• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635029)   Today's Articles (1714)   Subscriber (50028)
For: Wang Z, Gao C, Wang Q, Liang Q, Qi Q. Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Number Cited by Other Article(s)
1
Yang D, Xu Y, Mo L, Shi M, Wu N, Lu L, Xue F, Xu Q, Zhang C. Enhancing l-Malic Acid Production in Aspergillus niger via Natural Activation of sthA Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024;72:4869-4879. [PMID: 38407053 DOI: 10.1021/acs.jafc.3c09321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
2
Partipilo M, Yang G, Mascotti ML, Wijma HJ, Slotboom DJ, Fraaije MW. A conserved sequence motif in the Escherichia coli soluble FAD-containing pyridine nucleotide transhydrogenase is important for reaction efficiency. J Biol Chem 2022;298:102304. [PMID: 35933012 PMCID: PMC9460512 DOI: 10.1016/j.jbc.2022.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022]  Open
3
Tang S, Liao D, Li X, Lin Y, Han S, Zheng S. Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation. ACS Synth Biol 2021;10:2417-2433. [PMID: 34529398 DOI: 10.1021/acssynbio.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
4
Jayakody LN, Jin YS. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021;105:2675-2692. [PMID: 33743026 DOI: 10.1007/s00253-021-11213-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022]
5
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021;47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
6
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C2-C6 organic acids. Nat Prod Rep 2021;38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
7
Hao Y, Ma Q, Liu X, Fan X, Men J, Wu H, Jiang S, Tian D, Xiong B, Xie X. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Metab Eng 2020;62:198-206. [DOI: 10.1016/j.ymben.2020.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 01/27/2023]
8
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Rewiring yeast metabolism to synthesize products beyond ethanol. Curr Opin Chem Biol 2020;59:182-192. [PMID: 33032255 DOI: 10.1016/j.cbpa.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
9
Yuan W, Lin X, Zhong S, Chen J, Wang Z, Sun J. Enhanced pyruvic acid yield in an osmotic stress-resistant mutant of Yarrowia lipolytica. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
10
Li B, Liu Y, Wang L, Hong J, Chen Y, Ying H. RNA accumulation in Candida tropicalis based on cofactor engineering. FEMS Yeast Res 2019;19:5426822. [PMID: 30942847 DOI: 10.1093/femsyr/foz028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/02/2019] [Indexed: 11/12/2022]  Open
11
Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV). Metab Eng 2019;54:69-82. [PMID: 30914380 DOI: 10.1016/j.ymben.2019.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 01/08/2023]
12
Yarrowia lipolytica application as a prospective approach for biosynthesis of pyruvic acid from glycerol. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0513-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
13
Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 2018;102:4615-4627. [DOI: 10.1007/s00253-018-8937-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
14
Liu M, Cao Z. Regulation of NADH Oxidase Expression via a Thermo-regulated Genetic Switch for Pyruvate Production in Escherichia coli. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0290-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
15
Wang M, Chen B, Fang Y, Tan T. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol Adv 2017;35:1032-1039. [DOI: 10.1016/j.biotechadv.2017.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023]
16
Improvement of pyruvate production based on regulation of intracellular redox state in engineered Escherichia coli. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0061-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
17
Yang M, Mu T, Zhong W, Olajuyin A, Xing J. Analysis of gluconate metabolism for pyruvate production in engineeredEscherichia colibased on genome-wide transcriptomes. Lett Appl Microbiol 2017;65:165-172. [DOI: 10.1111/lam.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/18/2023]
18
Switch on a more efficient pyruvate synthesis pathway based on transcriptome analysis and metabolic evolution. J Biosci Bioeng 2017;124:523-527. [PMID: 28669527 DOI: 10.1016/j.jbiosc.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/24/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
19
Yang M, Zhang X. Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis. World J Microbiol Biotechnol 2017;33:59. [PMID: 28243982 DOI: 10.1007/s11274-016-2202-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
20
Recent Progress in the Microbial Production of Pyruvic Acid. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3010008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
21
Zhang B, Zhu Y, Zhang J, Wang D, Sun L, Hong J. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose. BIORESOURCE TECHNOLOGY 2017;224:553-562. [PMID: 27955868 DOI: 10.1016/j.biortech.2016.11.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
22
Xu G, Wu M, Jiang L. Site-saturation engineering of proline 474 in pyruvate carboxylase from Rhizopus oryzae to elevate fumaric acid production in engineered Saccharomyces cerevisiae cells. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
23
Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep 2016;6:36769. [PMID: 27857195 PMCID: PMC5114678 DOI: 10.1038/srep36769] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022]  Open
24
Song Y, Li J, Shin HD, Liu L, Du G, Chen J. Biotechnological production of alpha-keto acids: Current status and perspectives. BIORESOURCE TECHNOLOGY 2016;219:716-724. [PMID: 27575335 DOI: 10.1016/j.biortech.2016.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
25
Chen B, Lee DY, Chang MW. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab Eng 2015;31:53-61. [PMID: 26164646 DOI: 10.1016/j.ymben.2015.06.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022]
26
Liang Q, Qi Q. From a co-production design to an integrated single-cell biorefinery. Biotechnol Adv 2014;32:1328-1335. [DOI: 10.1016/j.biotechadv.2014.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/23/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
27
Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. BIORESOURCE TECHNOLOGY 2014;156:232-9. [PMID: 24508660 DOI: 10.1016/j.biortech.2014.01.053] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 05/02/2023]
28
Buijs NA, Siewers V, Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 2013;17:480-8. [DOI: 10.1016/j.cbpa.2013.03.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/06/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
29
Jiang LY, Chen SG, Zhang YY, Liu JZ. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol 2013;13:47. [PMID: 23725060 PMCID: PMC3681597 DOI: 10.1186/1472-6750-13-47] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA