1
|
Zhang L, He Y, Jiang L, Shi Y, Hao L, Huang L, Lyu M, Wang S. Plastic additives as a new threat to the global environment: Research status, remediation strategies and perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120007. [PMID: 39284493 DOI: 10.1016/j.envres.2024.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Discharge or leaching of plastic additives, which are an essential part of the plastic production process, can lead to environmental pollution with serious impacts on human and ecosystem health. Recently, the emission of plastic additives is increasing dramatically, but its pollution condition has not received enough attention. Meanwhile, the effective treatment strategy of plastic additive pollution is lack of systematic introduction. Therefore, it is crucial to analyze the harm and pollution status of plastic additives and explore effective pollution control strategies. This paper reviews the latest research progress on additives in plastics, describes the effects of their migration into packaged products and leaching into the environment, presents the hazards of four major classes of plastic additives (i.e., plasticizers, flame retardants, stabilizers, and antimicrobials), summarizes the existing abiotic/biotic strategies for accelerated the remediation of additives, and finally provides perspectives on future research on the removal of plastic additives. To the best of our knowledge, this is the first review that systematically analyzes strategies for the treatment of plastic additives. The study of these strategies could (i) provide feasible, cost-effective abiotic method for the removal of plastic additives, (ii) further enrich the current knowledge on plastic additive bioremediation, and (iii) present application and future development of plants, invertebrates and machine learning in plastic additive remediation.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yuehui He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Shi
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lijuan Hao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lirong Huang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Zhang Q, Li N, Hou Y, Fan M, Zhang Y, Dang F. Co-immobilization of crosslinked enzyme aggregates on lysozyme functionalized magnetic nanoparticles for enhancing stability and activity. Int J Biol Macromol 2024; 273:133180. [PMID: 38880453 DOI: 10.1016/j.ijbiomac.2024.133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Surface chemistry of carriers plays a key role in enzyme loading capacity, structure rigidity, and thus catalyze activity of immobilized enzymes. In this work, the two model enzymes of horseradish peroxidase (HRP) and glucose oxidase (GOx) are co-immobilized on the lysozyme functionalized magnetic core-shell nanocomposites (LYZ@MCSNCs) to enhance their stability and activity. Briefly, the HRP and GOx aggregates are firstly formed under the crosslinker of trimesic acid, in which the loading amount and the rigidity of the enzyme can be further increased. Additionally, LYZ easily forms a robust anti-biofouling nanofilm on the surface of SiO2@Fe3O4 magnetic nanoparticles with abundant functional groups, which facilitate chemical crosslinking of HRP and GOx aggregates with minimized inactivation. The immobilized enzyme of HRP-GOx@LYZ@MCSNCs exhibited excellent recovery activity (95.6 %) higher than that of the free enzyme (HRP&GOx). Specifically, 85 % of relative activity was retained after seven cycles, while 73.5 % of initial activity was also remained after storage for 33 days at 4 °C. The thermal stability and pH adaptability of HRP-GOx@LYZ@MCSNCs were better than those of free enzyme of HRP&GOx. This study provides a mild and ecofriendly strategy for multienzyme co-immobilization based on LYZ functionalized magnetic nanoparticles using HRP and GOx as model enzymes.
Collapse
Affiliation(s)
- Qiqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Yawen Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Miao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Yuxiu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China.
| |
Collapse
|
3
|
Tikhonov BB, Lisichkin DR, Sulman AM, Sidorov AI, Bykov AV, Lugovoy YV, Karpenkov AY, Bronstein LM, Matveeva VG. Magnetic Nanoparticle Support with an Ultra-Thin Chitosan Layer Preserves the Catalytic Activity of the Immobilized Glucose Oxidase. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:700. [PMID: 38668193 PMCID: PMC11054521 DOI: 10.3390/nano14080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed magnetically recoverable biocatalysts based on magnetite nanoparticles coated with an ultra-thin layer (about 0.9 nm) of chitosan (CS) ionically cross-linked by sodium tripolyphosphate (TPP). Excessive CS amounts were removed by multiple washings combined with magnetic separation. Glucose oxidase (GOx) was attached to the magnetic support via the interaction with N-hydroxysuccinimide (NHS) in the presence of carbodiimide (EDC) leading to a covalent amide bond. These steps result in the formation of the biocatalyst for D-glucose oxidation to D-gluconic acid to be used in the preparation of pharmaceuticals due to the benign character of the biocatalyst components. To choose the catalyst with the best catalytic performance, the amounts of CS, TPP, NHS, EDC, and GOx were varied. The optimal biocatalyst allowed for 100% relative catalytic activity. The immobilization of GOx and the magnetic character of the support prevents GOx and biocatalyst loss and allows for repeated use.
Collapse
Affiliation(s)
- Boris B. Tikhonov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Daniil R. Lisichkin
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexandrina M. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexander I. Sidorov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexey V. Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Yury V. Lugovoy
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexey Y. Karpenkov
- Department of Condensed Matter Physics, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia;
| | - Lyudmila M. Bronstein
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
| | - Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| |
Collapse
|
4
|
Sun W, Zhu C, Song J, Ji SC, Jiang BP, Liang H, Shen XC. Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy. Adv Healthc Mater 2023; 12:e2300385. [PMID: 37040018 DOI: 10.1002/adhm.202300385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/25/2023] [Indexed: 04/12/2023]
Abstract
Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H2 S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H2 S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.
Collapse
Affiliation(s)
- Wanying Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Chengyuan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Juan Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shi-Chen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
5
|
Ahmad R, Rizaldo S, Gohari M, Shanahan J, Shaner SE, Stone KL, Kissel DS. Buffer Effects in Zirconium-Based UiO Metal-Organic Frameworks (MOFs) That Influence Enzyme Immobilization and Catalytic Activity in Enzyme/MOF Biocatalysts. ACS OMEGA 2023; 8:22545-22555. [PMID: 37396281 PMCID: PMC10308582 DOI: 10.1021/acsomega.3c00703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023]
Abstract
Novel biocatalysts that feature enzymes immobilized onto solid supports have recently become a major research focus in an effort to create more sustainable and greener chemistries in catalysis. Many of these novel biocatalyst systems feature enzymes immobilized onto metal-organic frameworks (MOFs), which have been shown to increase enzyme activity, stability, and recyclability in industrial processes. While the strategies used for immobilizing enzymes onto MOFs can vary, the conditions always require a buffer to maintain the functionality of the enzymes during immobilization. This report brings attention to critical buffer effects important to consider when developing enzyme/MOF biocatalysts, specifically for buffering systems containing phosphate ions. A comparative analysis of different enzyme/MOF biocatalysts featuring horseradish peroxidase and/or glucose oxidase immobilized onto the MOFs UiO-66, UiO-66-NH2, and UiO-67 using a noncoordinate buffering system (MOPSO buffer) and a phosphate buffering system (PBS) show that phosphate ions can have an inhibitory effect. Previous studies utilizing phosphate buffers for enzyme immobilization onto MOFs have shown Fourier transform infrared (FT-IR) spectra that have been assigned stretching frequencies associated with enzymes after immobilization. Analyses and characterizations using zeta potential measurements, scanning electron microscopy, Brunauer-Emmett-Teller surface area, powder X-ray diffraction, Energy Dispersive X-ray Spectroscopy, and FT-IR show concerning differences in enzyme loading and activity based on the buffering system used during immobilization.
Collapse
Affiliation(s)
- Raneem Ahmad
- Department
of Chemistry, Lewis University, One University Pkwy, Romeoville, Illinois 60446, United States
| | - Sydnie Rizaldo
- Department
of Chemistry, Lewis University, One University Pkwy, Romeoville, Illinois 60446, United States
| | - Mahnaz Gohari
- Department
of Chemistry, Lewis University, One University Pkwy, Romeoville, Illinois 60446, United States
| | - Jordan Shanahan
- Department
of Chemistry, Lewis University, One University Pkwy, Romeoville, Illinois 60446, United States
| | - Sarah E. Shaner
- Department
of Chemistry and Physics, Southeast Missouri
State University, One University Plaza, Cape Girardeau, Missouri 63701, United States
| | - Kari L. Stone
- Department
of Chemistry, Lewis University, One University Pkwy, Romeoville, Illinois 60446, United States
| | - Daniel S. Kissel
- Department
of Chemistry, Lewis University, One University Pkwy, Romeoville, Illinois 60446, United States
| |
Collapse
|
6
|
Sun R, Lv R, Du T, Li Y, Zhang Y, Chen L, Qi Y. Freeze-thaw induced co-assembly of multi-enzyme immobilized AuNPs probes for fast detection of glucose and hypoxanthine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Immobilization of a Bienzymatic System via Crosslinking to a Metal‐Organic Framework. Catalysts 2022. [DOI: 10.3390/catal12090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A leading biotechnological advancement in the field of biocatalysis is the immobilization of enzymes on solid supports to create more stable and recyclable systems. Metal-organic frameworks (MOFs) are porous materials that have been explored as solid supports for enzyme immobilization. Composed of organic linkers and inorganic nodes, MOFs feature empty void space with large surface areas and have the ability to be modified post-synthesis. Our target enzyme system for immobilization is glucose oxidase (GOx) and chloroperoxidase (CPO). Glucose oxidase catalyzes the oxidation of glucose and is used for many applications in biosensing, biofuel cells, and food production. Chloroperoxidase is a fungal heme enzyme that catalyzes peroxide-dependent halogenation, oxidation, and hydroxylation. These two enzymes work sequentially in this enzyme system by GOx producing peroxide, which activates CPO that reacts with a suitable substrate. This study focuses on using a zirconium-based MOF, UiO-66-NH2, to immobilize the enzyme system via crosslinking with the MOF’s amine group on the surface of the MOF. This study investigates two different crosslinkers: disuccinimidyl glutarate (DSG) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinidimide (NHS), providing stable crosslinking of the MOF to the enzymes. The two crosslinkers are used to covalently bond CPO and GOx onto UiO-66-NH2, and a comparison of the recyclability and enzymatic activity of the single immobilization of CPO and the doubly immobilized CPO and GOx is discussed through assays and characterization analyses. The DSG-crosslinked composites displayed enhanced activity relative to the free enzyme, and all crosslinked enzyme/MOF composites demonstrated recyclability, with at least 30% of the activity being retained after four catalytic cycles. The results of this report will aid researchers in utilizing CPO as a biocatalyst that is more active and has greater recyclability.
Collapse
|
8
|
Yang X, Lei L, Song D, Sun Y, Yang M, Sang Z, Zhou J, Huang H, Li Y. An efficient differential sensing strategy for phenolic pollutants based on the nanozyme with polyphenol oxidase activity. LUMINESCENCE 2022; 37:1414-1426. [PMID: 35723898 DOI: 10.1002/bio.4313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022]
Abstract
To realize the efficient differential sensing of phenolic pollutants in sewage, a novel sensing strategy was successfully developed based on one nanozyme (GMP-Cu) with polyphenol oxidase activity. Phenolic pollutants can be oxidized by GMP-Cu, and the oxidation products reacts subsequently with 4-aminoantipyrine to produce a quinone-imine compound. The absorption spectra of final quinone-imine products resulted from different phenolic pollutants showed obvious differences, which were due to the interaction difference between GMP-Cu and phenolic pollutants, as well as the different molecular structures of the quinone-imine products from different phenolic pollutants. Based on the difference of absorption spectra, a novel differential sensing strategy was developed. The genetic algorithm was used to select the characteristic wavelengths at different enzymatic reaction times, HCA and PLS-DA algorithms were utilized for the discriminant sensing of seven representative phenolic pollutants, including hydroquinone, resorcinol, catechol, resorcinol, phenol, p-chlorophenol, and 2,4-dichlorophenol. Scientific wavelength selection algorithm and recognition algorithm resulted in the successful identification of phenolic pollutants in sewage with a discriminant accuracy of 100%, and differentiation of the phenolic pollutants regardless of their concentration. These results indicate that sensing strategy can be used as an effective tool for the efficient identification and differentiation of phenolic pollutants in sewage.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Lulu Lei
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Yue Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, P. R. China
| | - Meng Yang
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Zhen Sang
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Jianan Zhou
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, P. R. China
| |
Collapse
|
9
|
Bej S, Ghosh M, Das R, Banerjee P. Evaluation of nanomaterials-grafted enzymes for application in contaminants degradation: Need of the hour with proposed IoT synchronized nanosensor fit sustainable clean water technology in en masse. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Memon AH, Wei B, Shams S, Jiang Y, Jiao M, Su M, Liang H. Construction of robust bienzyme-mimicking nanocatalysts for dye degradation by self-assembly of hematin, metal ions, and nucleotides. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growing proportion of the textile industry has led to an increase in the concentration of colored dyes in aquatic systems.
Collapse
Affiliation(s)
- Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- Government Boys High School Manjhand, Education and Literary Department, Govt of Sindh, Pakistan
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Saira Shams
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yucui Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengzhao Jiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingming Su
- School of Environment and Natural Resources, Renmin University of China, Beijing, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
11
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
12
|
Fatima SW, Imtiyaz K, Alam Rizvi MM, Khare SK. Microbial transglutaminase nanoflowers as an alternative nanomedicine for breast cancer theranostics. RSC Adv 2021; 11:34613-34630. [PMID: 35494746 PMCID: PMC9042677 DOI: 10.1039/d1ra04513j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignancy among women. With the aim of decreasing the toxicity of conventional breast cancer treatments, an alternative that could provide appropriate and effective drug utilization was envisioned. Thus, we contemplated and compared the in vitro effects of microbial transglutaminase nanoflowers (MTGase NFs) on breast cancer cells (MCF-7). Transglutaminase is an important regulatory enzyme acting as a site-specific cross-linker for proteins. With the versatility of MTGase facilitating the nanoflower formation by acting as molecular glue, it was demonstrated to have anti-cancer properties. The rational drug design based on a transglutaminase enzyme-assisted approach led to the uniform shape of petals in these nanoflowers, which had the capacity to act directly as an anti-cancer drug. Herein, we report the anti-cancer characteristics portrayed by enzymatic MTGase NFs, which are biocompatible in nature. This study demonstrated the prognostic and therapeutic significance of MTGase NFs as a nano-drug in breast cancer treatment. The results on MCF-7 cells showed a significantly improved in vitro therapeutic efficacy. MTGase NFs were able to exhibit inhibitory effects on cell viability (IC50-8.23 μg ml−1) within 24 h of dosage. To further substantiate its superior anti-proliferative role, the clonogenic potential was measured to be 62.8%, along with migratory inhibition of cells (3.76-fold change). Drastic perturbations were induced (4.61-fold increase in G0/G1 phase arrest), pointed towards apoptotic induction with a 58.9% effect. These results validated the role of MTGase NFs possessing a cytotoxic nature in mitigating breast cancer. Thus, MTGase bestows distinct functionality towards therapeutic nano-modality, i.e., nanoflowers, which shows promise in cancer treatment. Development of a novel therapeutic nano-modality in the form of enzymatic transglutaminase nanoflowers; endowed with anti-cancerous action against breast cancers.![]()
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi New Delhi-110016 India +91-112659 6533
| | - Khalid Imtiyaz
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | - Mohammad M Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi New Delhi-110016 India +91-112659 6533
| |
Collapse
|
13
|
Han J, Feng H, Wu J, Li Y, Zhou Y, Wang L, Luo P, Wang Y. Construction of Multienzyme Co-immobilized Hybrid Nanoflowers for an Efficient Conversion of Cellulose into Glucose in a Cascade Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7910-7921. [PMID: 34241999 DOI: 10.1021/acs.jafc.1c02056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Today, we are seeking an efficient biotransformation of cellulosic material into sustainable biochemical products to meet the increasing global energy demand. Herein, we report the fabrication of multienzyme hybrid nanoflowers (ECG-NFs) by co-immobilizing three recombinant enzymes (cellobiohydrolase (CBH), endo-glucanase (EG), and β-glucosidase (BG)) integrating a binary tag composed of elastin-like polypeptide (ELP) and His-tag to act as a tri-enzyme biocatalyst, which catalyzes the hydrolysis of cellulose into glucose. The prepared ECG-NFs exhibited excellent performance in terms of pH stability, thermal stability, storage stability, and catalytic efficiency compared to free multienzyme system. Notably, ECG-NFs could be recycled for up to eight consecutive runs. The Km and kcat/Km values for ECG-NFs were 9.33 g L-1 and 0.0051 L min-1 g-1, respectively, which were better than those of the free multienzyme system, indicating a better substrate affinity. Finally, the overall enzyme activity of ECG-NFs increased by 1.12 times and the degradation efficiency of ECG-NFs was superior to the free multienzyme system, which revealed that ECG-NFs could facilitate an effective one-pot hydrolysis of cellulose into glucose.
Collapse
Affiliation(s)
- Juan Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hui Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Li
- Jingjiang College, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Peng Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
14
|
Zr-based acid-stable nucleotide coordination polymers: An excellent platform for acidophilic enzymes immobilization. J Inorg Biochem 2021; 216:111338. [PMID: 33445108 DOI: 10.1016/j.jinorgbio.2020.111338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022]
Abstract
Acidophilic enzymes play an important role in special industrial catalytic reactions. In this work, we reported Zr-based acid-stable nucleotide coordination polymers (CPs) for efficiently improving acidophilic enzymes immobilization. Among all tested metal ions, the Zr4+/AMP CPs exhibited the highest acid stability and enzyme affinity. As a typical acidophilic enzyme, the immobilized Chloroperoxidase by Zr4+/AMP CPs displayed robust reusability in the asymmetric synthesis of modafinil, remained 95.7% of conversion rate and 99.1% enantiomeric excess (e.e.) value. This work displayed a novel acid-stable bioorganic and inorganic hybrid nanomaterial for acidophilic enzymes immobilization.
Collapse
|
15
|
Xu J, Liu H, Liu J, He Y, Gao J, Shi J, Jiang Y. Design and Construction of Enzyme–Nanozyme Integrated Catalyst as a Multifunctional Detection Platform. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junyang Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Huajiao Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jianqiao Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiafu Shi
- Tianjin Key Lab of Biomass/Wastes Utilization, School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
16
|
Zhang J, Dai Y, Jiang B, Zhang T, Chen J. Dual-enzyme co-immobilization for the one-pot production of glucose 6-phosphate from maltodextrin. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
|
18
|
Wang Q, Wu X, Jiang L, Fang C, Wang H, Chen L. Effective degradation of Di-n-butyl phthalate by reusable, magnetic Fe 3O 4 nanoparticle-immobilized Pseudomonas sp. W1 and its application in simulation. CHEMOSPHERE 2020; 250:126339. [PMID: 32120155 DOI: 10.1016/j.chemosphere.2020.126339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Di-n-butyl phthalate (DBP), one of the most widely used plasticizers, has been listed as a priority pollutant because of its toxicity to both humans and animals. In this study, Pseudomonas sp. W1, isolated from activated sludge, was capable of degrading 99.88% of DBP (1000 mg L-1) within 8 days. We immobilized the W1 strain using Fe3O4 iron nanoparticles (IONPs) coated with poly-dopamine (PDA), and further evaluated its DBP degradation efficiency. The DBP degradation performance of W1 was improved by immobilization, exhibiting 99.69% of DBP degradation efficiency on the 6th day, which was 25.68% higher than un-immobilized W1. After three cycles of magnetic recycling and utilization, W1-PDA-IONPs retained 99.6% of their original efficiency. W1-PDA-IONPs were then used to degrade DBP in landfill leachate. When the proportion of raw leachate was ≤50%, DBP could be all degraded by W1-PDA-IONPs within 6 days. In 100% landfill leachate, DBP degradation efficiency after 10 days of incubation reached 66.40%. Furthermore, W1-PDA-IONPs cells in a simulated aeration system could be effectively magnetically separated at aeration rates from 60 to 600 mL min-1. These results highlight the potential of W1-PDA-IONPs in the bioremediation of DBP-contaminated waste water.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaogang Wu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lanhui Jiang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengran Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Hua Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Liang Chen
- Zhejiang Gongshang University, School of Food Science and Biotechnology, Hangzhou 310018, China
| |
Collapse
|
19
|
Co-immobilization of an Enzyme System on a Metal-Organic Framework to Produce a More Effective Biocatalyst. Catalysts 2020. [DOI: 10.3390/catal10050499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In many respects, enzymes offer advantages over traditional chemical processes due to their decreased energy requirements for function and inherent greener processing. However, significant barriers exist for the utilization of enzymes in industrial processes due to their limited stabilities and inability to operate over larger temperature and pH ranges. Immobilization of enzymes onto solid supports has gained attention as an alternative to traditional chemical processes due to enhanced enzymatic performance and stability. This study demonstrates the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) as an enzyme system on Metal-Organic Frameworks (MOFs), UiO-66 and UiO-66-NH2, that produces a more effective biocatalyst as shown by the oxidation of pyrogallol. The two MOFs utilized as solid supports for immobilization were chosen to investigate how modifications of the MOF linker affect stability at the enzyme/MOF interface and subsequent activity of the enzyme system. The enzymes work in concert with activation of HRP through the addition of glucose as a substrate for GOx. Enzyme immobilization and leaching studies showed HRP/GOx@UiO-66-NH2 immobilized 6% more than HRP/GOx@UiO-66, and leached only 36% of the immobilized enzymes over three days in the solution. The enzyme/MOF composites also showed increased enzyme activity in comparison with the free enzyme system: the composite HRP/GOx@UiO-66-NH2 displayed 189 U/mg activity and HRP/GOx@UiO-66 showed 143 U/mg while the free enzyme showed 100 U/mg enzyme activity. This increase in stability and activity is due to the amine group of the MOF linker in HRP/GOx@UiO-66-NH2 enhancing electrostatic interactions at the enzyme/MOF interface, thereby producing the most stable biocatalyst material in solution. The HRP/GOx@UiO-66-NH2 also showed long-term stability in the solid state for over a month at room temperature.
Collapse
|
20
|
Shams S, Ahmad W, Memon AH, Wei Y, Yuan Q, Liang H. Facile synthesis of laccase mimic Cu/H 3BTC MOF for efficient dye degradation and detection of phenolic pollutants. RSC Adv 2019; 9:40845-40854. [PMID: 35540072 PMCID: PMC9076270 DOI: 10.1039/c9ra07473b] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Herein, we report an effectual method for designing a novel form of nanozyme laccase mimic namely Cu/H3BTC, using copper ions and 1,3,5-benzene tricarboxylic acid (1,3,5-H3BTC). This Cu-based metal-organic framework (MOF) was synthesized through a simple procedure of mixing of two usual reagents at room temperature. Amido Black 10B (AB-10B) was chosen as a model dye for degradation consequences. Results showed that Cu/H3BTC MOF revealed significantly higher catalytic efficacy under certain conditions like high pH, extreme temperature and high salt conditions and it has long-term storage stability, which can lead to a significant decline in catalytic activity of laccase. In addition, the degradation of AB-10B was up to 60% after ten cycles, showing good recyclability of Cu/H3BTC MOF. The UV-visible spectral changes clearly showed that Cu/H3BTC MOF is an effective laccase mimic for the degradation of azo dye AB-10B, which was degraded more easily within the time duration of 60 min. The Cu/H3BTC MOF also possessed fundamental activities like laccase with regard to oxidation of the phenolic compounds. Moreover, a technique for the quantitative detection of epinephrine by Cu/H3BTC MOF was established. These findings help to understand the laccase-like reactivity and provide a basis for the future design and application of metal-based catalysts.
Collapse
Affiliation(s)
- Saira Shams
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beisanhuan Donglu 15 Hao Beijing 100029 P. R. China +86 10 64437610 +86 10 64431557
| | - Waqas Ahmad
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beisanhuan Donglu 15 Hao Beijing 100029 P. R. China +86 10 64437610 +86 10 64431557
| | - Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beisanhuan Donglu 15 Hao Beijing 100029 P. R. China +86 10 64437610 +86 10 64431557
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beisanhuan Donglu 15 Hao Beijing 100029 P. R. China +86 10 64437610 +86 10 64431557
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beisanhuan Donglu 15 Hao Beijing 100029 P. R. China +86 10 64437610 +86 10 64431557
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beisanhuan Donglu 15 Hao Beijing 100029 P. R. China +86 10 64437610 +86 10 64431557
| |
Collapse
|
21
|
Zhao D, Zhang Q, Zhang Y, Liu Y, Pei Z, Yuan Z, Sang S. Sandwich-type Surface Stress Biosensor Based on Self-Assembled Gold Nanoparticles in PDMS Film for BSA Detection. ACS Biomater Sci Eng 2019; 5:6274-6280. [DOI: 10.1021/acsbiomaterials.9b01073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Flores EEE, Cardoso FD, Siqueira LB, Ricardi NC, Costa TH, Rodrigues RC, Klein MP, Hertz PF. Influence of reaction parameters in the polymerization between genipin and chitosan for enzyme immobilization. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Memon AH, Ding R, Yuan Q, Wei Y, Liang H. Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chem 2019; 289:568-574. [PMID: 30955650 DOI: 10.1016/j.foodchem.2019.03.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
In this work, a facile approach was developed to synthesized alcalase-inorganic hybrid nanocomposite (alcalase@CaHPO4) by immobilizing alcalase with calcium hydrogen phosphate (CaHPO4). The nanocomposite possessed flower-like morphological features with excellent hydrolysis activity on soybean protein isolates (SPI) with 1.57 fold higher compared to free alcalase. The experiment was evident of alcalase@CaHPO4 hybrid nanoflowers with 90% sustainability after the seven cycles of reusability and 80-100% relative activity at 50-70 °C and with 65% at pH 4 in acidic condition. Soybean protein hydrolysates (SPHs) produced by immobilized alcalase possessed 70% radical-scavenging capacity at 0.8 mg/mL concentration and 20% calcium-binding capacity at pH 6. The solubility of SPHs produced by alcalase@CaHPO4 hybrid nanoflowers was also improved by 15% compared to free alcalase. The high radical scavenging capability, good calcium binding capacity and improved solubility of SPHs prepared through alcalase@CaHPO4 hybrid nanoflowers would be highly promising in food industries.
Collapse
Affiliation(s)
- Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Runsheng Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|