1
|
Liu H, Li J, Guan C, Gao W, Li Y, Wang J, Yang Y, Du Y. Endometriosis is a disease of immune dysfunction, which could be linked to microbiota. Front Genet 2024; 15:1386411. [PMID: 38974388 PMCID: PMC11227297 DOI: 10.3389/fgene.2024.1386411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Background: Endometriosis, characterized by extrauterine endometrial tissue, leads to irregular bleeding and pelvic pain. Menstrual retrograde theory suggests fragments traverse fallopian tubes, causing inflammation and scar tissue. Prevalent among infertile women, risk factors include fewer pregnancies, delayed childbirth, irregular cycles, and familial predisposition. Treatments, medication, and surgery entail side effects. Studies link gut microbiota alterations to endometriosis, necessitating research to establish causation. We used Mendelian randomization to investigate the potential link between endometriosis and gut microbiota through genetic variants. Methods: Two-sample Mendelian randomization analyzed gut microbiota's potential causal effects on endometriosis. Instrumental variables, robustly associated with exposures, leveraged GWAS data from MiBioGen for gut microbiota and FinnGen R8 release for endometriosis. SNPs strongly associated with exposures were instrumental variables. Rigorous assessments ensured SNP impact scrutiny on endometriosis. Results: At the genus level, Anaerotruncus, Desulfovibrio, Haemophilus, and Holdemania showed causal association with endometriosis. Specific gut microbiota exhibited causal effects on different endometriosis stages. Holdemania and Ruminococcaceae UCG002 exerted reversible, stage-specific impacts. Conclusion: Mendelian randomization provides evidence for the causal link between specific gut microbiotas and endometriosis, emphasizing the pivotal role of gut microbiota dysbiosis. Modulating gut microbiota emerges as a promising strategy for preventing and treating endometriosis.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junxia Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenchen Guan
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenjie Gao
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongrui Du
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Huitsing K, Tritsch T, Arias FJC, Collado F, Aenlle KK, Nathason L, Fletcher MA, Klimas NG, Craddock TJA. The potential role of ocular and otolaryngological mucus proteins in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Med 2024; 30:1. [PMID: 38172662 PMCID: PMC10763106 DOI: 10.1186/s10020-023-00766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat. Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body's defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection. Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.
Collapse
Affiliation(s)
- Kaylin Huitsing
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Tara Tritsch
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Francisco Javier Carrera Arias
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Fanny Collado
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Lubov Nathason
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Travis J A Craddock
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA.
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Center for Collaborative Research, Room 440, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
| |
Collapse
|
3
|
Menard J, Bagheri S, Menon S, Yu YT, Goodman LB. Noninvasive sampling of the small intestinal chyme for microbiome, metabolome and antimicrobial resistance genes in dogs, a proof of concept. Anim Microbiome 2023; 5:64. [PMID: 38104116 PMCID: PMC10725013 DOI: 10.1186/s42523-023-00286-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The gastrointestinal microbiome and metabolome vary greatly throughout the different segments of the gastrointestinal tract, however current knowledge of gastrointestinal microbiome and metabolome in health and disease is limited to fecal samples due to ease of sampling. The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule allows specific sampling of the small intestine in humans. We aimed to determine whether administration of SIMBA™ capsules to healthy beagle dogs could reliably and safely sample the small intestinal microbiome and metabolome when compared to their fecal microbiome and metabolome. RESULTS Eleven beagle dogs were used for the study. Median transit time of capsules was 29.93 h (range: 23.83-77.88). Alpha diversity, as measured by the Simpson diversity, was significantly different (P = 0.048). Shannon diversity was not different (P = 0.114). Beta diversity results showed a significant difference between capsule and fecal samples regarding Bray-Curtis, weighted and unweighted unifrac (P = 0.002) and ANOSIM distance metric s (R = 0.59, P = 0.002). In addition to observing a statistically significant difference in the microbial composition of capsules and feces, distinct variation in the metabolite profiles was seen between the sample types. Heat map analysis showed 16 compounds that were significantly different between the 2 sampling modes (adj-P value ranged between 0.004 and 0.036) with 10 metabolites more abundant in the capsule than in the feces and 6 metabolites more abundant in the feces compared to the capsules. CONCLUSIONS The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule was easy and safe to administer to dogs. Microbiome and metabolome analysis from the capsule samples were significantly different than that of the fecal samples and were like previously published small intestinal microbiome and metabolome composition.
Collapse
Affiliation(s)
- Julie Menard
- Department of Veterinary Diagnostic and Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Sahar Bagheri
- International Microbiome Center, Snyder Institute for Chronic Diseases, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Y Tina Yu
- Baker Institute for Animal Health and Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Laura B Goodman
- Baker Institute for Animal Health and Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Colonetti T, Saggioratto MC, Grande AJ, Colonetti L, Junior JCD, Ceretta LB, Roever L, Silva FR, da Rosa MI. Gut and Vaginal Microbiota in the Endometriosis: Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2675966. [PMID: 38601772 PMCID: PMC11006450 DOI: 10.1155/2023/2675966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 04/12/2024]
Abstract
Background Endometriosis is a clinical condition associated with genetic, endocrine, and immunological factors, present in 6 to 10% of women of reproductive age. Currently, the human microbiota has been studied and associated with the evolution of diseases due to its influence on pathogenesis, indicating that changes in the colonization of microorganisms in the genitourinary and gastrointestinal systems can promote physiological changes that can trigger inflammatory and immunological processes and hormonal dysregulation, which can be linked to endometriosis. Thus, this systematic review and meta-analysis evaluated microbiota changes in women with endometriosis. Methods The following electronic databases were searched up to April 2022: Medline, Embase, Web of Science, Cochrane Library, and gray literature (Google Scholar), using the keywords "dysbiosis", "microbiome" and "endometriosis", combined with their synonyms. The observational studies conducted with women diagnosed with endometriosis and women without endometriosis as controls were included. For the analyses, a standard mean difference with a 95% confidence interval was used using RevMan software (version 5.4), and for methodological quality assessment, the Newcastle-Ottawa scale was used. Results A total of 16 studies were found in the literature assessing the composition of the microbiota in women with endometriosis, and no significant difference were found for changes in alpha diversity analysis in gut microbiota (SMD = -0.28; 95% CI = -0.70 to 0.14; P = 0.19; I2 = 52%; four studies, 357 participants) or vaginal microbiota (SMD = -0.68; 95% CI = -1.72 to 0.35; P = 0.19; I2 = 66%; two studies, 49 participants). Conclusion In intestinal and vaginal samples from women with endometriosis, alpha-diversity did not present a significant difference when compared to the control population. However, each study individually showed a possible relationship between the female microbiota and endometriosis. This trial is registered with CRD42021260972.
Collapse
Affiliation(s)
- Tamy Colonetti
- Laboratory of Biomedicine Translational, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105-Bairro Universitário CEP, 88806-000 Criciúma, SC, Brazil
| | - Maria Carolina Saggioratto
- Laboratory of Biomedicine Translational, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105-Bairro Universitário CEP, 88806-000 Criciúma, SC, Brazil
| | - Antonio José Grande
- Laboratory of Evidence-Based Practice, Universidade Estadual de Mato Grosso do Sul (UEMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Laura Colonetti
- Laboratory of Biomedicine Translational, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105-Bairro Universitário CEP, 88806-000 Criciúma, SC, Brazil
| | - João Carlos Denoni Junior
- Laboratory of Biomedicine Translational, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105-Bairro Universitário CEP, 88806-000 Criciúma, SC, Brazil
| | - Luciane Bisognin Ceretta
- Postgraduate Program in Collective Health, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil
| | - Fábio Rosa Silva
- Laboratory of Biomedicine Translational, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105-Bairro Universitário CEP, 88806-000 Criciúma, SC, Brazil
| | - Maria Inês da Rosa
- Laboratory of Biomedicine Translational, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105-Bairro Universitário CEP, 88806-000 Criciúma, SC, Brazil
| |
Collapse
|
6
|
Reveille JD, Ridley LK. Spondyloarthritis. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Aljohani R. Metabolic Syndrome and Its Components in Psoriatic Arthritis. Open Access Rheumatol 2022; 14:7-16. [PMID: 35210876 PMCID: PMC8860394 DOI: 10.2147/oarrr.s347797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/05/2022] [Indexed: 11/23/2022] Open
Abstract
Psoriatic arthritis (PsA) is a well-known inflammatory disorder with a wide variety of phenotypes that extend beyond the joints. It has been defined as an immune-mediated disorder in which Th-1 and Th-17 cells play a key role. It has been associated with an elevated risk of metabolic syndrome (MetS), which is characterized by abdominal obesity, hypertension, hyperglycemia, and hyperlipidemia. While the exact pathophysiology of the link between PsA and MetS has yet to be precisely determined, persistence of inflammatory abnormalities, with overexpression of pro-inflammatory cytokines, might be the cause. Studies have consistently emphasized the strong association between elevated risk of developing cardiovascular disease and MetS in individuals with underlying PsA. The literature has also shown an association between the increased PsA severity and the increased frequency of MetS components. This association has important clinical consequences when treating patients with PsA. Therefore, screening programs should be implemented for PsA patients to evaluate whether they have MetS, and appropriate treatment should be given to manage cardiometabolic risk factors. Patients should also be closely monitored for potential adverse treatment effects on co-morbidities. This article summarizes the evidence of associations between several components of MetS and PsA and analyzes the impact of treatment on these factors.
Collapse
Affiliation(s)
- Roaa Aljohani
- Department of Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
8
|
Krog MC, Madsen ME, Bliddal S, Bashir Z, Vexø LE, Hartwell D, Hugerth LW, Fransson E, Hamsten M, Boulund F, Wannerberger K, Engstrand L, Schuppe-Koistinen I, Nielsen HS. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac015. [PMID: 35441092 PMCID: PMC9014536 DOI: 10.1093/hropen/hoac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
STUDY QUESTION What is the microbiome profile across different body sites in relation to the normal menstrual cycle (with and without hormonal contraception), recurrent pregnancy loss (RPL) (before and during pregnancy, pregnancy loss or birth) and endometriosis (before, during and after surgery)? How do these profiles interact with genetics, environmental exposures, immunological and endocrine biomarkers? WHAT IS KNOWN ALREADY The microbiome is a key factor influencing human health and disease in areas as diverse as immune functioning, gastrointestinal disease and mental and metabolic disorders. There is mounting evidence to suggest that the reproductive microbiome may be influential in general and reproductive health, fertility and pregnancy outcomes. STUDY DESIGN, SIZE, DURATION This is a prospective, longitudinal, observational study using a systems biology approach in three cohorts totalling 920 participants. Since microbiome profiles by shot-gun sequencing have never been investigated in healthy controls during varying phases of the menstrual cycle, patients with RPL and patients with endometriosis, no formal sample size calculation can be performed. The study period is from 2017 to 2024 and allows for longitudinal profiling of study participants to enable deeper understanding of the role of the microbiome and of host–microbe interactions in reproductive health. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants in each cohort are as follows: Part 1 MiMens—150 healthy women with or without hormonal contraception; Part 2 MiRPL—200 couples with RPL, 50 healthy couples with prior uncomplicated pregnancy and 150 newborns; Part 3 MiEndo—120 patients with endometriosis requiring surgery with or without hormonal treatment. Microbiome profiles from saliva, faeces, rectal mucosa, vaginal fluid and endometrium will be studied, as well as the Omics profile, endocrine disrupting chemicals and endocrine and immune factors in blood, hair, saliva and urine. Pregnancy loss products, seminal microbiome, HLA types, endometriotic tissue and genetic risk and comprehensive questionnaire data will also be studied, where appropriate. Correlations with mental and physical health will be evaluated. STUDY FUNDING/COMPETING INTEREST(S) This work is supported by funding from Ferring Pharmaceuticals ([#MiHSN01] to H.S.N., M.C.K., M.E.M., L.E.V., L.E., I.S.-K., F.B., L.W.H., E.F. and M.H.), Rigshospitalet’s Research Funds ([#E-22614-01 and #E-22614-02] to M.C.K. and [#E-22222-06] to S.B.), Niels and Desiree Yde’s Foundation (S.B., endocrine analyses [#2015-2784]), the Musikforlæggerne Agnes and Knut Mørk’s Foundation (S.B., endocrine and immune analyses [#35108-001]) and Oda and Hans Svenningsen’s Foundation ([#F-22614-08] to H.S.N.). Medical writing assistance with this manuscript was provided by Caroline Loat, PhD, and funded by Ferring Pharmaceuticals. H.S.N. reports personal fees from Ferring Pharmaceuticals, Merck Denmark A/S, Ibsa Nordic, Astra Zeneca and Cook Medical outside the submitted work. K.W. is a full-time employee of Ferring Pharmaceuticals. No other conflicts are reported. TRIAL REGISTRATION NUMBER N/A TRIAL REGISTRATION DATE N/A DATE OF FIRST PATIENT’S ENROLMENT N/A
Collapse
Affiliation(s)
- Maria Christine Krog
- Correspondence address. The Recurrent Pregnancy Loss Unit, The Fertility Clinic 4071, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark. E-mail:
| | | | - Sofie Bliddal
- The Department of Medical Endocrinology and Metabolism, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Zahra Bashir
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Slagelse Hospital, Slagelse, Denmark
| | - Laura Emilie Vexø
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Gynecology, The Endometriosis Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Dorthe Hartwell
- Department of Gynecology, The Endometriosis Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Luisa W Hugerth
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marica Hamsten
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lars Engstrand
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen N, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
9
|
Liew DFL, Dau J, Robinson PC. Value-Based Healthcare in Rheumatology: Axial Spondyloarthritis and Beyond. Curr Rheumatol Rep 2021; 23:36. [PMID: 33909169 DOI: 10.1007/s11926-021-01003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW This review examines axial spondyloarthritis (axSpA) and the wider field of rheumatology through a value-based healthcare (VBHC) lens. VBHC is focused on ensuring patients receive high quality care to improve outcomes and reduce unnecessary costs. RECENT FINDINGS There are many opportunities to apply the principles of VBHC in axSpA. These include the appropriate utilization of diagnostic investigations, such as HLA-B27 and magnetic resonance imaging, assessing outcomes meaningful to patients, and optimizing care pathways. Multidisciplinary care may improve value, and reduced specialist review and medication tapering may be appropriate. Increasing the value of the care we provide to patients can occur across domains and directly and indirectly improves patient outcomes. Taking the time to integrate principles of VBHC into our practice will allow us to justifiably gain and maintain access to diagnostic and therapeutic advances for the benefit of all our patients.
Collapse
Affiliation(s)
- David F L Liew
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.,Department of Rheumatology, Austin Health, Heidelberg, Victoria, Australia.,Department of Clinical Pharmacology and Therapeutics, Austin Health, Heidelberg, Victoria, Australia
| | - Jonathan Dau
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Philip C Robinson
- Faculty of Medicine, University of Queensland School of Clinical Medicine, Herston, Queensland, 4006, Australia. .,Department of Rheumatology, Royal Brisbane & Women's Hospital, Metro North Hospital & Health Service, Bowen Bridge Road, Herston, Queensland, 4006, Australia.
| |
Collapse
|
10
|
Lee SR, Lee JC, Kim SH, Oh YS, Chae HD, Seo H, Kang CS, Shin TS. Altered Composition of Microbiota in Women with Ovarian Endometrioma: Microbiome Analyses of Extracellular Vesicles in the Peritoneal Fluid. Int J Mol Sci 2021; 22:ijms22094608. [PMID: 33925708 PMCID: PMC8124866 DOI: 10.3390/ijms22094608] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Human microbiota refers to living microorganisms which colonize our body and crucially contribute to the metabolism of nutrients and various physiologic functions. According to recently accumulated evidence, human microbiota dysbiosis in the genital tract or pelvic cavity could be involved in the pathogenesis and/or pathophysiology of endometriosis. We aimed to investigate whether the composition of microbiome is altered in the peritoneal fluid in women with endometriosis. We recruited 45 women with histological evidence of ovarian endometrioma and 45 surgical controls without endometriosis. Following the isolation of extracellular vesicles from peritoneal fluid samples from women with and without endometriosis, bacterial genomic DNA was sequenced using next-generation sequencing of the 16S rDNA V3–V4 regions. Diversity analysis showed significant differences in the microbial community at phylum, class, order, family, and genus levels between the two groups. The abundance of Acinetobacter, Pseudomonas, Streptococcus, and Enhydrobacter significantly increased while the abundance of Propionibacterium, Actinomyces, and Rothia significantly decreased in the endometriosis group compared with those in the control group (p < 0.05). These findings strongly suggest that microbiome composition is altered in the peritoneal environment in women with endometriosis. Further studies are necessary to verify whether dysbiosis itself can cause establishment and/or progression of endometriosis.
Collapse
Affiliation(s)
- Sa-Ra Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.-R.L.); (J.-C.L.); (Y.-S.O.); (H.-D.C.)
| | - Jae-Chul Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.-R.L.); (J.-C.L.); (Y.-S.O.); (H.-D.C.)
| | - Sung-Hoon Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.-R.L.); (J.-C.L.); (Y.-S.O.); (H.-D.C.)
- Correspondence: ; Tel.: +82-2-3010-3647; Fax: +82-2-476-7331
| | - Young-Sang Oh
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.-R.L.); (J.-C.L.); (Y.-S.O.); (H.-D.C.)
| | - Hee-Dong Chae
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.-R.L.); (J.-C.L.); (Y.-S.O.); (H.-D.C.)
| | - Hochan Seo
- MD Healthcare Inc., Seoul 121-270, Korea; (H.S.); (C.-S.K.); (T.-S.S.)
| | - Chil-Sung Kang
- MD Healthcare Inc., Seoul 121-270, Korea; (H.S.); (C.-S.K.); (T.-S.S.)
| | - Tae-Seop Shin
- MD Healthcare Inc., Seoul 121-270, Korea; (H.S.); (C.-S.K.); (T.-S.S.)
| |
Collapse
|
11
|
Robinson PC, van der Linden S, Khan MA, Taylor WJ. Axial spondyloarthritis: concept, construct, classification and implications for therapy. Nat Rev Rheumatol 2020; 17:109-118. [PMID: 33361770 DOI: 10.1038/s41584-020-00552-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
The axial spondyloarthritis (axSpA) disease concept has undergone substantial change from when the entity ankylosing spondylitis was defined by the modified New York criteria in 1984. Developments in imaging, therapy and genetics have all contributed to changing the concept of axSpA from one of erosions in the sacroiliac joints to a spectrum of disease with and without changes evident on plain radiographs. Changes to the previously held concept and construct of the disease have also necessitated new classification criteria. The use of MRI, primarily of the sacroiliac joints, has substantially altered the diagnosis and differential diagnosis of axSpA. Many in the axSpA community believe that the current classification criteria lack specificity, and the CLASSIC study is underway to examine this area. Although much about the evolving axSpA disease concept is universally agreed, there remains disagreement about operationalizing aspects of it, such as the requirement for the objective demonstration of axial inflammation for the classification of axSpA. New imaging technologies, biomarkers and genetics data will probably necessitate ongoing revision of axSpA classification criteria. Advances in our knowledge of the biology of axSpA will settle some differences in opinion as to how the disease concept is applied to the classification and diagnosis of patients.
Collapse
Affiliation(s)
- Philip C Robinson
- School of Clinical Medicine, Faculty of Medicine, University of Queensland, Brisbane, Australia. .,Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia.
| | - Sjef van der Linden
- Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Rheumatology, Immunology and Allergology, Inselspital, University of Bern, Bern, Switzerland
| | | | - William J Taylor
- Department of Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
12
|
Vural M, Gilbert B, Üstün I, Caglar S, Finckh A. Mini-Review: Human Microbiome and Rheumatic Diseases. Front Cell Infect Microbiol 2020; 10:491160. [PMID: 33304855 PMCID: PMC7693548 DOI: 10.3389/fcimb.2020.491160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis and spondyloarthropathy are the most common inflammatory rheumatic diseases. As the human microbiome is involved in the immune homeostasis, it has the potential to be a key factor in the development of autoimmune diseases and rheumatic diseases. In this article, we review the role of various human microbiota on the pathogenesis of rheumatic diseases, focusing on spondylarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Meltem Vural
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Benoit Gilbert
- Rheumatology Division, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Işıl Üstün
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Sibel Caglar
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Axel Finckh
- Rheumatology Division, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| |
Collapse
|
13
|
Finucci A, Ditto MC, Parisi S, Borrelli R, Priora M, Realmuto C, Fusaro E. Rheumatic manifestations in inflammatory bowel disease. Minerva Gastroenterol (Torino) 2020; 67:79-90. [PMID: 32623869 DOI: 10.23736/s2724-5985.20.02726-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rheumatic manifestations are the most frequent extra-intestinal manifestations (EIMs) in inflammatory bowel disease (IBD) patients, and they are responsible for a relevant reduction of quality of life. IBD is associated with a variety of musculoskeletal manifestations such as arthritis and non-inflammatory pain as well as with metabolic diseases, such as osteoporosis. Different imaging techniques (primarily ultrasound, magnetic resonance imaging and X-rays) can help the clinician to correctly identify the nature of manifestations and to treat the patient accordingly. Nowadays, in the setting of IBD-related arthritides, different drugs are available and can be effective on both articular and intestinal involvement. Therefore, a multi-disciplinary approach provides an early diagnosis and a better clinical outcome that can only be given from the recognition and consideration of the different EIMs. As for rheumatic manifestations, namely IBD-related arthritis, an early intervention allows to control disease activity and to prevent structural damage.
Collapse
Affiliation(s)
- Annacarla Finucci
- Unit of Rheumatology, Città della Salute e della Scienza, Turin, Italy -
| | | | - Simone Parisi
- Unit of Rheumatology, Città della Salute e della Scienza, Turin, Italy
| | - Richard Borrelli
- Unit of Rheumatology, Città della Salute e della Scienza, Turin, Italy
| | - Marta Priora
- Unit of Rheumatology, Città della Salute e della Scienza, Turin, Italy
| | - Cristina Realmuto
- Unit of Rheumatology, Città della Salute e della Scienza, Turin, Italy
| | - Enrico Fusaro
- Unit of Rheumatology, Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
14
|
Abstract
This review summarizes existing research on the gut microbiome composition and function in psoriasis and psoriatic arthritis, exploring potential roles in disease pathogenesis, progression, and management. A strong relationship between skin, joint, and gastrointestinal inflammation exists, as demonstrated by an increased prevalence of psoriasis, psoriatic arthritis, and inflammatory bowel disease co-occurring together; however, the link between them has not been fully elucidated. Studies analyzing the gut microbiome in psoriasis and psoriatic arthritis reveal a unique pattern of dysbiosis. With regard to the gut microbiome's role in psoriasis and psoriatic arthritis pathogenesis, we discuss several theories including intestinal permeability, altered immune homeostasis, and imbalance of short- and medium-chain fatty acid-producing bacteria. We also discuss how the gut microbiome affects patient risk of psoriatic arthritis and other serious comorbidities, and how fecal microbes could be used clinically as therapeutic targets or markers of disease.
Collapse
|
15
|
Fujimoto K, Uematsu S. Development of prime-boost-type next-generation mucosal vaccines. Int Immunol 2019; 32:597-603. [PMID: 31882997 DOI: 10.1093/intimm/dxz085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Our bodies are constantly exposed to a wide variety of pathogenic micro-organisms through mucosal sites. Therefore, effective vaccines that can protect at the mucosa are vital; however, only a few clinically established mucosal vaccines are available. Although conventional injectable vaccines can induce antigen-specific serum immunoglobulin G (IgG) and prevent severe infection, it is difficult to efficiently inhibit the invasion of pathogens at mucosal surfaces because of the inadequate ability to induce antigen-specific IgA. Recently, we have developed a parenteral vaccine with emulsified curdlan and CpG oligodeoxynucleotides and reported its application. Unlike other conventional injectable vaccines, this immunization contributes to the induction of antigen-specific mucosal and systemic immune responses. Even if antigen-specific IgA at the mucosa disappears, this immunization can induce high-titer IgA after boosting with a small amount of antigen on the target mucosal surface. Indeed, vaccination with Streptococcus pneumoniae antigen effectively prevented lung infection induced by this bacterium. In addition, vaccination with Clostridium ramosum, which is a representative pathobiont associated with obesity and diabetes in humans, reduced obesity in mice colonized with this microorganism. This immunization approach might be an effective treatment for intestinal bacteria-mediated diseases that have been difficult to regulate so far, as well as common infectious diseases.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Asahi-machi, Abeno-ku, Osaka, Japan.,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Asahi-machi, Abeno-ku, Osaka, Japan.,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
Xi Y, Jiang T, Chaurasiya B, Zhou Y, Yu J, Wen J, Shen Y, Ye X, Webster TJ. Advances in nanomedicine for the treatment of ankylosing spondylitis. Int J Nanomedicine 2019; 14:8521-8542. [PMID: 31806960 PMCID: PMC6831987 DOI: 10.2147/ijn.s216199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a complex disease characterized by inflammation and ankylosis primarily at the cartilage–bone interface. The disease is more common in young males and risk factors include both genetic and environmental. While the pathogenesis of AS is not completely understood, it is thought to be an immune-mediated disease involving inflammatory cellular infiltrates, and human leukocyte antigen-B27. Currently, there is no specific diagnostic technique available for this disease; therefore conventional diagnostic approaches such as clinical symptoms, laboratory tests and imaging techniques are used. There are various review papers that have been published on conventional treatment approaches, and in this review work, we focus on the more promising nanomedicine-based treatment modalities to move this field forward.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu, Jiangsu 215500, People's Republic of China
| | - Birendra Chaurasiya
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanyan Zhou
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiangmin Yu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiankun Wen
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaojian Ye
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Robinson PC, Sengupta R, Siebert S. Non-Radiographic Axial Spondyloarthritis (nr-axSpA): Advances in Classification, Imaging and Therapy. Rheumatol Ther 2019; 6:165-177. [PMID: 30788779 PMCID: PMC6514020 DOI: 10.1007/s40744-019-0146-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Non-radiographic axial spondyloarthritis (nr-axSpA) is a recently described form of axial inflammatory arthritis that has not caused substantial erosive damage to the sacroiliac joints. Nr-axSpA is associated with significant impairment in quality of life and, in a proportion of patients, it can evolve into ankylosing spondylitis (AS, also termed radiographic axSpA). The identification in the clinic of nr-axSpA has been made possible by advances in magnetic resonance imaging (MRI). Classification criteria for nr-axSpA have been proposed but there remains discussion in the international community regarding this. Studies are ongoing to further define the classification and diagnosis of nr-axSpA. There is much further research required regarding the optimal use of MRI in nr-axSpA, including distinguishing sacroiliac MRI changes in the normal population and the definition of a positive MRI in spinal disease. Non-steroidal anti-inflammatory drugs and physiotherapy are the core first-line therapy for nr-axSpA. Tumour necrosis factor inhibitors also play a very important role in treatment of patients with active nr-axSpA who do not respond to first-line therapy. Agents directed at interleukin-17, interleukin-23 and Janus kinase inhibitors are proving effective in AS with ongoing and planned studies in nr-axSpA. A great deal of active research is being undertaken in classification, imaging and therapy in nr-axSpA and so the future for improving the lives of patients with nr-axSpA is promising.
Collapse
Affiliation(s)
- Philip C Robinson
- Royal Brisbane and Women's Hospital, School of Clinical Medicine, University of Queensland, Herston, QLD, 4029, Australia.
| | - Raj Sengupta
- Royal National Hospital for Rheumatic Diseases, Bath, UK
| | - Stefan Siebert
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
|
19
|
Kragsnaes MS, Kjeldsen J, Horn HC, Munk HL, Pedersen FM, Holt HM, Pedersen JK, Holm DK, Glerup H, Andersen V, Fredberg U, Kristiansen K, Christensen R, Ellingsen T. Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open 2018; 8:e019231. [PMID: 29703851 PMCID: PMC5922473 DOI: 10.1136/bmjopen-2017-019231] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION An unbalanced intestinal microbiota may mediate activation of the inflammatory pathways seen in psoriatic arthritis (PsA). A randomised, placebo-controlled trial of faecal microbiota transplantation (FMT) infused into the small intestine of patients with PsA with active peripheral disease who are non-responsive to methotrexate (MTX) treatment will be conducted. The objective is to explore clinical aspects associated with FMT performed in patients with PsA. METHODS AND ANALYSIS This trial is a randomised, two-centre stratified, double-blind (patient, care provider and outcome assessor), placebo-controlled, parallel-group study. Eighty patients will be included and randomised (1:1) to either placebo (saline) or FMT provided from an anonymous healthy donor. Throughout the study, both groups will continue the weekly self-administered subcutaneous MTX treatment, remaining on the preinclusion dosage (15-25 mg/week). The clinical measures of psoriasis and PsA disease activity used include the Short (2-page) Health Assessment Questionnaire, the Dermatology Quality of Life Index, the Spondyloarthritis Research Consortium of Canada Enthesitis Index, the Psoriasis Area Severity Index, a dactylitis digit count, a swollen/tender joint count (66/68), plasma C reactive protein as well as visual analogue scales for pain, fatigue and patient and physician global assessments. The primary end point is the proportion of patients who experience treatment failure during the 6-month trial period. The number of adverse events will be registered throughout the study. ETHICS AND DISSEMINATION This is a proof-of-concept clinical trial and will be performed in agreement with Good Clinical Practice standards. Approvals have been obtained from the local Ethics Committee (DK-S-20150080) and the Danish Data Protection Agency (15/41684). The study has commenced in May 2017. Dissemination will be through presentations at national and international conferences and through publications in international peer-reviewed journal(s). TRIAL REGISTRATION NUMBER NCT03058900; Pre-results.
Collapse
Affiliation(s)
- Maja Skov Kragsnaes
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | | | | | | | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | | | - Henning Glerup
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Vibeke Andersen
- IRS-Centre Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ulrich Fredberg
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, BGI-Shenzhen, Shenzhen, China
| | - Robin Christensen
- Musculoskeletal Statistics Unit, Parker Institute, Frederiksberg and Bispebjerg Hospital, Copenhagen, Denmark
| | - Torkell Ellingsen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
20
|
Bazin T, Hooks KB, Barnetche T, Truchetet ME, Enaud R, Richez C, Dougados M, Hubert C, Barré A, Nikolski M, Schaeverbeke T. Microbiota Composition May Predict Anti-Tnf Alpha Response in Spondyloarthritis Patients: an Exploratory Study. Sci Rep 2018; 8:5446. [PMID: 29615661 PMCID: PMC5882885 DOI: 10.1038/s41598-018-23571-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Spondyloarthritis (SpA) pathophysiology remains largely unknown. While the association with genetic factors has been established for decades, the influence of gut microbiota is only an emerging direction of research. Despite the remarkable efficacy of anti-TNF-α treatments, non-responders are frequent and no predictive factors of patient outcome have been identified. Our objective was to investigate the modifications of intestinal microbiota composition in patients suffering from SpA three months after an anti-TNF-α treatment. We performed 16S rDNA sequencing of 38 stool samples from 19 spondyloarthritis patients before and three months after anti-TNF-α treatment onset. SpA activity was assessed at each time using ASDAS and BASDAI scores. Some modifications of the microbiota composition were observed after three months of anti-TNF-α treatment, but no specific taxon was modified, whatever the clinical response. We identified a particular taxonomic node before anti-TNF-α treatment that can predict the clinical response as a biomarker, with a higher proportion of Burkholderiales order in future responder patients. This study suggests a cross-influence between anti-TNF-α treatment and intestinal microbiota. If its results are confirmed on larger groups of patients, it may pave the way to the development of predictive tests suitable for clinical practices.
Collapse
Affiliation(s)
- Thomas Bazin
- Univ. Bordeaux, INRA, Mycoplasmal and chlamydial infections in humans, EA 3671, 33000, Bordeaux, France
- Bordeaux Hospital University Center, Department of Hepato-gastroenterology, 33600, Pessac, France
| | - Katarzyna B Hooks
- Univ. Bordeaux, Bordeaux Bioinformatics Center, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, Immunoconcept, UMR 5164, 33000, Bordeaux, France
| | - Thomas Barnetche
- Bordeaux Hospital University Center, Department of Rheumatology, 33000, Bordeaux, France
| | - Marie-Elise Truchetet
- Bordeaux Hospital University Center, Department of Rheumatology, 33000, Bordeaux, France
| | - Raphaël Enaud
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, FHU ACRONIM, Laboratoire 8 de Parasitologie-Mycologie, F-33000, Bordeaux, France
- CHU Bordeaux, Unité d'Hépatologie, Gastroentérologie et Nutrition Pédiatriques, CRCM Pédiatrique, Service 10 de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, 33000, Bordeaux, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Christophe Richez
- Bordeaux Hospital University Center, Department of Rheumatology, 33000, Bordeaux, France
| | - Maxime Dougados
- AP-HP, Cochin Hospital University Center, Department of Rheumatology, 75014, Paris, France
| | - Christophe Hubert
- Univ. Bordeaux, INSERM, Rare Diseases, genetic and metabolism, U1211, 33000, Bordeaux, France
- Univ. Bordeaux, Genome Transcriptome Facility of Bordeaux, 33000, Bordeaux, France
| | - Aurélien Barré
- Univ. Bordeaux, Bordeaux Bioinformatics Center, 33000, Bordeaux, France
| | - Macha Nikolski
- Univ. Bordeaux, Bordeaux Bioinformatics Center, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, LaBRI, UMR 5800, 33400, Talence, France
| | - Thierry Schaeverbeke
- Univ. Bordeaux, INRA, Mycoplasmal and chlamydial infections in humans, EA 3671, 33000, Bordeaux, France.
- Bordeaux Hospital University Center, Department of Rheumatology, 33000, Bordeaux, France.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. RECENT FINDINGS Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.
Collapse
|
22
|
Ruggeri RM, Trimarchi F, Giuffrida G, Certo R, Cama E, Campennì A, Alibrandi A, De Luca F, Wasniewska M. Autoimmune comorbidities in Hashimoto's thyroiditis: different patterns of association in adulthood and childhood/adolescence. Eur J Endocrinol 2017; 176:133-141. [PMID: 27913607 DOI: 10.1530/eje-16-0737] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hashimoto's thyroiditis (HT), the most common autoimmune thyroid disease at any age, is often associated with other autoimmune diseases. The present study was aimed to describe the type and frequency of non-thyroidal autoimmune diseases (NTADs) in HT patients and to delineate the clinical pattern of diseases clustering in pediatric/adolescent and adult age. DESIGN Cross-sectional study. METHODS 1053 newly diagnosed HT patients (500 adults (467 F, mean age 40.2 ± 13.7 years) and 553 children/adolescents (449 F, mean age 11.1 ± 3.0 years)) were evaluated for common NTADs by means of careful recording of medical history, physical examination and assessment of selected autoantibody profiles. RESULTS The prevalence of associated NTADs was significantly higher in adults than that in pediatric/adolescent HT patients (P < .0001). In addition, the number of adult patients suffering from two or more associated NTADs was significantly higher than that of children/adolescent (P < 0.0001). A female prevalence was evident in both cohorts, but was significant in the adults (P < 0.0001). The epidemiological distribution of NTADs was strongly different in the two cohorts, the most frequent associated diseases being arthropathies and connective tissue diseases in adults and type 1 diabetes and coeliac disease in children/adolescents. Skin diseases were represented with similar prevalence in both cohorts, vitiligo being the most common. CONCLUSIONS Age at HT presentation may influence autoimmune diseases clustering, favoring the association of specific NTADs in different ages of life. Moreover, the association between HT and NTADs increases with age and occurs most frequently in adults.
Collapse
Affiliation(s)
- R M Ruggeri
- Division of EndocrinologyDepartment of Clinical and Experimental Medicine
| | | | - G Giuffrida
- Division of EndocrinologyDepartment of Clinical and Experimental Medicine
| | - R Certo
- Division of EndocrinologyDepartment of Clinical and Experimental Medicine
| | - E Cama
- Division of EndocrinologyDepartment of Clinical and Experimental Medicine
- Department of Adult and Development Age Human Pathology 'Gaetano Barresi'
| | - A Campennì
- Departments of Biomedical Sciences and Morpho-Functional Imaging
| | - A Alibrandi
- EconomicsUniversity of Messina, Messina, Italy
| | - F De Luca
- Department of Adult and Development Age Human Pathology 'Gaetano Barresi'
| | - M Wasniewska
- Department of Adult and Development Age Human Pathology 'Gaetano Barresi'
| |
Collapse
|
23
|
Laschke MW, Menger MD. The gut microbiota: a puppet master in the pathogenesis of endometriosis? Am J Obstet Gynecol 2016; 215:68.e1-4. [PMID: 26901277 DOI: 10.1016/j.ajog.2016.02.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/01/2016] [Accepted: 02/13/2016] [Indexed: 02/08/2023]
Abstract
Endometriosis is a frequent gynecologic disease with a complex, multifactorial cause. It is characterized by the cyclic estrogen-driven proliferation and bleeding of endometriotic lesions (ie, ectopic endometrial glands and stroma) outside the uterus. These lesions induce a chronic activation of the innate immune system within the peritoneal cavity that is associated with the release of various inflammatory cytokines and angiogenic growth factors into the peritoneal fluid. This stimulates angiogenesis and the further spread of the lesions and triggers the typical pain that is symptomatic of the disease. Moreover, circulating stem and progenitor cells are recruited into the ectopic endometrial tissue and contribute to its growth and vascularization. In recent years, an increasing number of studies have indicated that the gut microbiota is not only essential for a physiologic gastrointestinal function but acts as a central regulator of a variety of inflammatory and proliferative conditions. Besides, the gut flora affects estrogen metabolism and stem-cell homeostasis. Based on these findings, we hypothesize that the gut microbiota may be involved crucially in the onset and progression of endometriosis. In the future, this novel view of the pathogenesis of endometriosis may be verified by analysis of the development of endometriotic lesions in animal models with a defined composition of the gut microbiota and by investigation of the microbiota of patients with endometriosis with modern next-generation sequencing tools. This could open the door for completely new preventive, diagnostic, and therapeutic approaches for endometriosis.
Collapse
|
24
|
Rheumatic manifestations in inflammatory bowel diseases: a link between GI and rheumatology. Clin Rheumatol 2015; 35:291-6. [DOI: 10.1007/s10067-015-3116-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/08/2015] [Indexed: 12/18/2022]
|