1
|
Delbridge J, Barrett T, Ducci A, Micheletti M. Power, mixing and flow dynamics of the novel Allegro™ stirred tank reactor. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Zhu L, Chen W, Zhao C. Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors. Sci Rep 2022; 12:9596. [PMID: 35688858 PMCID: PMC9187773 DOI: 10.1038/s41598-022-13441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Orbitally shaking bioreactors (OSRs) have recently been increasingly applied in the biopharmaceutical industry because they can provide a suitable environment for mammalian cell growth and protein expression. Fluid dynamics information is crucial for analyzing or optimizing of different types of bioreactors. Considering that the structure has an important influence on the fluid dynamics in a bioreactor, it necessary to design or optimize its structure by the computational fluid dynamics (CFD) approach. The aim of this study is to optimize the wall structure of a hollow cylinder OSR proposed in our previous work. Based on previous research, the influences of the hollow wall of the OSR on fluid dynamics and the volumetric mass transfer coefficient ([Formula: see text]) were analysed by the established CFD model. The results showed that the mixing performance of OSR could be improved by decreasing the installation height of the hollow wall. An installation height of 30 mm was found to be most favourable for mixing. The reliability of the CFD model was verified by comparing the liquid wave height and liquid wave shape between the simulation and experiment. The shear stress in the hollow cylinder OSR was proven gentle for mammalian cell cultivation.
Collapse
Affiliation(s)
- Likuan Zhu
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weiqing Chen
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunyang Zhao
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Chaverra-Muñoz L, Briem T, Hüttel S. Optimization of the production process for the anticancer lead compound illudin M: improving titers in shake-flasks. Microb Cell Fact 2022; 21:98. [PMID: 35643529 PMCID: PMC9148526 DOI: 10.1186/s12934-022-01827-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The fungal sesquiterpenes Illudin M and S are important base molecules for the development of new anticancer agents due to their strong activity against some resistant tumor cell lines. Due to nonspecific toxicity of the natural compounds, improvement of the pharmacophore is required. A semisynthetic derivative of illudin S (Irofulven) entered phase II clinical trials for the treatment of castration-resistant metastatic prostate cancer. Several semisynthetic illudin M derivatives showed increased in vitro selectivity and improved therapeutic index against certain tumor cell lines, encouraging further investigation. This requires a sustainable supply of the natural compound, which is produced by Basidiomycota of the genus Omphalotus. We aimed to develop a robust biotechnological process to deliver illudin M in quantities sufficient to support medicinal chemistry studies and future preclinical and clinical development. In this study, we report the initial steps towards this goal. RESULTS After establishing analytical workflows, different culture media and commercially available Omphalotus strains were screened for the production of illudin M.Omphalotus nidiformis cultivated in a medium containing corn steep solids reached ~ 38 mg L-1 setting the starting point for optimization. Improved seed preparation in combination with a simplified medium (glucose 13.5 g L-1; corn steep solids 7.0 g L- 1; Dox broth modified 35 mL), reduced cultivation time and enhanced titers significantly (~ 400 mg L-1). Based on a reproducible cultivation method, a feeding strategy was developed considering potential biosynthetic bottlenecks. Acetate and glucose were fed at 96 h (8.0 g L-1) and 120 h (6.0 g L-1) respectively, which resulted in final illudin M titer of ~ 940 mg L-1 after eight days. This is a 25 fold increase compared to the initial titer. CONCLUSION After strict standardization of seed-preparation and cultivation parameters, a combination of experimental design, empirical trials and additional supply of limiting biosynthetic precursors, led to a highly reproducible process in shake flasks with high titers of illudin M. These findings are the base for further work towards a scalable biotechnological process for a stable illudin M supply.
Collapse
Affiliation(s)
- Lillibeth Chaverra-Muñoz
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Theresa Briem
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| |
Collapse
|
4
|
Matthew SAL, Rezwan R, Perrie Y, Seib FP. Volumetric Scalability of Microfluidic and Semi-Batch Silk Nanoprecipitation Methods. Molecules 2022; 27:2368. [PMID: 35408763 PMCID: PMC9000471 DOI: 10.3390/molecules27072368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin nanoprecipitation by organic desolvation in semi-batch and microfluidic formats provides promising bottom-up routes for manufacturing narrow polydispersity, spherical silk nanoparticles. The translation of silk nanoparticle production to pilot, clinical, and industrial scales can be aided through insight into the property drifts incited by nanoprecipitation scale-up and the identification of critical process parameters to maintain throughout scaling. Here, we report the reproducibility of silk nanoprecipitation on volumetric scale-up in low-shear, semi-batch systems and estimate the reproducibility of chip parallelization for volumetric scale-up in a high shear, staggered herringbone micromixer. We showed that silk precursor feeds processed in an unstirred semi-batch system (mixing time > 120 s) displayed significant changes in the nanoparticle physicochemical and crystalline properties following a 12-fold increase in volumetric scale between 1.8 and 21.9 mL while the physicochemical properties stayed constant following a further 6-fold increase in scale to 138 mL. The nanoparticle physicochemical properties showed greater reproducibility after a 6-fold volumetric scale-up when using lower mixing times of greater similarity (8.4 s and 29.4 s) with active stirring at 400 rpm, indicating that the bulk mixing time and average shear rate should be maintained during volumetric scale-up. Conversely, microfluidic manufacture showed high between-batch repeatability and between-chip reproducibility across four participants and microfluidic chips, thereby strengthening chip parallelization as a production strategy for silk nanoparticles at pilot, clinical, and industrial scales.
Collapse
Affiliation(s)
- Saphia A. L. Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.A.L.M.); (Y.P.)
| | - Refaya Rezwan
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh;
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.A.L.M.); (Y.P.)
| | - F. Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.A.L.M.); (Y.P.)
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| |
Collapse
|
5
|
Engineering characterization of the novel Bach impeller for bioprocessing applications requiring low power inputs. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Matthew SAL, Rezwan R, Kaewchuchuen J, Perrie Y, Seib FP. Mixing and flow-induced nanoprecipitation for morphology control of silk fibroin self-assembly. RSC Adv 2022; 12:7357-7373. [PMID: 35424679 PMCID: PMC8982335 DOI: 10.1039/d1ra07764c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Tuning silk fibroin nanoparticle morphology using nanoprecipitation for bottom-up manufacture is an unexplored field that has the potential to improve particle performance characteristics. The aim of this work was to use both semi-batch bulk mixing and micro-mixing to modulate silk nanoparticle morphology by controlling the supersaturation and shear rate during nanoprecipitation. At flow rates where the shear rate was below the critical shear rate for silk, increasing the concentration of silk in both bulk and micro-mixing processes resulted in particle populations of increased sphericity, lower size, and lower polydispersity index. At high flow rates, where the critical shear rate was exceeded, the increased supersaturation with increasing concentration was counteracted by increased rates of shear-induced assembly. The morphology could be tuned from rod-like to spherical assemblies by increasing supersaturation of the high-shear micro-mixing process, thereby supporting a role for fast mixing in the production of narrow-polydispersity silk nanoparticles. This work provides new insight into the effects of shear during nanoprecipitation and provides a framework for scalable manufacture of spherical and rod-like silk nanoparticles.
Collapse
Affiliation(s)
- Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK +44 (0)141 548 2510
| | - Refaya Rezwan
- Department of Pharmacy, ASA University Bangladesh 23/3 Bir Uttam A. N. M. Nuruzzaman Sarak Dhaka 1207 Bangladesh
| | - Jirada Kaewchuchuen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK +44 (0)141 548 2510
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy Bangkok Thailand
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK +44 (0)141 548 2510
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK +44 (0)141 548 2510
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre 99 George Street Glasgow G1 1RD UK
| |
Collapse
|
7
|
Wang Z, Zhu N, Wang W, Chao X. Y-Net: a dual-branch deep learning network for nonlinear absorption tomography with wavelength modulation spectroscopy. OPTICS EXPRESS 2022; 30:2156-2172. [PMID: 35209362 DOI: 10.1364/oe.448916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
This paper demonstrates a new method for solving nonlinear tomographic problems, combining calibration-free wavelength modulation spectroscopy (CF-WMS) with a dual-branch deep learning network (Y-Net). The principle of CF-WMS, as well as the architecture, training and performance of Y-Net have been investigated. 20000 samples are randomly generated, with each temperature or H2O concentration phantom featuring three randomly positioned Gaussian distributions. Non-uniformity coefficient (NUC) method provides quantitative characterizations of the non-uniformity (i.e., the complexity) of the reconstructed fields. Four projections, each with 24 parallel beams are assumed. The average reconstruction errors of temperature and H2O concentration for the testing dataset with 2000 samples are 1.55% and 2.47%, with standard deviations of 0.46% and 0.75%, respectively. The reconstruction errors for both temperature and species concentration distributions increase almost linearly with increasing NUC from 0.02 to 0.20. The proposed Y-Net shows great advantages over the state-of-the-art simulated annealing algorithm, such as better noise immunity and higher computational efficiency. This is the first time, to the best of our knowledge, that a dual-branch deep learning network (Y-Net) has been applied to WMS-based nonlinear tomography and it opens up opportunities for real-time, in situ monitoring of practical combustion environments.
Collapse
|
8
|
Tran HT, Lin C, Hoang HG, Bui XT, Le VG, Vu CT. Soil washing for the remediation of dioxin-contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126767. [PMID: 34396961 DOI: 10.1016/j.jhazmat.2021.126767] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Dioxin-contaminated soil has attracted worldwide attention due to its potential negative impacts on human health and the ecosystem. Thus, technological development aiming at high treatment efficiency and low cost for dioxin-contaminated soil is largely needed. In this review, approximately 200 documents were involved to summarize up-to-date scientific achievements of soil washing technology for the remediation of dioxin-contaminated soil. The mechanisms, advantages, and limitations of physical separation techniques (e.g. mechanical stirring, mechanical shaking, ultrasonication, and froth flotation) and washing solutions (e.g. organic solvents, edible oils, and surfactants) used for chemical extraction were comprehensively reviewed. Froth flotation is very promising for field-scale soil washing, whereas organic solvents show high removal efficiencies (up to 99%) of dioxins from contaminated soil. Further, the combination of physical separation and chemical extraction can help enhance dioxin removal efficiency (from 1.5 to 2 times), reducing energy consumption and cost (about 2 times). Among available remediation technologies for dioxin-contaminated soil, soil washing is truly promising since it has shown high removal efficiency (66-99% different remediation scales) with reasonable cost (46 - 250 USD per metric ton). However, the washed solution and volatile organic compounds generated during the process remain a concern and should be addressed in future research.
Collapse
Affiliation(s)
- Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, ROC.
| | - Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Van Giang Le
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, United States
| |
Collapse
|
9
|
Maschke RW, Seidel S, Bley T, Eibl R, Eibl D. Determination of culture design spaces in shaken disposable cultivation systems for CHO suspension cell cultures. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhang L, Yang K, Li M, Xiao Q, Wang H. Experimental investigation on the uniformity optimization and chaos characterization of gas-liquid two-phase mixing process using statistical image analysis. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Lu Z, Li C, Huang L, Zhong F, Fei L, Zhang H, Pan Y. Numerical Simulation of the Influence of Bottom Structures on the Flow Field Characteristic in Shaking Bioreactors. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.20we022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiming Lu
- College of Mechanical Engineering, Zhejiang University of Technology
| | - Chengtuo Li
- College of Mechanical Engineering, Zhejiang University of Technology
| | - Liuyi Huang
- Zhejiang Academy of Special Equipment Science
| | | | - Liangqi Fei
- College of Mechanical Engineering, Zhejiang University of Technology
| | - Hongliang Zhang
- College of Mechanical Engineering, Zhejiang University of Technology
| | - Yuhui Pan
- College of Mechanical Engineering, Zhejiang University of Technology
| |
Collapse
|
12
|
Samaras JJ, Ducci A, Micheletti M. Flow, suspension and mixing dynamics in
DASGIP
bioreactors, Part 2. AIChE J 2020. [DOI: 10.1002/aic.16999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jasmin J. Samaras
- Advanced Centre for Biochemical Engineering University College London London UK
| | - Andrea Ducci
- Department of Mechanical Engineering University College London London UK
| | - Martina Micheletti
- Advanced Centre for Biochemical Engineering University College London London UK
| |
Collapse
|
13
|
Tůma S, Izaguirre J, Bondar M, Marques M, Fernandes P, da Fonseca M, Cesário M. Upgrading end-of-line residues of the red seaweed Gelidium sesquipedale to polyhydroxyalkanoates using Halomonas boliviensis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 27:e00491. [PMID: 32612942 PMCID: PMC7317225 DOI: 10.1016/j.btre.2020.e00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
Agar extraction from Gelidium and Gracilaria red seaweed species produces hundred thousand ton of carbohydrate-rich residues annually. Gelidium sesquipedale waste biomass obtained after agar extraction, still contained 44.2 % w/w total carbohydrates (dry-weight basis). These residues were biologically up-graded to poly-3-hydroxybutyrate (P3HB) after saccharification of their carbohydrate fraction to simple sugars. A combined hydrolysis treatment using sulfamic acid followed by enzymatic hydrolysis with cellulases produced a glucose-rich hydrolysate with a negligible content of inhibitors. With this treatment a sugar yield of circa 30 % (g glucose/g biomass) was attained. The algal hydrolysates were assessed as carbon source for the production of P3HB by the halotolerant bacteria Halomonas boliviensis. A cell concentration of 8.3 g L-1 containing 41 % (w/w) of polymer and a yield (YP/S ) of 0.16 gpolymer/gglucose were attained in shake flask assays. In this work, cellulose-rich seaweed waste was shown to be an upgradable, sustainable source of carbohydrates.
Collapse
Key Words
- AGU, AmyloGlucosidase Unit
- AHG, anhydro-L-galactose
- AOAC, Association of Official Agricultural Chemists
- BHU (2), Biomass Hydrolysis Unit
- CBU, CelloBiase Unit
- CDW, cell dry weight
- FID, flame ionization detector
- FPU, Filter Paper Unit
- Fr, Froude number
- G. sesquipedale, Gelidium sesquipedale
- Gelidium sesquipedale
- H. boliviensis, Halomonas boliviensis
- HMF, 5-hydroxymethyl furfural
- Halomonas boliviensis
- KNU, Kilo Novo alpha-amylase Unit
- MSG, monosodium glutamate
- Macroalgae residues
- Mw, molecular weight
- NABH, neoagarobiose hydrolase
- NREL, National Renewable Energy. Laboratory
- P3HB, poly-3-hydroxybutyrate
- Poly-3-hydroxybutyrate
- Seaweed residues
- Waste seaweed
- dw basis, dry weight basis
Collapse
Affiliation(s)
- S. Tůma
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - J.K. Izaguirre
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
- Neiker-Tecnalia, Basque Institute for Agricultural Research, Vitoria-Gasteiz, Spain
| | - M. Bondar
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - M.M. Marques
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - P. Fernandes
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DREAMS and Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - M.M.R. da Fonseca
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - M.T. Cesário
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
14
|
Mendonça da Silva J, Erro E, Awan M, Chalmers SA, Fuller B, Selden C. Small-Scale Fluidized Bed Bioreactor for Long-Term Dynamic Culture of 3D Cell Constructs and in vitro Testing. Front Bioeng Biotechnol 2020; 8:895. [PMID: 32974291 PMCID: PMC7468403 DOI: 10.3389/fbioe.2020.00895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
With the increasing interest in three-dimensional (3D) cell constructs that better represent native tissues, comes the need to also invest in devices, i.e., bioreactors, that provide a controlled dynamic environment similar to the perfusion mechanism observed in vivo. Here a laboratory-scale fluidized bed bioreactor (sFBB) was designed for hydrogel (i.e., alginate) encapsulated cells to generate a dynamic culture system that produced a homogenous milieu and host substantial biomass for long-term evolution of tissue-like structures and “per cell” performance analysis. The bioreactor design, conceptualized through scale-down empirical similarity rules, was initially validated through computational fluid dynamics analysis for the distributor capacity of homogenously dispersing the flow with an average fluid velocity of 4.596 × 10–4 m/s. Experimental tests then demonstrated a consistent fluidization of hydrogel spheres, while maintaining shape and integrity (606.9 ± 99.3 μm diameter and 0.96 shape factor). It also induced mass transfer in and out of the hydrogel at a faster rate than static conditions. Finally, the sFBB sustained culture of alginate encapsulated hepatoblastoma cells for 12 days promoting proliferation into highly viable (>97%) cell spheroids at a high final density of 27.3 ± 0.78 million cells/mL beads. This was reproducible across multiple units set up in parallel and operating simultaneously. The sFBB prototype constitutes a simple and robust tool to generate 3D cell constructs, expandable into a multi-unit setup for simultaneous observations and for future development and biological evaluation of in vitro tissue models and their responses to different agents, increasing the complexity and speed of R&D processes.
Collapse
Affiliation(s)
- Joana Mendonça da Silva
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Eloy Erro
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Maooz Awan
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Sherri-Ann Chalmers
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Barry Fuller
- UCL Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Clare Selden
- The Liver Group, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| |
Collapse
|
15
|
Abstract
This study investigated the efficacy of a novel correlation of power input, energy dissipation rate and mixing time as a potential route to identify the orbitally shaken bioreactor (OSB) system. The Buckingham’s π-theorem was used to designate and transform dimensionless Newton numbers with five relevant power input variables. These variables were empirically varied to evaluate the correlation among the dimensionless numbers. The Newton number decreases with the increased shaking frequency and filling volume. Previous work has focused on optimizing the mixing process by evaluating different shaking and agitation mixing methods. We establish a new mixing process and assessable measurement of the mixing time in the OSB. An innovative explanation of mixing time for the thermal method is proposed. The optimal mixing time is independent of the temperature of filled liquid. The dimensionless mixing number remained constant in the turbulent regime and increasing with the increased liquid viscosity and filling volume. Our findings revealed that the observed correlation is a practical tool to figure the power consumption and mixing efficiency as cell cultivation in all OSB scales and is fully validated when scaling–up system.
Collapse
|
16
|
|
17
|
Li Y, Ducci A, Micheletti M. Mixing Time in Intermediate‐Sized Orbitally Shaken Reactors with Small Orbital Diameters. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi Li
- University College LondonDepartment of Biochemical Engineering Torrington Place WC1E 7JE London UK
| | - Andrea Ducci
- University College LondonDepartment of Mechanical Engineering Torrington Place WC1E 7JE London UK
| | - Martina Micheletti
- University College LondonDepartment of Biochemical Engineering Torrington Place WC1E 7JE London UK
| |
Collapse
|
18
|
Li C, Xiao J, Zhang Y, Chen XD. Mixing in a soft-elastic reactor (SER): A simulation study. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Changyong Li
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian, 361005 P. R. China
| | - Jie Xiao
- China-Australia Joint Research Center in Future Dairy Manufacturing; School of Chemical and Environmental Engineering; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou City Jiangsu, 215123 P. R. China
| | - Yu Zhang
- School of Medicine; Tsinghua University; Beijing 100084 P. R. China
| | - Xiao Dong Chen
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian, 361005 P. R. China
- China-Australia Joint Research Center in Future Dairy Manufacturing; School of Chemical and Environmental Engineering; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou City Jiangsu, 215123 P. R. China
| |
Collapse
|
19
|
Barabash VM, Abiev RS, Kulov NN. Theory and Practice of Mixing: A Review. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2018. [DOI: 10.1134/s004057951804036x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
|
21
|
Overexpression and purification of human myosins from transiently and stably transfected suspension adapted HEK293SF-3F6 cells. Anal Biochem 2018; 558:19-27. [PMID: 30075102 DOI: 10.1016/j.ab.2018.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The myosin family of motor proteins is an attractive target of therapeutic small-molecule protein inhibitors and modulators. Milligrams of protein quantities are required to conduct proper biophysical and biochemical studies to understand myosin functions. Myosin protein expression and purification represent a critical starting point towards this goal. Established utilization of Dictyostelium discoideum, Drosophila melanogaster, insect and mouse cells for myosin expression and purification is limited, cost, labor and time inefficient particularly for (full-length) human myosins. Here we are presenting detailed protocols for production of several difficult-to-purify recombinant human myosins in efficient quantities up to 1 mg of protein per liter of cell culture. This is the first time that myosins have been purified in large scales from suspension adapted transiently and stably expressing human cells. The method is also useful for expressing other human proteins in quantities sufficient to perform extensive biochemical and biophysical characterization.
Collapse
|
22
|
Rodriguez G, Micheletti M, Ducci A. Macro- and micro-scale mixing in a shaken bioreactor for fluids of high viscosity. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Xiao Q, Xu J, Wang H. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model. Sci Rep 2016; 6:31548. [PMID: 27527065 PMCID: PMC4985748 DOI: 10.1038/srep31548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/04/2016] [Indexed: 11/09/2022] Open
Abstract
A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.
Collapse
Affiliation(s)
- Qingtai Xiao
- Kunming University 5 of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China.,Kunming University of Science and Technology, Faculty of Metallurgy and Energy Engineering, Kunming, 650093, China
| | - Jianxin Xu
- Kunming University 5 of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China.,Kunming University of Science and Technology, Quality Development Institute, Kunming, 650093, China
| | - Hua Wang
- Kunming University 5 of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China.,Kunming University of Science and Technology, Faculty of Metallurgy and Energy Engineering, Kunming, 650093, China
| |
Collapse
|
24
|
Rodriguez G, Pieralisi I, Anderlei T, Ducci A, Micheletti M. Appraisal of fluid flow in a shaken bioreactor with conical bottom at different operating conditions. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Pieralisi I, Rodriguez G, Micheletti M, Paglianti A, Ducci A. Microcarriers’ suspension and flow dynamics in orbitally shaken bioreactors. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
|
27
|
Ducci A, Weheliye WH. Orbitally shaken bioreactors-viscosity effects on flow characteristics. AIChE J 2014. [DOI: 10.1002/aic.14608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea Ducci
- Mechanical Engineering Dept.; University College London; Torrington Place London WC1E 7JE U.K
| | - Weheliye Hashi Weheliye
- Mechanical Engineering Dept.; University College London; Torrington Place London WC1E 7JE U.K
| |
Collapse
|