genetics and cancer genome studies that support the involvement of NF-kappaB in human cancer, particularly in multiple myeloma. The therapeutic potential and benefit of targeting NF-kappaB in cancer, and the possible complications and pitfalls of such an approach, are explored.
Collapse
|
44
|
Kastritis E, Charidimou A, Varkaris A, Dimopoulos MA. Targeted therapies in multiple myeloma. Target Oncol 2009; 4:23-36. [PMID: 19343299 DOI: 10.1007/s11523-008-0102-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/30/2008] [Indexed: 01/10/2023]
Abstract
Increasing knowledge of the biology of multiple myeloma led the way for the development of novel drugs that have changed the management of the disease. New treatments target not only to the malignant plasma cell but also target the interactions of myeloma cells with their microenvironment. Several preclinical studies have identified potential targets and drugs are developed that act on pathways crucial for myeloma cell survival, proliferation, migration and drug resistance. The identification of active agents in the laboratory is followed by rationally designed clinical studies that validate these drugs, either as single agents or in combinations with other active drugs. These novel agents may be either small molecules or monoclonal antibodies targeting receptors, kinase activity of receptors or key molecules within critical pathways, intracellular maintenance mechanisms and immune modulation.
Collapse
Affiliation(s)
- Efstathios Kastritis
- Department of Clinical Therapeutics, University of Athens School of Medicine, Alexandra Hospital, 80 Vas Sofias Ave, 115 28, Athens, Greece.
| | | | | | | |
Collapse
|
45
|
Neri P, Tagliaferri P, Di Martino MT, Calimeri T, Amodio N, Bulotta A, Ventura M, Eramo PO, Viscomi C, Arbitrio M, Rossi M, Caraglia M, Munshi NC, Anderson KC, Tassone P. In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. Br J Haematol 2009; 143:520-31. [PMID: 18986388 DOI: 10.1111/j.1365-2141.2008.07387.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Valproic acid (VPA) is a well-tolerated anticonvulsant that exerts anti-tumour activity as a histone deacetylase inhibitor. This study investigated the in vitro and in vivo activity of VPA against multiple myeloma (MM) cells. In vitro exposure of interleukin-6-dependent or -independent MM cells to VPA inhibited cell proliferation in a time- and dose-dependent manner and induced apoptosis. In a cohort of severe combined immunodeficiency mice bearing human MM xenografts, VPA induced tumour growth inhibition and survival advantage in treated animals versus controls. Flow cytometric analysis performed on MM cells from excised tumours showed increase of G(0)-G(1) and a decreased G(2)/M- and S-phase following VPA treatment, indicating in vivo effects of VPA on cell cycle regulation. Gene expression profiling of MM cells exposed to VPA showed downregulation of genes involved in cell cycle progression, DNA replication and transcription, as well as upregulation of genes implicated in apoptosis and chemokine pathways. Pathfinder analysis of gene array data identified cell growth, cell cycle, cell death, as well as DNA replication and repair as the most important signalling networks modulated by VPA. Taken together, our data provide the preclinical rationale for VPA clinical evaluation as a single agent or in combination, to improve patient outcome in MM.
Collapse
Affiliation(s)
- Paola Neri
- Medical Oncology Unit, Magna Graecia University and Tommaso Campanella Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gertz MA, Ghobrial I, Luc-Harousseau J. Multiple myeloma: biology, standard therapy, and transplant therapy. Biol Blood Marrow Transplant 2009; 15:46-52. [PMID: 19147078 PMCID: PMC3133635 DOI: 10.1016/j.bbmt.2008.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The understanding of the pathogenesis of multiple myeloma has undergone a major transformation over the past eight years. New insights into the microenvironment of the plasma cell as well as elucidation of signaling pathways that prevent plasma cell apoptosis are leading to rapid new drug development. The introduction of novel agents has led to a significant increase in survival. Combinations of novel agents are expected to provide higher complete response rate with anticipated prolongation of relapse free and overall survival. Autologous and allogeneic stem cell transplantation remains an integral part of therapy further improving the outcomes following induction with novel agents.
Collapse
Affiliation(s)
- Morie A. Gertz
- Department of Medicine, Division of Hematology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Irene Ghobrial
- Department of Hematology-Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jean Luc-Harousseau
- University Hospital Center, Department of Hematology, Nantes Cedex 01, France
| |
Collapse
|
47
|
Fasina YO, Holt PS, Moran ET, Moore RW, Conner DE, McKee SR. Intestinal cytokine response of commercial source broiler chicks to Salmonella typhimurium infection. Poult Sci 2008; 87:1335-46. [PMID: 18577613 DOI: 10.3382/ps.2007-00526] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Development of molecular-based immunotherapeutic strategies for controlling Salmonella Typhimurium (ST) infection in poultry requires a better understanding of intestinal and cecal cytokine responses. Accordingly, an experiment was conducted to measure changes in intestinal cytokine expression when commercial source broiler chickens were challenged with a nalidixic acid-resistant ST. Ross broiler chicks were nonchallenged with ST (control treatment) or challenged by orally giving 7.8 x 10(6) cfu at 4 d of age (STC treatment). Each treatment consisted of 4 replicate pens with 14 chicks per pen. Expression levels of proinflammatory cytokines, interferon-gamma, and antiinflammatory interleukin (IL)-10 were determined at 5 and 10 d postchallenge (PC). Intestinal flushes were also collected from each treatment at 7 d PC to estimate IgA and IgG. Results showed an upregulation in IL-1beta mRNA in STC chicks at 5 d PC. By 10 d PC, the expression of IL-1beta was further increased and accompanied by an upregulation of IL-6 and interferon-gamma mRNA, whereas IL-10 mRNA expression decreased. It was concluded that ST induced an intestinal mucosal inflammatory response in commercial source broiler chicks less than 2 wk of age.
Collapse
Affiliation(s)
- Y O Fasina
- Department of Poultry Science, Auburn University, 260 Lem Morrison Drive, Auburn, AL 36849-5416, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Streetly MJ, Gyertson K, Daniel Y, Zeldis JB, Kazmi M, Schey SA. Alternate day pomalidomide retains anti-myeloma effect with reduced adverse events and evidence of in vivo immunomodulation. Br J Haematol 2008; 141:41-51. [PMID: 18324965 DOI: 10.1111/j.1365-2141.2008.07013.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously reported that daily dose pomalidomide (CC-4047), a thalidomide analogue, has excellent anti-myeloma activity but is associated with myelosuppression and deep vein thrombosis. We report here a phase 1 study to determine the maximum tolerated dose (MTD) of pomalidomide at 1 mg, 2 mg, 5 mg and 10 mg on alternate days (ad). Twenty patients with relapsed myeloma were treated. Grade 4 neutropenia occurred in all patients receiving 10 mg and the MTD was defined as 5 mg ad. No thrombotic events were observed. Pomalidomide was continued following the 4-week MTD study in 17/20 patients for a median of 14 months. 10% of patients had a complete response and >50% reduction in paraprotein was achieved in 50% of subjects. Progression-free survival was 10.5 months and median overall survival was 33 months. A significant rise was observed in the proportion of CD8(+) cells. Alternate day pomalidomide was associated with a marked reduction in the incidence of thrombosis whilst maintaining excellent anti-myeloma activity. This trial provides further in vivo evidence that pomalidomide modulates the immune system in myeloma patients. Phase 2 studies to further assess the optimal schedule of administration and anti-myeloma activity of this agent are planned.
Collapse
Affiliation(s)
- Matthew J Streetly
- Department of Haematology, Guys Hospital, Guys and St. Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | | | |
Collapse
|
49
|
Cibeira MT, Rozman M, Segarra M, Lozano E, Rosiñol L, Cid MC, Filella X, Bladé J. Bone marrow angiogenesis and angiogenic factors in multiple myeloma treated with novel agents. Cytokine 2008; 41:244-53. [PMID: 18178097 DOI: 10.1016/j.cyto.2007.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 10/09/2007] [Accepted: 11/27/2007] [Indexed: 02/06/2023]
Abstract
INTRODUCTION An increased bone marrow (BM) angiogenesis is associated with poor outcome in multiple myeloma (MM). OBJECTIVE Angiogenesis study in MM treated with novel antimyeloma agents: thalidomide, lenalidomide, bortezomib, and with dexamethasone. PATIENTS AND METHODS Forty-four patients with MM (14 newly diagnosed, 30 refractory/relapsed) were treated with novel agents at our institution. A BM biopsy was obtained before the initiation of therapy in 19. Angiogenesis was assessed by microvessel density (MVD) estimation in BM biopsies stained with the monoclonal anti-CD34 antibody, and by serum levels of angiogenic factors (VEGF, bFGF, and HGF) and cytokines (IL-6 and TNF-alpha). RESULTS A positive correlation was found between BM plasma cell involvement and MVD estimation (p=0.01). However, MVD was not significantly correlated with either disease phase (p=0.065) or response to therapy (p=0.79). Neither baseline serum levels of angiogenic cytokines correlated to response to treatment. No significant correlation was found between BM MVD and serum levels of angiogenic cytokines. Serum levels of angiogenic cytokines before and after therapy showed a significant increase of bFGF (p=0.008). CONCLUSION There is no relationship between MVD estimation and baseline serum levels of angiogenic cytokines, neither between each of them and response to therapy.
Collapse
Affiliation(s)
- M Teresa Cibeira
- Hematology Department, Institute of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, University of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Differentiation of the Human Marrow Mesenchymal Stem Cells into Vascular Endothelium-like Cells in vitro. 7TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING 2008. [DOI: 10.1007/978-3-540-79039-6_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|