1
|
Mulinari J, Rigo D, Demaman Oro CE, de Meneses AC, Zin G, Eleutério RV, Tres MV, Dallago RM. Multienzyme Immobilization on PVDF Membrane via One-Step Mussel-Inspired Method: Enhancing Fouling Resistance and Self-Cleaning Efficiency. MEMBRANES 2024; 14:208. [PMID: 39452819 PMCID: PMC11509426 DOI: 10.3390/membranes14100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Immobilizing different enzymes on membranes can result in biocatalytic active membranes with a self-cleaning capacity toward a complex mixture of foulants. The membrane modification can reduce fouling and enhance filtration performance. Protease, lipase, and amylase were immobilized on poly(vinylidene fluoride) (PVDF) microfiltration membranes using a polydopamine coating in a one-step method. The concentrations of polydopamine precursor and enzymes were optimized during the immobilization. The higher hydrolytic activities were obtained using 0.2 mg/mL of dopamine hydrochloride and 4 mg/mL of enzymes: 0.90 mgstarch/min·cm2 for amylase, 10.16 nmoltyrosine/min·cm2 for protease, and 20.48 µmolp-nitrophenol/min·cm2 for lipase. Filtration tests using a protein, lipid, and carbohydrate mixture showed that the modified membrane retained 41%, 29%, and 28% of its initial water permeance (1808 ± 39 L/m2·h·bar) after three consecutive filtration cycles, respectively. In contrast, the pristine membrane (initial water permeance of 2016 ± 40 L/m2·h·bar) retained only 23%, 12%, and 8%. Filtrations of milk powder solution were also performed to simulate dairy industry wastewater: the modified membrane maintained 28%, 26%, and 26% of its initial water permeance after three consecutive filtration cycles, respectively, and the pristine membrane retained 34%, 21%, and 7%. The modified membrane showed increased fouling resistance against a mixture of foulants and presented a similar water permeance after three cycles of simulated dairy wastewater filtration. Membrane fouling is reduced by the immobilized enzymes through two mechanisms: increased membrane hydrophilicity (evidenced by the reduced water contact angle after modification) and the enzymatic hydrolysis of foulants as they accumulate on the membrane surface.
Collapse
Affiliation(s)
- Jéssica Mulinari
- TransferTech Gestão de Inovação, Erechim 99700-420, Brazil; (D.R.); or (C.E.D.O.); (A.C.d.M.); (G.Z.)
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, Brazil;
| | - Diane Rigo
- TransferTech Gestão de Inovação, Erechim 99700-420, Brazil; (D.R.); or (C.E.D.O.); (A.C.d.M.); (G.Z.)
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, Brazil;
| | - Carolina Elisa Demaman Oro
- TransferTech Gestão de Inovação, Erechim 99700-420, Brazil; (D.R.); or (C.E.D.O.); (A.C.d.M.); (G.Z.)
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, Brazil;
| | | | - Guilherme Zin
- TransferTech Gestão de Inovação, Erechim 99700-420, Brazil; (D.R.); or (C.E.D.O.); (A.C.d.M.); (G.Z.)
| | - Rafael Vidal Eleutério
- Graduate Program in Materials Science and Engineering (PGMAT), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Cachoeira do Sul 96503-205, Brazil
| | - Rogério Marcos Dallago
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, Brazil;
| |
Collapse
|
2
|
Czyżewska K, Trusek A. A catalytic membrane approach as a way to obtain sweet and unsweet lactose-free milk. Bioprocess Biosyst Eng 2024; 47:919-929. [PMID: 38644439 PMCID: PMC11101535 DOI: 10.1007/s00449-024-03018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
The growing need in the current market for innovative solutions to obtain lactose-free (L-F) milk is caused by the annual increase in the prevalence of lactose intolerance inside as well as the newborn, children, and adults. Various configurations of enzymes can yield two distinct L-F products: sweet (β-galactosidase) and unsweet (β-galactosidase and glucose oxidase) L-F milk. In addition, the reduction of sweetness through glucose decomposition should be performed in a one-pot mode with catalase to eliminate product inhibition caused by H2O2. Both L-F products enjoy popularity among a rapidly expanding group of consumers. Although enzyme immobilization techniques are well known in industrial processes, new carriers and economic strategies are still being searched. Polymeric carriers, due to the variety of functional groups and non-toxicity, are attractive propositions for individual and co-immobilization of food enzymes. In the presented work, two strategies (with free and immobilized enzymes; β-galactosidase NOLA, glucose oxidase from Aspergillus niger, and catalase from Serratia sp.) for obtaining sweet and unsweet L-F milk under low-temperature conditions were proposed. For free enzymes, achieving the critical assumption, lactose hydrolysis and glucose decomposition occurred after 1 and 4.3 h, respectively. The tested catalytic membranes were created on regenerated cellulose and polyamide. In both cases, the time required for lactose and glucose bioconversion was extended compared to free enzymes. However, these preparations could be reused for up to five (β-galactosidase) and ten cycles (glucose oxidase with catalase).
Collapse
Affiliation(s)
- Katarzyna Czyżewska
- Faculty of Chemistry, Group of Micro, Nano, and Bioprocess Engineering, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wrocław, Poland.
| | - Anna Trusek
- Faculty of Chemistry, Group of Micro, Nano, and Bioprocess Engineering, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wrocław, Poland
| |
Collapse
|
3
|
Popkov A, Su Z, Sigurdardóttir SB, Luo J, Malankowska M, Pinelo M. Engineering polyelectrolyte multilayer coatings as a strategy to optimize enzyme immobilization on a membrane support. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Czyzewska K, Trusek A. Critical Parameters in an Enzymatic Way to Obtain the Unsweet Lactose-Free Milk Using Catalase and Glucose Oxidase Co-Encapsulated into Hydrogel with Chemical Cross-Linking. Foods 2022; 12:113. [PMID: 36613329 PMCID: PMC9818303 DOI: 10.3390/foods12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The presented work involves obtaining and characterising a two-enzymatic one-pot bioreactor, including encapsulated (co-immobilised) glucose oxidase and catalase. The enzymatic capsules were applied to produce unsweet, lactose-free milk during low-temperature catalysis. Furthermore, operational conditions, like pH and aeration, were selected in the paper, which sorts out discrepancies in literature reports. All experiments were carried out at 12 °C, corresponding to milk storage and transportation temperature. Preliminary studies (for reasons of analytical accuracy) were carried out in a buffer (pH, concentration of sugars mimicking conditions in the lactose-free milk, the initial glucose concentration 27.5 g/L) verified by processes carried out in milk in the final stage of the study. The presented results showed the need for regulating pH and the aeration of the reaction mixture in the continuous mode during the process. The procedure of co-immobilisation was performed in an alginate matrix with the cross-linking of glutaraldehyde or carbodiimide while carbodiimide showed better enzymes retention inside alginate capsules. Co-encapsulated enzymes could be used for nine cycles, preserving finally about 40% of the initial activity.
Collapse
Affiliation(s)
| | - Anna Trusek
- Group of Micro, Nano and Bioengineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
5
|
Guan Y, Liu L, Yu S, Lv F, Guo M, Luo Q, Zhang S, Wang Z, Wu L, Lin Y, Liu G. A Noninvasive Sweat Glucose Biosensor Based on Glucose Oxidase/Multiwalled Carbon Nanotubes/Ferrocene-Polyaniline Film/Cu Electrodes. MICROMACHINES 2022; 13:mi13122142. [PMID: 36557441 PMCID: PMC9787487 DOI: 10.3390/mi13122142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/11/2022] [Accepted: 12/01/2022] [Indexed: 06/01/2023]
Abstract
Diabetes remains a great threat to human beings' health and its world prevalence is projected to reach 9.9% by 2045. At present, the detection methods used are often invasive, cumbersome and time-consuming, thus increasing the burden on patients. In this paper, we propose a novel noninvasive and low-cost biosensor capable of detecting glucose in human sweat using enzyme-based electrodes for point-of-care uses. Specifically, an electrochemical method is applied for detection and the electrodes are covered with multilayered films including ferrocene-polyaniline (F-P), multi-walled carbon nanotubes (MWCNTs) and glucose oxidase (GOx) on Cu substrates (GOx/MWCNTs/F-P/Cu). The coated layers enhance the immobilization of GOx, increase the conductivity of the anode and improve the electrochemical properties of the electrode. Compared with the Cu electrode and the F-P/Cu electrode, a maximum peak current is obtained when the MWCNTs/F-P/Cu electrode is applied. We also study its current response by cyclic voltammetry (CV) at different concentrations (0-2.0 mM) of glucose solution. The best current response is obtained at 0.25 V using chronoamperometry. The effective working lifetime of an electrode is up to 8 days. Finally, to demonstrate the capability of the electrode, a portable, miniaturized and integrated detection device based on the GOx/MWCNTs/F-P/Cu electrode is developed. The results exhibit a short response time of 5 s and a correlation coefficient R2 of 0.9847 between the response current of sweat with blood glucose concentration. The LOD is of 0.081 mM and the reproducibility achieved in terms of RSD is 3.55%. The sweat glucose sensor is noninvasive and point-of-care, which shows great development potential in the health examination and monitoring field.
Collapse
Affiliation(s)
- Yanfang Guan
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
- Provincial Key Laboratory of Cereal Resource Transformation and Utilization, Henan University of Technology, Zhengzhou 450001, China
| | - Lei Liu
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaobo Yu
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Feng Lv
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mingshuo Guo
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qing Luo
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shukai Zhang
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zongcai Wang
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lan Wu
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Lin
- Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Guangyu Liu
- Provincial Key Laboratory of Cereal Resource Transformation and Utilization, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
6
|
Mulinari J, Ambrosi A, Innocentini MDDM, Feng Y, Li Q, Di Luccio M, Hotza D, Oliveira JV. Lipase immobilization on alumina membranes using a traditional and a nature-inspired method for active degradation of oil fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Bachosz K, Piasecki A, Zdarta A, Kaczorek E, Pinelo M, Zdarta J, Jesionowski T. Enzymatic membrane reactor in xylose bioconversion with simultaneous cofactor regeneration. Bioorg Chem 2022; 123:105781. [PMID: 35395447 DOI: 10.1016/j.bioorg.2022.105781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
In this study, we present the concept of co-immobilization of xylose dehydrogenase and alcohol dehydrogenase from Saccharomyces cerevisiae on an XN45 nanofiltration membrane for application in the process of xylose bioconversion to xylonic acid with simultaneous cofactor regeneration and membrane separation of reaction products. During the research, the effectiveness of the co-immobilization of enzymes was confirmed, and changes in the properties of the membrane after the processes were determined. Using the obtained biocatalytic system it was possible to obtain 99% xylonic acid production efficiency under optimal conditions, which were 5 mM xylose, 5 mM formaldehyde, ratio of NAD+:NADH 1:1, and 60 min of reaction. Additionally, the co-immobilization of enzymes made it possible to improve stability of the co-immobilized enzymes and to carry out xylose conversion in six consecutive cycles and after 7 days of storage at 4 °C with over 90% efficiency. The presented data confirm the effectiveness of the co-immobilization, improvement of the stability and reusability of the biocatalysts, and show that the obtained enzymatic system is promising for use in xylose bioconversion and simultaneous regeneration of nicotinamide cofactor.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Adam Piasecki
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering and Management, Poznan University of Technology, Jana Pawla II 24, PL-60965 Poznan, Poland.
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Manuel Pinelo
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Soltofts Plads, Building 227, DK-2800 Kongens Lyngby, Denmark.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
8
|
Wang H, Yan J, Fu R, Yan H, Jiang C, Wang Y, Xu T. Bipolar Membrane Electrodialysis for Cleaner Production of Gluconic Acid: Valorization of the Regenerated Base for the Upstream Enzyme Catalysis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Huangying Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Junying Yan
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Rong Fu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Haiyang Yan
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chenxiao Jiang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yaoming Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tongwen Xu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
9
|
An enzymatic membrane reactor for oligodextran production: Effects of enzyme immobilization strategies on dextranase activity. Carbohydr Polym 2021; 271:118430. [PMID: 34364570 DOI: 10.1016/j.carbpol.2021.118430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023]
Abstract
An enzymatic membrane reactor (EMR) with immobilized dextranase provides an excellent opportunity for tailoring the molecular weight (Mw) of oligodextran to significantly improve product quality. However, a highly efficient EMR for oligodextran production is still lacking and the effect of enzyme immobilization strategy on dextranase hydrolysis behavior has not been studied yet. In this work, a functional layer of polydopamine (PDA) or nanoparticles made of tannic acid (TA) and hydrolysable 3-amino-propyltriethoxysilane (APTES) was first coated on commercial membranes. Then cross-linked dextranase or non-cross-linked dextranase was loaded onto the modified membranes using incubation mode or fouling-induced mode. The fouling-induced mode was a promising enzyme immobilization strategy on the membrane surface due to its higher enzyme loading and activity. Moreover, unlike the non-cross-linked dextranase that exhibited a normal endo-hydrolysis pattern, we surprisingly found that the cross-linked dextranase loaded on the PDA modified surface exerted an exo-hydrolysis pattern, possibly due to mass transfer limitations. Such alteration of hydrolysis pattern has rarely been reported before. Based on the hydrolysis behavior of the immobilized dextranase in different EMRs, we propose potential applications for the oligodextran products. This study presents a unique perspective on the relation between the enzyme immobilization process and the immobilized enzyme hydrolysis behavior, and thus opens up a variety of possibilities for the design of a high-performance EMR.
Collapse
|
10
|
Liu Q, Bai X, Pham H, Hu J, Dinu CZ. Active Nanointerfaces Based on Enzyme Carbonic Anhydrase and Metal-Organic Framework for Carbon Dioxide Reduction. NANOMATERIALS 2021; 11:nano11041008. [PMID: 33920833 PMCID: PMC8071118 DOI: 10.3390/nano11041008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
Carbonic anhydrases are enzymes capable of transforming carbon dioxide into bicarbonate to maintain functionality of biological systems. Synthetic isolation and implementation of carbonic anhydrases into membrane have recently raised hopes for emerging and efficient strategies that could reduce greenhouse emission and the footprint of anthropogenic activities. However, implementation of such enzymes is currently challenged by the resulting membrane’s wetting capability, overall membrane performance for gas sensing, adsorption and transformation, and by the low solubility of carbon dioxide in water, the required medium for enzyme functionality. We developed the next generation of enzyme-based interfaces capable to efficiently adsorb and reduce carbon dioxide at room temperature. For this, we integrated carbonic anhydrase with a hydrophilic, user-synthesized metal–organic framework; we showed how the framework’s porosity and controlled morphology contribute to viable enzyme binding to create functional surfaces for the adsorption and reduction of carbon dioxide. Our analysis based on electron and atomic microscopy, infrared spectroscopy, and colorimetric assays demonstrated the functionality of such interfaces, while Brunauer–Emmett–Teller analysis and gas chromatography analysis allowed additional evaluation of the efficiency of carbon dioxide adsorption and reduction. Our study is expected to impact the design and development of active interfaces based on enzymes to be used as green approaches for carbon dioxide transformation and mitigation of global anthropogenic activities.
Collapse
|
11
|
Luo J, Song S, Zhang H, Zhang H, Zhang J, Wan Y. Biocatalytic membrane: Go far beyond enzyme immobilization. Eng Life Sci 2020; 20:441-450. [PMID: 33204231 PMCID: PMC7645639 DOI: 10.1002/elsc.202000018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Biocatalytic membrane takes advantages of reaction-separation integration as well as enzyme immobilization, which has attracted increasing attentions in online detection and biomanufacturing. However, the high preparation cost, inferior comprehensive performance, and low stability limit its applications. Thus, besides enzyme immobilization, more efforts should be made in biocatalytic membrane configuration design for a specific application to enhance the synergistic effect of reaction and separation and improve its operating stability. This review summarized the recent progress on biocatalytic membrane preparation, discussed different membrane configurations for various applications, finally proposed several challenges and possible solutions, which provided directions and guides for the development and industrialization of biocatalytic membrane.
Collapse
Affiliation(s)
- Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Siqing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Hao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Huiru Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Jinxuan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| |
Collapse
|
12
|
Co-Immobilization and Co-Localization of Oxidases and Catalases: Catalase from Bordetella Pertussis Fused with the Zbasic Domain. Catalysts 2020. [DOI: 10.3390/catal10070810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidases catalyze selective oxidations by using molecular oxygen as an oxidizing agent. This process promotes the release of hydrogen peroxide, an undesirable byproduct. The instantaneous elimination of hydrogen peroxide can be achieved by co-immobilization and co-localization of the oxidase and an auxiliary catalase inside the porous structure of solid support. In this paper, we proposed that catalase from Bordetella pertussis fused with a small domain (Zbasic) as an excellent auxiliary enzyme. The enzyme had a specific activity of 23 U/mg, and this was almost six-fold higher than the one of the commercially available catalases from bovine liver. The Zbasic domain was fused to the four amino termini of this tetrameric enzyme. Two domains were close in one hemisphere of the enzyme molecule, and the other two were close in the opposite hemisphere. In this way, each hemisphere contained 24 residues with a positive charge that was very useful for the purification of the enzyme via cationic exchange chromatography. In addition to this, each hemisphere contained 10 Lys residues that were very useful for a rapid and intense multipoint covalent attachment on highly activated glyoxyl supports. In fact, 190 mg of the enzyme was immobilized on one gram of glyoxyl-10% agarose gel. The ratio catalase/oxidase able to instantaneously remove more than 93% of the released hydrogen peroxide was around 5–6 mg of catalase per mg of oxidase. Thirty milligrams of amine oxidase and 160 mg of catalase were co-immobilized and co-localized per gram of glyoxyl-agarose 10BCL (10% beads cross-linked) support. This biocatalyst eliminated biogenic amines (putrescine) 80-fold faster than a biocatalyst of the same oxidase co-localized with the commercial catalase from bovine liver.
Collapse
|
13
|
Cao L, Wu H, Zhang H, Zhao Q, Yin X, Zheng D, Li C, Kim MJ, Kim P, Xue Z, Wang Y, Li Y. Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology. Biotechnol Bioeng 2020; 117:1615-1627. [PMID: 32144753 DOI: 10.1002/bit.27325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/29/2022]
Abstract
The rare ginsenosides are recognized as the functionalized molecules after the oral administration of Panax ginseng and its products. The sources of rare ginsenosides are extremely limited because of low ginsenoside contents in wild plants, hindering their application in functional foods and drugs. We developed an effective combinatorial biotechnology approach including tissue culture, immobilization, and hydrolyzation methods. Rh2 and nine other rare ginsenosides were produced by methyl jasmonate-induced culture of adventitious roots in a 10 L bioreactor associated with enzymatic hydrolysis using six β-glycosidases and their combination with yields ranging from 5.54 to 32.66 mg L-1 . The yield of Rh2 was furthermore increased by 7% by using immobilized BglPm and Bgp1 in optimized pH and temperature conditions, with the highest yield reaching 51.17 mg L-1 (17.06% of protopanaxadiol-type ginsenosides mixture). Our combinatorial biotechnology method provides a highly efficient approach to acquiring diverse rare ginsenosides, replacing direct extraction from Panax plants, and can also be used to supplement yeast cell factories.
Collapse
Affiliation(s)
- Linggai Cao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Hao Wu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - He Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Quan Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Dongran Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Chuanwang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Min-Jun Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Pyol Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Institute of Biotechnology, Wonsan University of Agriculture, Wonsan, Democratic People's Republic of Korea
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Fan PR, Zhao X, Wei ZH, Huang YP, Liu ZS. Robust immobilized enzyme reactor based on trimethylolpropane trimethacrylate organic monolithic matrix through “thiol-ene” click reaction. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|
16
|
Mass transfer with reaction kinetics of the biocatalytic membrane reactor using a fouled covalently immobilised enzyme layer (α–CGTase–CNF layer). Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol Adv 2019; 37:107401. [DOI: 10.1016/j.biotechadv.2019.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
|
18
|
Cen Y, Liu Y, Xue Y, Zheng Y. Immobilization of Enzymes in/on Membranes and their Applications. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900439] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yu‐Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yu‐Xiao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ya‐Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
19
|
Fabrication and Optimization of a Lipase Immobilized Enzymatic Membrane Bioreactor based on Polysulfone Gradient-Pore Hollow Fiber Membrane. Catalysts 2019. [DOI: 10.3390/catal9060495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Enzymatic membrane bioreactors (EMBRs) possess the characteristic of combining catalysis with separation, and therefore have promising application potentials. In order to achieve a high-performance EMBR, membrane property, as well as operating parameters, should give special cause for concerns. In this work, an EMBR based on hollow fiber polysulfone microfiltration membranes with radial gradient pore structure was fabricated and enzyme immobilization was achieved through pressure-driven filtration. Lipase from Candida rugosa was used for immobilization and EMBR performance was studied with the enzymatic hydrolysis of glycerol triacetate as a model reaction. The influences of membrane pore diameter, substrate feed direction as well as operational parameters of operation pressure, substrate concentration, and temperature on the EMBR activity were investigated with the production of hydrolysates kinetically fitted. The complete EMBR system showed the highest activity of 1.07 × 104 U⋅g−1. The results in this work indicate future efforts for improvement in EMBR.
Collapse
|
20
|
Cao H, Cao J, Zhang Y, Ye T, Song Yu J, Yuan M, Xu F, Zheng W, Zuo X. Continuous preparation and characterization of immunomodulatory peptides from type II collagen by a novel immobilized enzyme membrane reactor with improved performance. J Food Biochem 2019; 43:e12862. [PMID: 31353698 DOI: 10.1111/jfbc.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
Abstract
In this study, a novel method of continuous coupling of immobilized enzymatic hydrolysis reactor and membrane separation (CIEH-MS) was used to isolate the immunomodulatory peptides from type II collagen (CII) in chick sternal cartilage. The immobilized neutral protease was successfully prepared with an activity of 400.5 U/g. The CIEH-MS system loaded with immobilized neutral protease had high operational stability with enzyme decay constant of 0.0077 and half-life of 89.61 hr. Using a CIEH-MS system, the immunomodulatory peptides were obtained with lymphocyte proliferation of 66.23%, peptide yield of 23.43%, degree of hydrolysis (DH) of 22.41%, and permeate flux of 6.17 L/m2 h. The peptide fractions were further purified and the P3-2-4 fraction (RGQLGPM) with 760.4 Da molecular weights exhibited the highest lymphocyte proliferation activity (85.54%) and binding ability to human leukocyte antigen-DRB1 (HLA-DRB1) molecules (133.2 ng/ml). The results demonstrated that CIEH-MS system is an effective way to obtain immunomodulatory peptides from CII. PRACTICAL APPLICATIONS: Chick sternal cartilage is one of the by-products of meat processing, and it is often discarded as waste or used for low-value purposes. CII is the most abundant collagen in chick sternal cartilage, and recently studies have demonstrated that CII peptides possess the ability to induce immunologic tolerance for the treatment of chronic disease. In order to find potential applications for this by-product, immunomodulatory peptides from CII hydrolysates in chick sternal cartilage were isolated using a novel CIEH-MS system. The result showed that CII peptides exhibited a high immunomodulatory activity, and had a potential application in functional foods and medical fields.
Collapse
Affiliation(s)
- Hui Cao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Jifang Cao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Yujun Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Tai Ye
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Jin Song Yu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Min Yuan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Wenxin Zheng
- Institute of Animal husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumq, P.R. China
| | - Xiaojia Zuo
- Institute of Animal husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumq, P.R. China
| |
Collapse
|
21
|
Song X, Cui L, Li J, Yan H, Li L, Wen L, Geng Y, Wang D. A novel bioreactor for highly efficient biotransformation of resveratrol from polydatin with high-speed counter-current chromatography. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Wang D, Khan MS, Cui L, Song X, Zhu H, Ma T, Li X, Sun R. A novel method for the highly efficient biotransformation of genistein from genistin using a high-speed counter-current chromatography bioreactor. RSC Adv 2019; 9:4892-4899. [PMID: 35514623 PMCID: PMC9060664 DOI: 10.1039/c8ra10629k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/05/2019] [Accepted: 01/22/2019] [Indexed: 01/16/2023] Open
Abstract
Genistein, an important soybean isoflavone compound, has gained attention for its significant properties. Compared with the glycone form of genistin, low content of genistein limits the use in food and pharmaceutical fields. In this study, a novel bioreactor with high-speed counter-current chromatography (HSCCC) was built for the highly efficient biotransformation of genistein from genistin. The solvent system for the bioreactor was selected according to the K D values. The selected solvent system was evaluated by the enzyme activity of β-glucosidase. An ethyl acetate/buffer solution was selected as the preferred solvent system for the HSCCC bioreactor. Optimum reactor parameters were selected according to the retention of the stationary phase. The HSCCC bioreactor was operated using different flow rates, and 2.0 mL min-1 was chosen as the optimal flow rate with a conversion rate of over 90% within 24 h; the novel bioreactor easily immobilized and recycled the enzyme and could be applied in the preparation of genistein.
Collapse
Affiliation(s)
- Daijie Wang
- Key Laboratory of TCM Quality Control, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Muhammad Shafiq Khan
- Department of Biotechnology and Bioinfomatics, International Islamic University Islamabad 44000 Islamic Republic of Pakistan
| | - Li Cui
- Key Laboratory of TCM Quality Control, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Xiangyun Song
- Key Laboratory of TCM Quality Control, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Heng Zhu
- Key Laboratory of TCM Quality Control, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
| | - Tianyu Ma
- Key Laboratory of TCM Quality Control, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 P. R. China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan China
| | - Xiaoyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan China
| | - Rong Sun
- Institute of Advanced Medical Science, Shandong University Jinan 250012 P. R. China
- The Second Hospital of Shandong University Jinan 250033 P. R. China
- The Post of Taishan Scholar in Traditional Chinese Medicine Pharmacology and Toxicology Jinan 250033 P. R. China
| |
Collapse
|
23
|
Zdarta J, Pinelo M, Jesionowski T, Meyer AS. Upgrading of Biomass Monosaccharides by Immobilized Glucose Dehydrogenase and Xylose Dehydrogenase. ChemCatChem 2018. [DOI: 10.1002/cctc.201801335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering Faculty of Chemical Technology Poznan University of Technology Berdychowo 4 Poznan 60965 Poland
- Center for BioProcess Engineering Department of Chemical and Biochemical Engineering Technical University of Denmark Soltofts Plads 229 Lyngby 2800 Denmark
| | - Manuel Pinelo
- Center for BioProcess Engineering Department of Chemical and Biochemical Engineering Technical University of Denmark Soltofts Plads 229 Lyngby 2800 Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering Faculty of Chemical Technology Poznan University of Technology Berdychowo 4 Poznan 60965 Poland
| | - Anne S. Meyer
- Center for BioProcess Engineering Department of Chemical and Biochemical Engineering Technical University of Denmark Soltofts Plads 229 Lyngby 2800 Denmark
| |
Collapse
|
24
|
Vanangamudi A, Saeki D, Dumée LF, Duke M, Vasiljevic T, Matsuyama H, Yang X. Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27477-27487. [PMID: 30048587 DOI: 10.1021/acsami.8b07945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly(vinylidenefluoride) cast support layer and a hydrophilic functional nylon-6,6/chitosan nanofibrous surface layer where enzymes were chemically attached. The intrinsic surface chemistry and high surface area of the nanofibers allowed optimal and stable immobilization of trypsin (TR) and α-chymotrypsin enzymes via direct covalent binding. The enzyme immobilization was confirmed by X-ray photoelectron spectroscopy and visualized by confocal microscopy analysis. The prepared biocatalytic composite membranes were nanoporous with superior permeability offering stable protein antiadhesion and self-cleaning properties owing to the repulsive mechanism and digestion of proteins into peptides and amino acids, which was quantified by the gel electrophoresis technique. The TR-immobilized composite membranes exhibited 2.7-fold higher permeance and lower surface protein contamination with 3-fold greater permeance recovery, when compared to the pristine membrane after two ultrafiltration cycles with the model feed solution containing bovine serum albumin/NaCl/CaCl2. The biocatalytic membranes retained about 50% of the enzyme activity after six reuse cycles but were regenerated to 100% activity after enzyme reloading, leading to a simple and cost-effective water remediation operation. Such surface- and pore-engineered membranes with self-cleaning properties offer a viable solution for severe surface protein contamination in food and water applications.
Collapse
Affiliation(s)
- Anbharasi Vanangamudi
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 , Australia
| | - Daisuke Saeki
- Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada, Kobe , Hyogo 657-8501 , Japan
| | - Ludovic F Dumée
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 , Australia
| | | | | | - Hideto Matsuyama
- Department of Chemical Science and Engineering , Kobe University , 1-1 Rokkodai-cho , Nada, Kobe , Hyogo 657-8501 , Japan
| | | |
Collapse
|
25
|
Morthensen ST, Zeuner B, Meyer AS, Jørgensen H, Pinelo M. Membrane separation of enzyme-converted biomass compounds: Recovery of xylose and production of gluconic acid as a value-added product. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Zhao B, Zhou L, Ma L, He Y, Gao J, Li D, Jiang Y. Co-immobilization of glucose oxidase and catalase in silica inverse opals for glucose removal from commercial isomaltooligosaccharide. Int J Biol Macromol 2017; 107:2034-2043. [PMID: 29051100 DOI: 10.1016/j.ijbiomac.2017.10.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
In this work, glucose oxidase (GOD) and catalase (CAT) were co-immobilized on novel silica inverse opals (IO-SiO2) through sol-gel process. The immobilized bi-enzyme system named GOD/CAT@IO-SiO2 was successfully fabricated and characterized. Morphology characterization indicated that GOD/CAT@IO-SiO2 had hierarchical porous structure, and the pore diameter of macroporous and mesoporous were 500±50nm and 6.8nm, respectively. The macrospores were connected through windows of 100±30nm. The results of stability tests indicated that both acid (or base) resistance and thermal tolerance of GOD/CAT@IO-SiO2 were improved. When GOD/CAT@IO-SiO2 was used to remove glucose from commercial isomaltooligosaccharide (IMO), the immobilized bi-enzyme system exhibited the good performance. The removal efficiency of glucose reached up to 98.97% under the conditions of GOD/CAT activity ratio of 1:30, the amount of enzyme of 68.8mg, reaction time of 9.39h, reaction temperature of 35.2°C and pH of 7.05. After reused 6 times, 79.19% of removal efficiency could be still retained. The present work demonstrates that the immobilized bi-enzyme (GOD/CAT@IO-SiO2) is not only a very promising system for glucose removal but also has great potential for applications in production of gluconic acid, preparation of biosensors, enzyme bioreactors, etc.
Collapse
Affiliation(s)
- Bin Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Dan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
27
|
Morthensen ST, Sigurdardóttir SB, Meyer AS, Jørgensen H, Pinelo M. Separation of xylose and glucose using an integrated membrane system for enzymatic cofactor regeneration and downstream purification. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Golikova EP, Lakina N, Grebennikova OV, Matveeva VG, Sulman EM. A study of biocatalysts based on glucose oxidase. Faraday Discuss 2017; 202:303-314. [DOI: 10.1039/c7fd00042a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During this work, we studied the possibility of glucose oxidase (GOx) covalent immobilization on a modified inorganic support. A series of GOx-based biocatalysts was synthesized by crosslinking the enzyme to a surface of modified silica or alumina. Polyelectrolyte layers were used as modifiers for the silica and alumina surfaces. These layers promote tight binding of the GOx to the support. The biocatalyst’s activity and stability were studied using an oxidation reaction of d-glucose to d-gluconic acid. It was found that GOx immobilized on the modified SiO2 using glutardialdehyde as a crosslinking agent was the most active and stable catalytic system, showing an 85% yield of gluconic acid. A study of the synthesized biocatalyst structure using FTIR spectroscopy showed that the enzyme was covalently crosslinked to the surface of an inorganic support modified with chitosan and glutardialdehyde. In the case of SiO2, the quantity of the immobilized enzyme was higher than in the case of Al2O3.
Collapse
Affiliation(s)
| | | | | | - V. G. Matveeva
- Tver State Technical University
- Tver
- Russia
- Tver State University
- Tver
| | - E. M. Sulman
- Tver State Technical University
- Tver
- Russia
- Tver State University
- Tver
| |
Collapse
|