1
|
Liang CM, Wang CC, Hung YT, Cheng HW, Yang CF. Optimization of operating parameters for 2,5-furandicarboxylic acid recovery using electrodialysis with bipolar membrane and traditional electrodialysis systems. Heliyon 2024; 10:e34706. [PMID: 39149025 PMCID: PMC11325056 DOI: 10.1016/j.heliyon.2024.e34706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Electrodialysis (ED) is an eco-friendly and feasible method to separate or recover ionic compounds by electric field attraction and configuration of ion exchange membranes. Strain Burkholderia sp. H-2 could biotransform 5-hydroxymethylfurfural (5-HMF) into a green platform compound, 2,5-furandicarboxylic acid (FDCA), using a bioreactor system. In this study, electrodialysis with the bipolar membrane (EDBM) and traditional ED systems were applied to recover and concentrate FDCA. Artificial and real FDCA effluents of the 5-HMF biotransformation bioreactor were used as the feedstock to establish the optimal conditions for FDCA recovery. The optimal FDCA concentration and pH of the artificial FDCA effluent were 2100 mg/L and 5, respectively. The suitable current density of the EDBM was 8.93 mA/cm2. For FDCA recovery and concentration using the ED, the feedstock volume and FDCA concentration in the concentration chamber were 1.5 L and 1000 mg/L, respectively. The FDCA recovery efficiency of the real FDCA effluent was 55.6 %. Suppose the pretreatment procedure of the real bioreactor effluent is further optimized. It is believed to benefit the enhancement of FDCA recovery efficiency and reduce energy consumption.
Collapse
Affiliation(s)
- Chih-Ming Liang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, 40724, Taiwan
| | - Chun-Chin Wang
- Department of Safety Health and Environmental Engineering, Hungkuang University, Taichung, 43302, Taiwan
| | - Yi-Ting Hung
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Hao-Wei Cheng
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Chu-Fang Yang
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| |
Collapse
|
2
|
Solonchenko K, Kirichenko A, Kirichenko K. Stability of Ion Exchange Membranes in Electrodialysis. MEMBRANES 2022; 13:52. [PMID: 36676859 PMCID: PMC9866250 DOI: 10.3390/membranes13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
During electrodialysis the ion exchange membranes are affected by such factors as passage of electric current, heating, tangential flow of solution and exposure to chemical agents. It can potentially cause the degradation of ion exchange groups and of polymeric backbone, worsening the performance of the process and necessitating the replacement of the membranes. This article aims to review how the composition and the structure of ion exchange membranes change during the electrodialysis or the studies imitating it.
Collapse
Affiliation(s)
- Ksenia Solonchenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Anna Kirichenko
- Department of Electric Engineering, Thermotechnics, Renewable Energy Sources, Faculty of Energetics, Kuban State Agrarian University named after I.T. Trubilin, 13 Kalinina St., 350004 Krasnodar, Russia
| | - Ksenia Kirichenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
3
|
Enhancement of α-Ketoglutaric Acid Production by Yarrowia lipolytica Grown on Mixed Renewable Carbon Sources through Adjustment of Culture Conditions. Catalysts 2022. [DOI: 10.3390/catal13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
α-Ketoglutaric acid (KGA) is a valuable compound with a wide range of applications, e.g., in the cosmetics, pharmaceutical, chemical and food industries. The present study aimed to enhance the efficiency of KGA production by Yarrowia lipolytica CBS146773 from renewable carbon sources. In the investigation, various factors that may potentially affect KGA biosynthesis were examined in bioreactor cultures performed on a simple medium containing glycerol (20 g/L) and fed with four portions of a substrate mixture (15 + 15 g/L of glycerol and rapeseed oil). It was found that the process may be stimulated by regulation of the medium pH and aeration, application of selected neutralizing agents, supplementation with thiamine and addition of sorbitan monolaurate, whereas presence of biotin and iron ions had no positive effect on KGA biosynthesis. Adjustment of the parameters improved the process efficiency and allowed 82.4 g/L of KGA to be obtained, corresponding to productivity of 0.57 g/L h and yield of 0.59 g/g. In addition, the production of KGA was characterized by a low level (≤6.3 g/L) of by-products, i.e., citric and pyruvic acids. The results confirmed the high potential of renewable carbon sources (glycerol + rapeseed oil) for effective KGA biosynthesis by Yarrowia lipolytica.
Collapse
|
4
|
Bipolar membrane electrodialysis for sustainable utilization of inorganic salts from the reverse osmosis concentration of real landfill leachate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Chen T, Bi J, Ji Z, Yuan J, Zhao Y. Application of bipolar membrane electrodialysis for simultaneous recovery of high-value acid/alkali from saline wastewater: An in-depth review. WATER RESEARCH 2022; 226:119274. [PMID: 36332296 DOI: 10.1016/j.watres.2022.119274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
With the development of comprehensive utilization of high-salinity wastewater, salt resources regeneration has been considered as the fundamental requirement for process sustainability and economic benefits. As one of the potential candidates, bipolar membrane electrodialysis (BMED) was rapidly developed in recent years for the treatment of saline wastewater. Different from other methods directly obtaining salts or condensed wastewater, BMED could utilize and convert the dissolved waste salt into higher-value acid and alkali simultaneously, which has various advantages including outstanding environmental effects and economic benefits. In this review, the recent applications of BMED for waste salt recovery and high-value acid/alkali generation from saline wastewater were systematically outlined. Based on the summary above, the economy analysis of BMED was further reviewed from the roles of desalination and resources recovery. In addition, the BMED-based processes integrated with in-situ utilization of the generated acid/alkali resources were discussed. Furthermore, the influence of operating factors on BMED performance were outlined. Finally, the strategies for improving BMED performance were concluded. Furthermore, the future application and prospects of BMED was presented. This work would provide guidance for the applications of bipolar membrane electrodialysis in saline wastewater treatment and the high-value conversion of salt resources into acids and alkalis.
Collapse
Affiliation(s)
- Tianyi Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Jingtao Bi
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Zhiyong Ji
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Yingying Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300130, China
| |
Collapse
|
6
|
Impact of Phenol on Membranes during Bipolar Membrane Electrodialysis for High Salinity Pesticide Wastewater Treatment. SEPARATIONS 2022. [DOI: 10.3390/separations9090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To achieve a cleaner production, pesticide wastewater with concentrated NaCl can be treated by using a bipolar membrane electrodialysis (BMED) and converted to NaOH and HCl, which minimizes acid and alkali consumption in a pesticide production process. However, ion-exchange membranes (IEMs) are vulnerable to fouling by phenolic substances present in the concentrated NaCl solutions. This work aimed to understand the performance and fouling mechanism of BMED from phenol during the desalination of NaCl and explore an effective cleaning method. The results firstly showed that for the NaCl solutions with higher phenol concentrations, the selectivity of the IEMs was reduced after processing six successive batches of BMED, which led to reverse migration of ions, organics leakage, and an obvious increase in the energy consumption and the concentration of generated acid and alkali. Secondly, IEMs characterization analysis detected that the structure of the IEMs was deformed, while phenol fouling deposits were observed on the surface and interior of the IEMs, especially for the anion exchange membranes (AEMs). Then, the results of soaking tests proved that the phenol could bring about swelling-like degradation to the AEMs and 0.1 wt.% NaOH solution was studied to be the optimized cleaning agent since the performance of the fouled IEMs in the short-running process could be recovered after 5 h of in situ cleaning that removed the phenol fouling deposits efficiently. Finally, the results of a long-running BMED operation treating NaCl solution containing 10 g/L phenol concentration showed that the IEMs were severely fouled, and the fouling was firstly due to the swelling-like mechanism during the initial 12 successive batches, and then should belong to the blockage-like mechanism during the following 20 successive batches. The seriously fouled IEMs could no longer be recovered even after a deep in situ cleaning. This research proves that under appropriate pretreatment or operating conditions, the BMED process is an alternative way of treating wastewater with high salinity and the presence of phenol molecules.
Collapse
|
7
|
Shi X, Yang M, Chu A, Zhang F, Fang J, Xu N, Jiang Y, Li H. Separation of α‐ketoglutaric acid by salting‐out extraction coupled with solar‐driven distillation. AIChE J 2022. [DOI: 10.1002/aic.17814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xueqi Shi
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Meng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Aqiang Chu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Fengyi Zhang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Jing Fang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin China
| | - Yanjun Jiang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| |
Collapse
|
8
|
Tomaszewska-Hetman L, Rywińska A, Lazar Z, Juszczyk P, Rakicka-Pustułka M, Janek T, Kuźmińska-Bajor M, Rymowicz W. Application of a New Engineered Strain of Yarrowia lipolytica for Effective Production of Calcium Ketoglutarate Dietary Supplements. Int J Mol Sci 2021; 22:7577. [PMID: 34299193 PMCID: PMC8304598 DOI: 10.3390/ijms22147577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to develop a technology for the production of dietary supplements based on yeast biomass and α-ketoglutaric acid (KGA), produced by a new transformant of Yarrowia lipolytica with improved KGA biosynthesis ability, as well to verify the usefulness of the obtained products for food and feed purposes. Transformants of Y. lipolytica were constructed to overexpress genes encoding glycerol kinase, methylcitrate synthase and mitochondrial organic acid transporter. The strains were compared in terms of growth ability in glycerol- and oil-based media as well as their suitability for KGA biosynthesis in mixed glycerol-oil medium. The impact of different C:N:P ratios on KGA production by selected strain was also evaluated. Application of the strain that overexpressed all three genes in the culture with a C:N:P ratio of 87:5:1 allowed us to obtain 53.1 g/L of KGA with productivity of 0.35 g/Lh and yield of 0.53 g/g. Finally, the possibility of obtaining three different products with desired nutritional and health-beneficial characteristics was demonstrated: (1) calcium α-ketoglutarate (CaKGA) with purity of 89.9% obtained by precipitation of KGA with CaCO3, (2) yeast biomass with very good nutritional properties, (3) fixed biomass-CaKGA preparation containing 87.2 μg/g of kynurenic acid, which increases the health-promoting value of the product.
Collapse
Affiliation(s)
- Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37, 51-630 Wrocław, Poland; (A.R.); (Z.L.); (P.J.); (M.R.-P.); (T.J.); (M.K.-B.); (W.R.)
| | | | | | | | | | | | | | | |
Collapse
|