1
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
2
|
LC-MS and Transcriptome Analysis of Lipopeptide Biosynthesis by Bacillus velezensis CMT-6 Responding to Dissolved Oxygen. Molecules 2022; 27:molecules27206822. [PMID: 36296415 PMCID: PMC9607200 DOI: 10.3390/molecules27206822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Dissolved oxygen (DO) is an key factor for lipopeptide fermentation. To better understand the link between oxygen supply and lipopeptide productivity in Bacillus velezensis CMT-6, the mechanism of DO on the synthesis of antimicrobial lipopeptides by Bacillus velezensis CMT-6 was examined. The production of surfactin and iturin of CMT-6 was detected by liquid chromatography–mass spectrometer (LC-MS) under different DO conditions and transcriptome analysis was performed. At 100 and 200 rpm, the lipopeptides productions were 2753.62 mg/L and 3452.90 mg/L, respectively. There was no significant change in the yield of iturin but that of surfactin increased by 64.14%. Transcriptome analysis revealed that the enriched differential genes were concentrated in the GO term of oxidation–reduction process. The marked enrichment of the lipopeptides synthesis pathway, including microbial metabolism in diverse environments and carbon metabolism in the two-component system, were observed. More importantly, the expression levels of the four surfactin synthetase genes increased at higher DO, however, the iturin synthetase gene expression did not. Furthermore, modular surfactin synthetase was overexpressed (between 9- and 49-fold) at 200 rpm but not at 100 rpm, which is suggestive of efficient surfactin assembly resulting in surfactin overproduction. This study provides a theoretical basis for constructing engineering strains with high lipopeptide production to adapt to different DO.
Collapse
|
3
|
Gudiña EJ, Teixeira JA. Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol Adv 2022; 60:108013. [PMID: 35752271 DOI: 10.1016/j.biotechadv.2022.108013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
Abstract
Microbial biosurfactants have attracted the attention of researchers and companies for the last decades, as they are considered promising candidates to replace chemical surfactants in numerous applications. Although in the last years, considerable advances were performed regarding strain engineering and the use of low-cost substrates in order to reduce their production costs, one of the main bottlenecks is their production at industrial scale. Conventional aerobic biosurfactant production processes result in excessive foaming, due to the use of high agitation and aeration rates necessary to increase dissolved oxygen concentration to allow microbial growth and biosurfactant production. Different approaches have been studied to overcome this problem, although with limited success. A not widely explored alternative is the development of foam-free processes through the anaerobic growth of biosurfactant-producing microorganisms. Surfactin, produced by Bacillus subtilis, is the most widely studied lipopeptide biosurfactant, and the most powerful biosurfactant known so far. Bacillus licheniformis strains produce lichenysin, a lipopeptide biosurfactant which structure is similar to surfactin. However, despite its extraordinary surface-active properties and potential applications, lichenysin has been scarcely studied. According to previous studies, B. licheniformis is better adapted to anaerobic growth than B. subtilis, and could be a good alternative for the anaerobic production of lipopeptide biosurfactants. In this review, the potential and limitations of surfactin and lichenysin production under anaerobic conditions will be analyzed, and the possibility of implementing foam-free processes for lichenysin production, in order to expand the market and applications of biosurfactants in different fields, will be discussed.
Collapse
Affiliation(s)
- Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Sarmiento-López LG, López-Meyer M, Maldonado-Mendoza IE, Quiroz-Figueroa FR, Sepúlveda-Jiménez G, Rodríguez-Monroy M. Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. J Biosci Bioeng 2022; 134:21-28. [PMID: 35461767 DOI: 10.1016/j.jbiosc.2022.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
Bacillus circulans E9 (now known as Niallia circulans) promotes plant growth-producing indole-3-acetic acid (IAA), showing potential for use as a biofertilizer. In this work, the use of a low-cost medium containing industrial substrates, soybean, pea flour, Solulys, Pharmamedia, yeast extract, and sodium chloride (NaCl), was evaluated as a substitute for microbiological Luria Broth (LB) medium for the growth of B. circulans E9 and the production of IAA. In Erlenmeyer flasks with pea fluor medium (PYM), the maximum production of IAA was 7.81 ± 0.16 μg mL-1, while in microbiological LB medium, it was 3.73 ± 0.15 μg mL-1. In addition, an oxygen transfer rate (OTR) of 1.04 kg O2 m-3 d-1 allowed the highest bacterial growth (19.3 ± 2.18 × 1010 CFU mL-1) and IAA production (10.7 μg mL-1). Consequently, the OTR value from the flask experiments was used to define the conditions for the operation of a 1 L stirred tank bioreactor. The growth and IAA production of B. circulans cultured in a bioreactor with PYM medium were higher (8 and 1.6 times, respectively) than those of bacteria cultured in Erlenmeyer flasks. IAA produced in a bioreactor by B. circulans was shown to induce the root system in Arabidopsis thaliana, similar to synthetic IAA. The results of this study demonstrate that PYM medium may be able to be used for the mass production of B. circulans E9 in bioreactors, increasing both bacterial growth and IAA production. This low-cost medium has the potential to be employed to grow other IAA-producing bacterial species.
Collapse
Affiliation(s)
- Luis Gerardo Sarmiento-López
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - Francisco Roberto Quiroz-Figueroa
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - Gabriela Sepúlveda-Jiménez
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Mario Rodríguez-Monroy
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico.
| |
Collapse
|
5
|
Process Development in Biosurfactant Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:195-233. [DOI: 10.1007/10_2021_195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
da Silva TAF, de Freitas LS, da Silva LVJB, Duarte Neto JMW, da Silva GR, Maranhão LMDAC, de Lacerda CA, Oliveira JDP, Bezerra RP, Porto ALF. Effect of the volumetric oxygen mass transfer coefficient on producing δ-endotoxins by Bacillus thuringiensis in culture medium based on forage palm. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Brück HL, Coutte F, Dhulster P, Gofflot S, Jacques P, Delvigne F. Growth Dynamics of Bacterial Populations in a Two-Compartment Biofilm Bioreactor Designed for Continuous Surfactin Biosynthesis. Microorganisms 2020; 8:microorganisms8050679. [PMID: 32392736 PMCID: PMC7285194 DOI: 10.3390/microorganisms8050679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022] Open
Abstract
Biofilm bioreactors are promising systems for continuous biosurfactant production since they provide process stability through cell immobilization and avoid foam formation. In this work, a two-compartment biofilm bioreactor was designed consisting of a stirred tank reactor and a trickle-bed reactor containing a structured metal packing for biofilm formation. A strong and poor biofilm forming B. subtilis 168 strain due to restored exopolysaccharides (EPS) production or not were cultivated in the system to study the growth behavior of the planktonic and biofilm population for the establishment of a growth model. A high dilution rate was used in order to promote biofilm formation on the packing and wash out unwanted planktonic cells. Biofilm development kinetics on the packing were assessed through a total organic carbon mass balance. The EPS+ strain showed a significantly improved performance in terms of adhesion capacity and surfactin production. The mean surfactin productivity of the EPS+ strain was about 37% higher during the continuous cultivation compared to the EPS- strain. The substrate consumption together with the planktonic cell and biofilm development were properly predicted by the model (α = 0.05). The results show the efficiency of the biofilm bioreactor for continuous surfactin production using an EPS producing strain.
Collapse
Affiliation(s)
- Hannah Luise Brück
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro N° 1158, Gembloux Agro-Bio Tech, University Liège, University Lille, INRAE, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, B-5030 Gembloux, Belgium; (H.L.B.); (P.J.)
- ICV—Institut Charles Viollette, Joint Research Unit BioEcoAgro N° 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (F.C.); (P.D.)
| | - François Coutte
- ICV—Institut Charles Viollette, Joint Research Unit BioEcoAgro N° 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (F.C.); (P.D.)
| | - Pascal Dhulster
- ICV—Institut Charles Viollette, Joint Research Unit BioEcoAgro N° 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (F.C.); (P.D.)
| | - Sébastien Gofflot
- Walloon Agricultural Research Center (CRA-W), Agricultural Product Technology Unit, Chaussée de Namur, 24, B-5030 Gembloux, Belgium;
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro N° 1158, Gembloux Agro-Bio Tech, University Liège, University Lille, INRAE, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, B-5030 Gembloux, Belgium; (H.L.B.); (P.J.)
| | - Frank Delvigne
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro N° 1158, Gembloux Agro-Bio Tech, University Liège, University Lille, INRAE, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, B-5030 Gembloux, Belgium; (H.L.B.); (P.J.)
- Correspondence:
| |
Collapse
|
8
|
Brück HL, Delvigne F, Dhulster P, Jacques P, Coutte F. Molecular strategies for adapting Bacillus subtilis 168 biosurfactant production to biofilm cultivation mode. BIORESOURCE TECHNOLOGY 2019; 293:122090. [PMID: 31499329 DOI: 10.1016/j.biortech.2019.122090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Biofilm bioreactors have already been proven to be efficient systems for microbial lipopeptide production since they avoid foam formation. However, the cell adhesion capacities of the laboratory strain B.subtilis 168 to the biofilm bioreactor support are limited. In this work, we present a novel approach for increasing cell adhesion through the generation of filamentous and/or exopolysaccharide producing B.subtilis 168 mutants by genetic engineering. The single cell growth behavior was analyzed using time-lapse microscopy and the colonization capacities were investigated under continuous flow conditions in a drip-flow reactor. Cell adhesion could be increased three times through filamentous growth in lipopeptide producing B. subtilis 168 derivatives strains. Further restored exopolysaccharide production increased up to 50 times the cell adhesion capacities. Enhanced cell immobilization resulted in 10 times increased surfactin production. These findings will be of particular interest regarding the design of more efficient microbial cell factories for biofilm cultivation.
Collapse
Affiliation(s)
- Hannah Luise Brück
- MiPI, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, B-5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 ICV - Institut Charles Viollette, F-59000 Lille, France
| | - Frank Delvigne
- MiPI, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, B-5030 Gembloux, Belgium
| | - Pascal Dhulster
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 ICV - Institut Charles Viollette, F-59000 Lille, France
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, B-5030 Gembloux, Belgium
| | - François Coutte
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 ICV - Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
9
|
Wu R, Chen G, Pan S, Zeng J, Liang Z. Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Sci Rep 2019; 9:6824. [PMID: 31048760 PMCID: PMC6497689 DOI: 10.1038/s41598-019-43371-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/23/2019] [Indexed: 01/24/2023] Open
Abstract
The goal of this study was to develop a cheap and simple medium and to optimize fermentation parameters for fibrinolytic enzyme production by Bacillus subtilis WR350. A low-cost medium containing 35 g/L sucrose, 20 g/L corn steep powder and 2 g/L MgSO4·7H2O was developed via single-factor and orthogonal experiments. A cheap nitrogen source, corn steep powder, was used to replace the soy peptone present in the initial medium. The highest fibrinolytic activity of 5865 U/mL was achieved using the optimized medium in a 100-L fermenter with an aeration rate of 1.0 vvm and an agitation speed of 200 rpm. The resulting enzyme yield was among the highest described in the literature with respect to fibrinolytic activity, as determined by the fibrin plate method. Techno-economic evaluation indicated that the cost of the optimized medium was only 8.5% of the cost of the initial medium, and the total fermentation cost of fibrinolytic enzyme production using the optimized medium was 23.35% of the cost of using the initial medium.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology; College of Life Science and Technology; Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology; College of Life Science and Technology; Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Shihan Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology; College of Life Science and Technology; Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Jingjing Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology; College of Life Science and Technology; Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology; College of Life Science and Technology; Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
10
|
Modelling and optimisation of gas-liquid mass transfer in a microporous hollow fiber membrane aerated bioreactor used to produce surfactin. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wang J, Guo R, Wang W, Ma G, Li S. Insight into the surfactin production of Bacillus velezensis B006 through metabolomics analysis. ACTA ACUST UNITED AC 2018; 45:1033-1044. [PMID: 30203399 DOI: 10.1007/s10295-018-2076-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
Abstract
Bacillus velezensis B006 is a biocontrol agent which functions through effective colonization and surfactin production. To reveal the surfactin-producing mechanism, gas chromatography–mass spectrometry based untargeted metabolomics was performed to compare the metabolite profiles of strain B006 grown in industrial media M3 and M4. Based on the statistical and pathway topology analyses, a total of 31 metabolites with a fold change of less than − 1.0 were screened as the significantly altered metabolites, which distributed in 15 metabolic pathways. Fourteen amino acids involving in the metabolisms of alanine/aspartate/glutamate, glycine/serine/threonine, arginine/proline, glutathione/cysteine/methionine and valine/leucine/isoleucine as well as succinic acid in TCA cycle were identified to be the hub metabolites. Aminoacyl-tRNA biosynthesis, glycerolipid metabolism, and pantothenate/CoA biosynthesis also contributed to surfactin production. To the best of our knowledge, this study is the first to investigate the metabolic pathways of B. velezensis on surfactin production, and will benefit the optimization of commercial fermentation for higher surfactin yield.
Collapse
Affiliation(s)
- Junqiang Wang
- grid.464356.6 Institute of Plant Protection, Chinese Academy of Agricultural Sciences No. 2 Yuanmingyuan West Road 100193 Beijing China
- Jiangsu Frey Agrochemicals Co. Ltd 222005 Lianyungang Jiangsu China
| | - Rongjun Guo
- grid.464356.6 Institute of Plant Protection, Chinese Academy of Agricultural Sciences No. 2 Yuanmingyuan West Road 100193 Beijing China
| | - Wenchao Wang
- Shanghai ProfLeader Biotech Co. Ltd 200231 Shanghai China
| | - Guizhen Ma
- 0000 0004 1800 0658 grid.443480.f School of Chemical Engineering Huaihai Institute of Technology 222005 Lianyungang Jiangsu China
| | - Shidong Li
- grid.464356.6 Institute of Plant Protection, Chinese Academy of Agricultural Sciences No. 2 Yuanmingyuan West Road 100193 Beijing China
| |
Collapse
|
12
|
Numerical simulation of flow behavior of particles in an inverse liquid–solid fluidized bed with a jet using CFD-DEM. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Coutte F, Lecouturier D, Dimitrov K, Guez JS, Delvigne F, Dhulster P, Jacques P. Microbial lipopeptide production and purification bioprocesses, current progress and future challenges. Biotechnol J 2017. [DOI: 10.1002/biot.201600566] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- François Coutte
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
| | - Didier Lecouturier
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
| | - Krasimir Dimitrov
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
| | - Jean-Sébastien Guez
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
- Axe GePEB, Institut Pascal, UMR 6602; Université Clermont Auvergne, CNRS, SIGMA; Clermont-Ferrand France
| | - Frank Delvigne
- Microbial Processes and Interactions, TERRA Teaching and Research Centre; Gembloux Agro-Bio Tech University of Liege; Gembloux Belgium
| | - Pascal Dhulster
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
| | - Philippe Jacques
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
- Microbial Processes and Interactions, TERRA Teaching and Research Centre; Gembloux Agro-Bio Tech University of Liege; Gembloux Belgium
| |
Collapse
|
14
|
Rangarajan V, Clarke KG. Process development and intensification for enhanced production ofBacilluslipopeptides. Biotechnol Genet Eng Rev 2016; 31:46-68. [DOI: 10.1080/02648725.2016.1166335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Chen WC, Juang RS, Wei YH. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.07.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Khondee N, Tathong S, Pinyakong O, Müller R, Soonglerdsongpha S, Ruangchainikom C, Tongcumpou C, Luepromchai E. Lipopeptide biosurfactant production by chitosan-immobilized Bacillus sp. GY19 and their recovery by foam fractionation. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Zhu P, Dong S, Li S, Xu X, Xu H. Improvement of welan gum biosynthesis and transcriptional analysis of the genes responding to enhanced oxygen transfer by oxygen vectors in Sphingomonas sp. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|