1
|
Esakkimuthu ES, Ponnuchamy V, Mikuljan M, Schwarzkopf M, DeVallance D. Fungal enzyme degradation of lignin-PLA composites: Insights from experiments and molecular docking simulations. Heliyon 2024; 10:e23838. [PMID: 38192859 PMCID: PMC10772188 DOI: 10.1016/j.heliyon.2023.e23838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Fungal enzymes are effective in degrading various polymeric materials. In this study, we assessed the initial degradation of composites consisting of lignin-poly(lactic acid) (PLA) with both unmodified lignin (LIG) and oxypropylated lignin (oLIG) incorporated at 10 % and 40 % weight within the PLA matrix in a fungal environment. Trametes versicolor fungi were used, and the samples were treated only for eight weeks. Although there was no significant difference in weight loss, the degradation process impacted the chemical and thermal properties of the composites, as shown by Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC) analyses. After the degradation process, the carbonyl index values decreased for all composites and the hydroxyl index values increased for LIG/PLA and a reverse trend was observed for oLIG/PLA composites. The first heating scan from DSC results showed that the melting peak and the cold crystallization peak disappeared after the degradation process. Microscopic analysis revealed that LIG/PLA exhibited higher roughness than oLIG/PLA. Molecular docking simulations were carried out using guaiacylglycerol-β-guaiacyl ether (GGE) and lactic acid (LA) as model compounds for lignin and PLA, respectively, with laccase (Lac) enzyme for Trametes versicolor. The docking results showed that GGE had the strongest binding interaction and affinity with Lac than lactic acid and oxypropylated GGE. The oxypropylated GGE formed a shorter hydrogen bonding with the Lac enzyme than GGE and LA. The trend associated with the degradation of composites from experimental and molecular docking findings was consistent. This combined approach provided insights into the degradation process using fungi and had the potential to be applied to different polymeric composites.
Collapse
Affiliation(s)
| | - Veerapandian Ponnuchamy
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000, Koper, Slovenia
| | | | - Matthew Schwarzkopf
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000, Koper, Slovenia
| | - David DeVallance
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000, Koper, Slovenia
| |
Collapse
|
2
|
Martinelli A, Giannini L, Branduardi P. Enzymatic Modification of Cellulose To Unlock Its Exploitation in Advanced Materials. Chembiochem 2020; 22:974-981. [PMID: 33063936 DOI: 10.1002/cbic.202000643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Indexed: 01/16/2023]
Abstract
Nowadays natural biopolymers have a wide variety of uses in various industrial applications, such as food, adhesives and composite materials. Among them, cellulose has attracted the interest of researchers due to its properties: high strength and flexibility, biocompatibility and nontoxicity. Despite that, in many cases its practical use is limited because of poor solubility and/or an unsuitable hydrophilic/hydrophobic balance. In this context, enzymatic modification appears as a powerful strategy to overcome these problems through selective, green and environmentally friendly processes. This minireview discusses the different methods developed for the enzymatic modification of cellulose, emphasizing the type of reaction, the enzymes used (laccases, esterases, lipases, hexokinases, etc.), and the properties and applications of the cellulose derivatives obtained. Considering that cellulose is the most abundant natural polymer on Earth and can be derived from residual lignocellulosic biomass, the impact of its use in bio-based process following the logic of the circular economy is relevant.
Collapse
Affiliation(s)
- Andrea Martinelli
- DepartmentMaterials Science, University of Milano Bicocca, Via Cozzi 55, 20125, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | | | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| |
Collapse
|
3
|
Singh G, Arya SK. Utility of laccase in pulp and paper industry: A progressive step towards the green technology. Int J Biol Macromol 2019; 134:1070-1084. [DOI: 10.1016/j.ijbiomac.2019.05.168] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/31/2023]
|
4
|
Slagman S, Zuilhof H, Franssen MCR. Laccase-Mediated Grafting on Biopolymers and Synthetic Polymers: A Critical Review. Chembiochem 2018; 19:288-311. [PMID: 29111574 PMCID: PMC5836925 DOI: 10.1002/cbic.201700518] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 12/27/2022]
Abstract
Laccase-mediated grafting on lignocelluloses has gained considerable attention as an environmentally benign method to covalently modify wood, paper and cork. In recent decades this technique has also been employed to modify fibres with a polysaccharide backbone, such as cellulose or chitosan, to infer colouration, antimicrobial activity or antioxidant activity to the material. The scope of this approach has been further widened by researchers, who apply mediators or high redox potential laccases and those that modify synthetic polymers and proteins. In all cases, the methodology relies on one- or two-electron oxidation of the surface functional groups or of the graftable molecule in solution. However, similar results can very often be achieved through simple deposition, even after extensive washing. This unintended adsorption of the active substance could have an adverse effect on the durability of the applied coating. Differentiating between actual covalent binding and adsorption is therefore essential, but proves to be challenging. This review not only covers excellent research on the topic of laccase-mediated grafting over the last five to ten years, but also provides a critical comparison to highlight either the lack or presence of compelling evidence for covalent grafting.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Laboratory of Organic ChemistryWageningen University & ResearchStippeneng 46708 WEWageningenThe Netherlands
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University & ResearchStippeneng 46708 WEWageningenThe Netherlands
- School of Pharmaceutical Sciences and TechnologyTianjin University92 Weijin RoadNankai DistrictTianjin92000P. R. China
| | - Maurice C. R. Franssen
- Laboratory of Organic ChemistryWageningen University & ResearchStippeneng 46708 WEWageningenThe Netherlands
| |
Collapse
|
5
|
Sun S, Hu B. Enzymatic preparation of novel caffeoyl structured lipids using monoacylglycerols as caffeoyl acceptor and transesterification mechanism. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme Microb Technol 2016; 90:1-18. [DOI: 10.1016/j.enzmictec.2016.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
|
7
|
Slagman S, Escorihuela J, Zuilhof H, Franssen MCR. Characterization of the laccase-mediated oligomerization of 4-hydroxybenzoic acid. RSC Adv 2016. [DOI: 10.1039/c6ra23040g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The curious (lac)case of four dimers – how minor 4-hydroxybenzoic acid dimers can be of major importance.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Laboratory of Organic Chemistry
- Wageningen University
- 6708 WE Wageningen
- The Netherlands
| | - Jorge Escorihuela
- Laboratory of Organic Chemistry
- Wageningen University
- 6708 WE Wageningen
- The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry
- Wageningen University
- 6708 WE Wageningen
- The Netherlands
| | | |
Collapse
|
8
|
Kinetics of enzymatic synthesis of monoferuloyl glycerol and diferuloyl glycerol by transesterification in [BMIM]PF6. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Oliva-Taravilla A, Moreno AD, Demuez M, Ibarra D, Tomás-Pejó E, González-Fernández C, Ballesteros M. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. BIORESOURCE TECHNOLOGY 2015; 175:209-15. [PMID: 25459824 DOI: 10.1016/j.biortech.2014.10.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 05/02/2023]
Abstract
Laccase enzymes are promising detoxifying agents during lignocellulosic bioethanol production from wheat straw. However, they affect the enzymatic hydrolysis of this material by lowering the glucose recovery yields. This work aimed at explaining the negative effects of laccase on enzymatic hydrolysis. Relative glucose recovery in presence of laccase (10IU/g substrate) with model cellulosic substrate (Sigmacell) at 10% (w/v) was almost 10% points lower (P<0.01) than in the absence of laccase. This fact could be due to an increase in the competition of cellulose binding sites between the enzymes and a slight inhibition of β-glucosidase activity. However, enzymatic hydrolysis and infrared spectra of laccase-treated and untreated wheat straw filtered pretreated residue (WS-FPR), revealed that a grafting process of phenoxy radicals onto the lignin fiber could be the cause of diminished accessibility of cellulases to cellulose in pretreated wheat straw.
Collapse
Affiliation(s)
- Alfredo Oliva-Taravilla
- IMDEA Energy Institute, Biotechnology Processes for Energy Production Unit, 28935 Móstoles, Spain
| | - Antonio D Moreno
- IMDEA Energy Institute, Biotechnology Processes for Energy Production Unit, 28935 Móstoles, Spain
| | - Marie Demuez
- IMDEA Energy Institute, Biotechnology Processes for Energy Production Unit, 28935 Móstoles, Spain.
| | - David Ibarra
- INIA-CIFOR, Forestry Products Department, Cellulose and Paper Laboratories, 28040 Madrid, Spain
| | - Elia Tomás-Pejó
- IMDEA Energy Institute, Biotechnology Processes for Energy Production Unit, 28935 Móstoles, Spain
| | | | - Mercedes Ballesteros
- IMDEA Energy Institute, Biotechnology Processes for Energy Production Unit, 28935 Móstoles, Spain; CIEMAT, Renewable Energy Division, Biofuels Unit, 28040 Madrid, Spain
| |
Collapse
|
10
|
Thakur K, Kalia S, Kaith BS, Pathania D, Kumar A. Surface functionalization of coconut fibers by enzymatic biografting of syringaldehyde for the development of biocomposites. RSC Adv 2015. [DOI: 10.1039/c5ra14891j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface modification of coconut fibers was carried out by laccase-assisted biografting of syringaldehyde for their use as reinforcing material in the preparation of biocomposites.
Collapse
Affiliation(s)
- Kamini Thakur
- Department of Chemistry
- Shoolini University
- Solan-173212
- India
| | - Susheel Kalia
- Department of Chemistry
- Army Cadet College Wing
- Indian Military Academy
- Dehradun-248007
- India
| | - B. S. Kaith
- Department of Chemistry
- Dr. B. R. Ambedkar National Institute of Technology
- Jalandhar-144011
- India
| | | | - Amit Kumar
- Department of Chemistry
- Shoolini University
- Solan-173212
- India
| |
Collapse
|
11
|
Han Y, Shi L, Meng J, Yu H, Zhang X. Azo dye biodecolorization enhanced by Echinodontium taxodii cultured with lignin. PLoS One 2014; 9:e109786. [PMID: 25285777 PMCID: PMC4186836 DOI: 10.1371/journal.pone.0109786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/06/2014] [Indexed: 11/18/2022] Open
Abstract
Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase-aromatic systems at chemical concentrations as low as 10 µM.
Collapse
Affiliation(s)
- Yuling Han
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Meng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|