1
|
Guo RT, Hu X, Chen X, Bi ZX, Wang J, Pan WG. Recent Progress of Three-dimensionally Ordered Macroporous (3DOM) Materials in Photocatalytic Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207767. [PMID: 36624608 DOI: 10.1002/smll.202207767] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
In recent years, three-dimensionally ordered macroporous (3DOM) materials have attracted tremendous interest in the field of photocatalysis due to the periodic spatial structure and unique physicochemical properties of 3DOM catalysts. In this review, the fundamentals and principles of 3DOM photocatalysts are briefly introduced, including the overview of 3DOM materials, the photocatalytic principles based on 3DOM materials, and the advantages of 3DOM materials in photocatalysis. The preparation methods of 3DOM materials are also presented. The structure and properties of 3DOM materials and their effects on photocatalytic performance are briefly summarized. More importantly, 3DOM materials, as a supported catalyst, are extensively employed to combine with various common materials, including metal nanoparticles, metal oxides, metal sulfides, and carbon materials, to enhance photocatalytic performance. Finally, the prospects and challenges for the development of 3DOM materials in the field of photocatalysis are presented.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| |
Collapse
|
2
|
Deimling M, Kousik SR, Abitaev K, Frey W, Sottmann T, Koynov K, Laschat S, Atanasova P. Hierarchical Silica Inverse Opals as a Catalyst Support for Asymmetric Molecular Heterogeneous Catalysis with Chiral Rh‐diene Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202001997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Max Deimling
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Shravan R. Kousik
- Institute for Materials Science University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany
| | - Karina Abitaev
- Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Thomas Sottmann
- Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Kaloian Koynov
- Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Sabine Laschat
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Petia Atanasova
- Institute for Materials Science University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany
| |
Collapse
|
3
|
Kousik SR, Sipp D, Abitaev K, Li Y, Sottmann T, Koynov K, Atanasova P. From Macro to Mesoporous ZnO Inverse Opals: Synthesis, Characterization and Tracer Diffusion Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:196. [PMID: 33466679 PMCID: PMC7828802 DOI: 10.3390/nano11010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022]
Abstract
Oxide inverse opals (IOs) with their high surface area and open porosity are promising candidates for catalyst support applications. Supports with confined mesoporous domains are of added value to heterogeneous catalysis. However, the fabrication of IOs with mesoporous or sub-macroporous voids (<100 nm) continues to be a challenge, and the diffusion of tracers in quasi-mesoporous IOs is yet to be adequately studied. In order to address these two problems, we synthesized ZnO IOs films with tunable pore sizes using chemical bath deposition and template-based approach. By decreasing the size of polystyrene (PS) template particles towards the mesoporous range, ZnO IOs with 50 nm-sized pores and open porosity were synthesized. The effect of the template-removal method on the pore geometry (spherical vs. gyroidal) was studied. The infiltration depth in the template was determined, and the factors influencing infiltration were assessed. The crystallinity and photonic stop-band of the IOs were studied using X-Ray diffraction and UV-Vis, respectively. The infiltration of tracer molecules (Alexa Fluor 488) in multilayered quasi-mesoporous ZnO IOs was confirmed via confocal laser scanning microscopy, while fluorescence correlation spectroscopy analysis revealed two distinct diffusion times in IOs assigned to diffusion through the pores (fast) and adsorption on the pore walls (slow).
Collapse
Affiliation(s)
- Shravan R. Kousik
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Diane Sipp
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Karina Abitaev
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (T.S.)
| | - Yawen Li
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Thomas Sottmann
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (T.S.)
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Petia Atanasova
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| |
Collapse
|
4
|
Zhang J, Dai Y, Jiang B, Zhang T, Chen J. Dual-enzyme co-immobilization for the one-pot production of glucose 6-phosphate from maltodextrin. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Wang X, Guo Y, Nan X, Shi S, Wang X, Zhang X. Preparation of inverse opal adsorbent by water-soluble colloidal crystal template to obtain ultrahigh adsorption capacity for salicylic acid removal from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:362-369. [PMID: 30861491 DOI: 10.1016/j.jhazmat.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Diethylenetriamine (DETA) modified inverse opal (IO) poly (glycidyl methacrylate-co-divinylbenzene) (IO PGMD-DETA) was fabricated through the water-soluble colloidal crystal template and further applied as salicylic acid (SA) adsorbent with the ultrahigh adsorption capacity in aqueous solution. Compared that with the reported adsorbents, IO PGMD-DETA possessed the performance of ultrahigh adsorption capacity, comparatively short equilibration time, and relatively good reusability. The influences of the specific surface area and group content on adsorption capacity showed that the high content of group was favorable to improve the hydrophilicity and polarity of the materials, resulting in high adsorption capacity. IO PGMD-DETA-95 (the number of 95 is the mass ratio of GMA monomer) exhibited the largest adsorption capacity towards SA. Langmuir and Liu models could well fit the data of isothermal adsorption. The maximum adsorption capacity was estimated by the Langmuir and Liu models, which could reach out to an excellent value of 905.0 mg/g and 908.4 mg/g at 40 ℃ respectively. Furthermore, the pseudo-first-order rate equation could describe the kinetic data. The adsorption equilibrium of SA on IO PGMD-DETA-95 could be reached within 30-40 min. After five adsorption-desorption cycles, the excellent performance of IO PGMD-DETA-95 and the morphology were well retained.
Collapse
Affiliation(s)
- Xiuli Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Yingchun Guo
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Xueri Nan
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Shang Shi
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Xiaomei Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, PR China.
| | - Xu Zhang
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, PR China.
| |
Collapse
|
6
|
Meso-molding three-dimensionally ordered macroporous alumina: A new platform to immobilize enzymes with high performance. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Mugo SM, Berg D, Bharath G. Integrated Microcentrifuge Carbon Entrapped Glucose Oxidase Poly (N-Isopropylacrylamide) (pNIPAm) Microgels for Glucose Amperometric Detection. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1499027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Darren Berg
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - G. Bharath
- Department of Chemical Engineering, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Cao G, Gao J, Zhou L, Huang Z, He Y, Zhu M, Jiang Y. Fabrication of Ni 2+ -nitrilotriacetic acid functionalized magnetic mesoporous silica nanoflowers for one pot purification and immobilization of His-tagged ω-transaminase. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Zhao B, Zhou L, Ma L, He Y, Gao J, Li D, Jiang Y. Co-immobilization of glucose oxidase and catalase in silica inverse opals for glucose removal from commercial isomaltooligosaccharide. Int J Biol Macromol 2017; 107:2034-2043. [PMID: 29051100 DOI: 10.1016/j.ijbiomac.2017.10.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
In this work, glucose oxidase (GOD) and catalase (CAT) were co-immobilized on novel silica inverse opals (IO-SiO2) through sol-gel process. The immobilized bi-enzyme system named GOD/CAT@IO-SiO2 was successfully fabricated and characterized. Morphology characterization indicated that GOD/CAT@IO-SiO2 had hierarchical porous structure, and the pore diameter of macroporous and mesoporous were 500±50nm and 6.8nm, respectively. The macrospores were connected through windows of 100±30nm. The results of stability tests indicated that both acid (or base) resistance and thermal tolerance of GOD/CAT@IO-SiO2 were improved. When GOD/CAT@IO-SiO2 was used to remove glucose from commercial isomaltooligosaccharide (IMO), the immobilized bi-enzyme system exhibited the good performance. The removal efficiency of glucose reached up to 98.97% under the conditions of GOD/CAT activity ratio of 1:30, the amount of enzyme of 68.8mg, reaction time of 9.39h, reaction temperature of 35.2°C and pH of 7.05. After reused 6 times, 79.19% of removal efficiency could be still retained. The present work demonstrates that the immobilized bi-enzyme (GOD/CAT@IO-SiO2) is not only a very promising system for glucose removal but also has great potential for applications in production of gluconic acid, preparation of biosensors, enzyme bioreactors, etc.
Collapse
Affiliation(s)
- Bin Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Dan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
10
|
Farrugia T, Perriman AW, Sharma KP, Mann S. Multi-enzyme cascade reactions using protein–polymer surfactant self-standing films. Chem Commun (Camb) 2017; 53:2094-2097. [DOI: 10.1039/c6cc09809f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-supporting bio-catalytically active multi-enzyme films fabricated via hierarchical assembly of enzyme–polymer surfactant nanoconjugates are capable of sustaining cascade reactions.
Collapse
Affiliation(s)
- Thomas Farrugia
- Centre for Organized Matter Chemistry and Centre for Protolife Research
- School of Chemistry
- University of Bristol
- UK
| | - Adam W. Perriman
- School of Cellular and Molecular Medicine
- University of Bristol
- UK
| | - Kamendra P. Sharma
- Centre for Organized Matter Chemistry and Centre for Protolife Research
- School of Chemistry
- University of Bristol
- UK
- Department of Chemistry
| | - Stephen Mann
- Centre for Organized Matter Chemistry and Centre for Protolife Research
- School of Chemistry
- University of Bristol
- UK
| |
Collapse
|