1
|
Qiu W, Lin X, Nagl S. In Situ Live Monitoring of Extracellular Acidosis near Cancer Cells Using Digital Microfluidics with an Integrated Optical pH Sensor Film. Anal Chem 2024; 96:14456-14463. [PMID: 39171737 DOI: 10.1021/acs.analchem.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We demonstrate the live monitoring of extracellular acidification on digital microfluidics using a chip-integrated fluorescent pH sensor film. The metabolism of various types of live cells including cancer and healthy cells were investigated through recording the extracellular pH (pHe) change. An optical pH sensor array was integrated onto a digital microfluidic (DMF) interface with a diameter of 2 mm per pH-sensing spot. Miniaturized, label-free, and noninvasive monitoring of extracellular acidosis on DMF was realized within a pH range of 5.0-8.0 with good sensitivity and rapid response. The pH sensitive probe fluorescein-5-isothiocyanate was covalently bound to poly-2-hydroxyethyl methacrylate and immobilized on a circularly exposed indium tin oxide interface on the DMF top plate. The surface of the fabricated pH sensor spots was modified with polydopamine via self-polymerization. Direct cell attachment on the sensor surfaces enabled rapid pH detection near the cell membranes. Automatic medium exchange on cell-attached pH sensing sites was achieved though solution passive dispensing on DMF. The developed DMF platform was used to monitor the pHe decrease during MCF-7 and A549 cancer cell proliferation due to abnormal glycolysis metabolism. A rapid pH decrease at the pH sensing area in the presence of cancer cells could be detected within 2 min after fresh medium exchange, while no obvious pHe change was observed with HUVEC healthy cells. Real-time detection of cell acidification and cellular response to different metabolic conditions such as higher glucose levels or administered anticancer drugs was possible.
Collapse
Affiliation(s)
- Wenting Qiu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuyan Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Song Y, Zhang S, Cao C, Yan J, Li M, Li X, Chen F, Gu N. Imaging Structural and Electrical Changes of Aging Cells Using Scanning Ion Conductance Microscopy. SMALL METHODS 2024; 8:e2301315. [PMID: 38072619 DOI: 10.1002/smtd.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 08/18/2024]
Abstract
The local charge density and distribution of extracellular membranes play a crucial role in the various cellular processes, such as regulation and localization of membrane proteins, electrophysiological signal transduction, transcriptional control, cell growth, and cell death. In this study, a novel scanning ion conductance microscopy-based method is employed to extracellular membrane mapping. This method allows to not only visualize the dynamic topography and surface charge distribution around individual cells, but also distinguish the charge difference. To validate the accuracy and effectiveness of this method, the charge density on model sample surfaces are initially manipulated and the charge sensing mechanism using finite element modeling (FEM) is explored subsequently. By applying this method, both the extracellular charge distributions and topography structures of normal and senescent human dental pulp stem cells (hDPSCs) are able to monitor. Interestingly, it is observed that the surface charge became significantly more negative after cellular senescence. This innovative approach enables us to gain valuable insights into surface charge changes during cellular senescence, which can contribute to a better understanding of the underlying mechanisms and potential therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yao Song
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Shuting Zhang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Jia Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Mei Li
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Xinyu Li
- The first school of clinical medicine, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Feng Chen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of biomedical engineering and informatics, Nanjing Medical University, Nanjing, 211166, P.R. China
- School of Medicine, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
3
|
Chen TA, Zhao BB, Balbin RA, Sharma S, Ha D, Kamp TJ, Zhou Y, Zhao F. Engineering a robust and anisotropic cardiac-specific extracellular matrix scaffold for cardiac patch tissue engineering. Matrix Biol Plus 2024; 23:100151. [PMID: 38882397 PMCID: PMC11176808 DOI: 10.1016/j.mbplus.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular matrix (ECM) fabricated using human induced pluripotent stem cells (hiPSCs)-derived cardiac fibroblasts (hiPSC-CFs) could serve as a completely biological scaffold for an engineered cardiac patch, leveraging the unlimited source and outstanding reproducibility of hiPSC-CFs. Additionally, hiPSC-CF-derived ECM (hiPSC-CF-ECM) holds the potential to enhance maturation of exogenous cardiomyocytes, such as hiPSC-derived cardiomyocytes (hiPSC-CMs), by providing a microenvironment rich in cardiac-specific biochemical and signaling cues. However, achieving sufficient robustness of hiPSC-CF-ECM is challenging. This study aims to achieve appropriate ECM deposition, scaffold thickness, and mechanical strength of an aligned hiPSC-CF-ECM by optimizing the culture period, ranging from 2 to 10 weeks, of hiPSC-CFs grown on micro-grated substrates, which can direct the alignment of both hiPSC-CFs and their secreted ECM. The hiPSC-CFs demonstrated a production rate of 13.5 µg ECM per day per 20,000 cells seeded. An anisotropic nanofibrous hiPSC-CF-ECM scaffold with a thickness of 20.0 ± 2.1 µm was achieved after 6 weeks of culture, followed by decellularization. Compositional analysis through liquid chromatography-mass spectrometry (LC-MS) revealed the presence of cardiac-specific fibrillar collagens, non-fibrillar collagens, and matricellular proteins. Uniaxial tensile stretching of the hiPSC-CF-ECM scaffold indicated robust tensile resilience. Finally, hiPSCs-CMs cultured on the hiPSC-CF-ECM exhibited alignment following the guidance of ECM nanofibers and demonstrated mature organization of key structural proteins. The culture duration of the anisotropic hiPSC-CF-ECM was successfully refined to achieve a robust scaffold containing structural proteins that resembles cardiac microenvironment. This completely biological, anisotropic, and cardiac-specific ECM holds great potential for cardiac patch engineering.
Collapse
Affiliation(s)
- Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Brandon B. Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Richard A. Balbin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sameeksha Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Donggi Ha
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J. Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Poudel A, Kunwar P, Aryal U, Merife AB, Soman P. CELLNET technology: Spatially organized, functional 3D networks at single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603216. [PMID: 39071406 PMCID: PMC11275935 DOI: 10.1101/2024.07.12.603216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cells possess the remarkable ability to generate tissue-specific 3D interconnected networks and respond to a wide range of stimuli. Understanding the link between the spatial arrangement of individual cells and their networks' emergent properties is necessary for the discovery of both fundamental biology as well as applied therapeutics. However, current methods spanning from lithography to 3D photo-patterning to acoustofluidic devices are unable to generate interconnected and organized single cell 3D networks within native extracellular matrix (ECM). To address this challenge, we report a novel technology coined as CELLNET. This involves the generation of crosslinked collagen within multi-chambered microfluidic devices followed by femtosecond laser ablation of 3D microchannel networks and cell seeding. Using model cells, we show that cell migrate within ablated networks within hours, self-organize and form viable, interconnected, 3D networks in custom architectures such as square grid, concentric circle, parallel lines, and spiral patterns. Heterotypic CELLNETs can also be generated by seeding multiple cell types in side-chambers of the devices. The functionality of cell networks can be studied by monitoring the real-time calcium signaling response of individual cells and signal propagation within CELLNETs when subjected to flow stimulus alone or a sequential combination of flow and biochemical stimuli. Furthermore, user-defined disrupted CELLNETs can be generated by lethally injuring target cells within the 3D network and analyzing the changes in their signaling dynamics. As compared to the current self-assembly based methods that exhibit high variability and poor reproducibility, CELLNETs can generate organized 3D single-cell networks and their real-time signaling responses to a range of stimuli can be accurately captured using simple cell seeding and easy-to-handle microfluidic devices. CELLNET, a new technology agnostic of cell types, ECM formulations, 3D cell-connectivity designs, or location and timing of network disruptions, could pave the way to address a range of fundamental and applied bioscience applications. Teaser New technology to generate 3D single cell interconnected and disrupted networks within natural extracellular matrix in custom configurations.
Collapse
|
5
|
Mori K, Kataoka K, Akiyama Y, Asahi T. Covalent Immobilization of Collagen Type I to a Polydimethylsiloxane Surface for Preventing Cell Detachment by Retaining Collagen Molecules under Uniaxial Cyclic Mechanical Stretching Stress. Biomacromolecules 2023; 24:5035-5045. [PMID: 37800307 DOI: 10.1021/acs.biomac.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Surface modification of polydimethylsiloxane (PDMS) with an extracellular matrix (ECM) is useful for enhancing stable cell attachment. However, few studies have investigated the correlation between the stability of deposited ECM and cell behavior on the PDMS surfaces in external stretched cell culture systems. Herein, covalent collagen type I (Col)-immobilized PDMS surfaces were fabricated using 3-aminopropyl-trimethoxysilane, glutaraldehyde, and Col molecules. The immobilized collagen molecules on the PDMS surface were more stable and uniform than the physisorbed collagen. The cells stably adhered to the Col-immobilized surface and proliferated even under uniaxial cyclic mechanical stretching stress (UnCyMSt), whereas the cells gradually detached from the Col-physisorbed PDMS surface, accompanied by a decrease in the number of deposited collagen molecules. Moreover, the immobilization of collagen molecules enhanced cell alignment under the UnCyMSt. This study reveals that cell adhesion, proliferation, and alignment under the UnCyMSt can be attributed to the retention of collagen molecules on the PDMS surface.
Collapse
Affiliation(s)
- Kazuaki Mori
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yoshikatsu Akiyama
- Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Comprehensive Research Organization, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
6
|
Yang JC, Lee J, Lim SJ, Kwak G, Park J. Molecularly Imprinted Chalcone-Branched Polyimide-Based Chemosensors with Stripe Nanopatterns for the Detection of Melittin. ACS Sens 2023; 8:2298-2308. [PMID: 37261931 DOI: 10.1021/acssensors.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a chalcone-branched polyimide (CB-PI) was synthesized by the Steglich esterification reaction for selective recognition of the toxic peptide melittin (MEL). MEL was immobilized on a nanopatterned poly(dimethylsiloxane) (PDMS) mold using a conventional surface modification technique to increase binding sites. A stripe-nanopatterned thin CB-PI film was formed on a quartz crystal (QC) substrate by simultaneously performing microcontact printing and ultraviolet (UV) light dimerization using a MEL-immobilized mold. The surface morphology changes and dimensions of the molecularly imprinted polymer (MIP) films with stripe nanopatterns (S-MIP) were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The sensing signals (Δf and Qe) of the S-MIP sensor were investigated upon adsorption in a 100-μL dilute plasma solution containing 30 μg/mL MEL, and its reproducibility, reuse, stability, and durability were investigated. The S-MIP sensor showed high sensitivity (5.49 mL/mg) and coefficient of determination (R2 = 0.999), and the detection limit (LOD) and the quantification limit (LOQ) were determined as 0.3 and 1.1 μg/mL, respectively. In addition, the selectivity coefficients (k*) calculated from the selectivity tests were 2.7-5.7, 2.1-4.3, and 2.8-4.6 for bovine serum albumin (BSA), immunoglobulin G (IgG), and apamin (APA), respectively. Our results indicate that the nanopatterned MIP sensors based on CB-PI demonstrate great potential as a sensing tool for the quantitative analysis of biomolecules.
Collapse
Affiliation(s)
- Jin Chul Yang
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jineun Lee
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Seok Jin Lim
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
González-Lana S, Randelovic T, Ciriza J, López-Valdeolivas M, Monge R, Sánchez-Somolinos C, Ochoa I. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model. LAB ON A CHIP 2023; 23:2434-2446. [PMID: 37013698 DOI: 10.1039/d3lc00075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The tissue microenvironment plays a crucial role in tissue homeostasis and disease progression. However, the in vitro simulation has been limited by the lack of adequate biomimetic models in the last decades. Thanks to the advent of microfluidic technology for cell culture applications, these complex microenvironments can be recreated by combining hydrogels, cells and microfluidic devices. Nevertheless, this advance has several limitations. When cultured in three-dimensional (3D) hydrogels inside microfluidic devices, contractile cells may exert forces that eventually collapse the 3D structure. Disrupting the compartmentalisation creates an obstacle to long-term or highly cell-concentrated assays, which are extremely relevant for multiple applications such as fibrosis or ischaemia. Therefore, we tested surface treatments on cyclic-olefin polymer-based microfluidic devices (COP-MD) to promote the immobilisation of collagen as a 3D matrix protein. Thus, we compared three surface treatments in COP devices for culturing human cardiac fibroblasts (HCF) embedded in collagen hydrogels. We determined the immobilisation efficiency of collagen hydrogel by quantifying the hydrogel transversal area within the devices at the studied time points. Altogether, our results indicated that surface modification with polyacrylic acid photografting (PAA-PG) of COP-MD is the most effective treatment to avoid the quick collapse of collagen hydrogels. As a proof-of-concept experiment, and taking advantage of the low-gas permeability properties of COP-MD, we studied the application of PAA-PG pre-treatment to generate a self-induced ischaemia model. Different necrotic core sizes were developed depending on initial HCF density seeding with no noticeable gel collapse. We conclude that PAA-PG allows long-term culture, gradient generation and necrotic core formation of contractile cell types such as myofibroblasts. This novel approach will pave the way for new relevant in vitro co-culture models where fibroblasts play a key role such as wound healing, tumour microenvironment and ischaemia within microfluidic devices.
Collapse
Affiliation(s)
- Sandra González-Lana
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
| | - Teodora Randelovic
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
| | - María López-Valdeolivas
- Aragón Institute of Nanoscience and Materials (INMA), Department of Condensed Matter Physics (Faculty of Science), CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rosa Monge
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
| | - Carlos Sánchez-Somolinos
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Aragón Institute of Nanoscience and Materials (INMA), Department of Condensed Matter Physics (Faculty of Science), CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
8
|
Substrate stiffness controls proinflammatory responses in human gingival fibroblasts. Sci Rep 2023; 13:1358. [PMID: 36693942 PMCID: PMC9873657 DOI: 10.1038/s41598-023-28541-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Soft gingiva is often compromised in gingival health; however, the underlying biological mechanisms remain unknown. Extracellular matrix (ECM) stiffness is involved in the progression of various fibroblast-related inflammatory disorders via cellular mechanotransduction. Gingival stiffness might regulate cellular mechanotransduction-mediated proinflammatory responses in gingival fibroblasts. This in vitro study aims to investigate the effects of substrate stiffness on proinflammatory responses in human gingival fibroblasts (hGFs). The hGFs isolated from two healthy donors cultured on type I collagen-coated polydimethylsiloxane substrates with different stiffnesses, representing soft (5 kPa) or hard (25 kPa) gingiva. Expression levels of proinflammatory mediators, prostaglandin E2 or interleukin-1β, in hGFs were significantly higher with the soft substrate than with the hard substrate, even without and with lipopolysaccharide (LPS) to induce inflammation. Expression levels of gingival ECM and collagen cross-linking agents in hGFs were downregulated more with the soft substrate than with the hard substrate through 14 days of culture. The soft substrate suppressed the expression of mechanotransduction-related transcriptional factors and activated the expression of inflammation-related factors, whereas the hard substrate demonstrated the opposite effects. Soft substrate induced proinflammatory responses and inhibition of ECM synthesis in hGFs by inactivating cellular mechanotransduction. This supports the importance of ECM stiffness in gingival health.
Collapse
|
9
|
Schot M, Araújo-Gomes N, van Loo B, Kamperman T, Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater 2023; 19:392-405. [PMID: 35574053 PMCID: PMC9062422 DOI: 10.1016/j.bioactmat.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 10/27/2022] Open
Abstract
Living microtissues are used in a multitude of applications as they more closely resemble native tissue physiology, as compared to 2D cultures. Microtissues are typically composed of a combination of cells and materials in varying combinations, which are dictated by the applications' design requirements. Their applications range wide, from fundamental biological research such as differentiation studies to industrial applications such as cruelty-free meat production. However, their translation to industrial and clinical settings has been hindered due to the lack of scalability of microtissue production techniques. Continuous microfluidic processes provide an opportunity to overcome this limitation as they offer higher throughput production rates as compared to traditional batch techniques, while maintaining reproducible control over microtissue composition and size. In this review, we provide a comprehensive overview of the current approaches to engineer microtissues with a focus on the advantages of, and need for, the use of continuous processes to produce microtissues in large quantities. Finally, an outlook is provided that outlines the required developments to enable large-scale microtissue fabrication using continuous processes.
Collapse
Affiliation(s)
- Maik Schot
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Bas van Loo
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Tom Kamperman
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| |
Collapse
|
10
|
Spiaggia G, Taladriz-Blanco P, Hengsberger S, Septiadi D, Geers C, Lee A, Rothen-Rutishauser B, Petri-Fink A. A Near-Infrared Mechanically Switchable Elastomeric Film as a Dynamic Cell Culture Substrate. Biomedicines 2022; 11:biomedicines11010030. [PMID: 36672538 PMCID: PMC9855853 DOI: 10.3390/biomedicines11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Commercial static cell culture substrates can usually not change their physical properties over time, resulting in a limited representation of the variation in biomechanical cues in vivo. To overcome this limitation, approaches incorporating gold nanoparticles to act as transducers to external stimuli have been employed. In this work, gold nanorods were embedded in an elastomeric matrix and used as photothermal transducers to fabricate biocompatible light-responsive substrates. The nanocomposite films analysed by lock-in thermography and nanoindentation show a homogeneous heat distribution and a greater stiffness when irradiated with NIR light. After irradiation, the initial stiffness values were recovered. In vitro experiments performed during NIR irradiation with NIH-3T3 fibroblasts demonstrated that these films were biocompatible and cells remained viable. Cells cultured on the light stiffened nanocomposite exhibited a greater proliferation rate and stronger focal adhesion clustering, indicating increased cell-surface binding strength.
Collapse
Affiliation(s)
- Giovanni Spiaggia
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
- Correspondence: (P.T.-B.); (A.P.-F.)
| | - Stefan Hengsberger
- School of Engineering and Architecture (HEIA-FR), HES-SO, University of Applied Science and Arts in Western Switzerland, Boulevard de Pérolles 80, 1700 Fribourg, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Geers
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Aaron Lee
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Correspondence: (P.T.-B.); (A.P.-F.)
| |
Collapse
|
11
|
You Q, Lu M, Li Z, Zhou Y, Tu C. Cell Sheet Technology as an Engineering-Based Approach to Bone Regeneration. Int J Nanomedicine 2022; 17:6491-6511. [PMID: 36573205 PMCID: PMC9789707 DOI: 10.2147/ijn.s382115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bone defects that are congenital or the result of infection, malignancy, or trauma represent a challenge to the global healthcare system. To address this issue, multiple research groups have been developing novel cell sheet technology (CST)-based approaches to promote bone regeneration. These methods hold promise for use in regenerative medicine because they preserve cell-cell contacts, cell-extracellular matrix interactions, and the protein makeup of cell membranes. This review introduces the concept and preparation system of the cell sheet (CS), explores the application of CST in bone regeneration, highlights the current states of the bone regeneration via CST, and offers perspectives on the challenges and future research direction of translating current knowledge from the lab to the clinic.
Collapse
Affiliation(s)
- Qi You
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Minxun Lu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhuangzhuang Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Yong Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China,Correspondence: Chongqi Tu; Yong Zhou, Department of Orthopedics, West China Hospital, Sichuan University, No. 37, Guoxuexiang, Chengdu, 610041, Sichuan Province, People’s Republic of China, Email ;
| |
Collapse
|
12
|
Rao L, Liu Y, Zhou H. Significantly improved cell affinity of polydimethylsiloxane enabled by a surface-modified strategy with chemical coupling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:66. [PMID: 36138160 PMCID: PMC9499886 DOI: 10.1007/s10856-022-06690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Polydimethylsiloxane (PDMS) is a commonly used insulation/packaging material for implantable neural electrodes. Nevertheless, the PDMS-initiated tissue response would lead to the deterioration of the electrode performances post-implantation, owing to its intrinsic hydrophobic and cell-repellent surface. The conventional physical coatings by hydrophilic hydrogels or bioactive molecules are unable to maintain during the long-term implantation due to their low stability by physical adhesion. In this work, we first anchor both hydrophilic polyethylene glycol (PEG) and bioactive molecule poly-L-lysine (PLL) on the PDMS surface by chemical coupling to change the PDMS surface from hydrophobic and cell-repellent to hydrophilic and cell-adhesive. XPS tests indicate the chemically coupled modification layers are stable on the PDMS surface after experiencing a harsh rinse process. Contact angle measurements show that the use of PEG 600 with the moderate molecular weight results in the highest hydrophilicity for the resulting PDMS-PEG-PLL. PC12 cell evaluation results exhibit that the PDMS-PEG-PLL with PEG 600 leads to significantly larger cell adhesion area, more neurite number, and longer neurite length than the PDMS. The PDMS-PEG-PLL with PEG 600 featuring stable modification layers, high hydrophilicity, and superior cell affinity has great potential in stabilizing the neural electrode-tissue interface for the long-term implantation. Graphical abstract.
Collapse
Affiliation(s)
- Li Rao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuqin Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Haihan Zhou
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
13
|
Babaei M, Nasernejad B, Sharifikolouei E, Shokrgozar MA, Bonakdar S. Bioactivation of 3D Cell-Imprinted Polydimethylsiloxane Surfaces by Bone Protein Nanocoating for Bone Tissue Engineering. ACS OMEGA 2022; 7:26353-26367. [PMID: 35936447 PMCID: PMC9352215 DOI: 10.1021/acsomega.2c02206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 06/03/2023]
Abstract
Physical and chemical parameters that mimic the physiological niche of the human body have an influence on stem cell fate by creating directional signals to cells. Micro/nano cell-patterned polydimethylsiloxane (PDMS) substrates, due to their ability to mimic the physiological niche, have been widely used in surface modification. Integration of other factors such as the biochemical coating on the surface can achieve more similar microenvironmental conditions and promote stem cell differentiation to the target cell line. Herein, we investigated the effect of physical topography, chemical functionalization by acid bone lysate (ABL) nanocoating, and the combined functionalization of the bone proteins' nanocoated surface and the topographically modified surface. We prepared four distinguishing surfaces: plain PDMS, physically modified PDMS by 3D cell topography patterning, chemically modified PDMS with bone protein nanocoating, and chemically modified nano 3D cell-imprinted PDMS by bone proteins (ABL). Characterization of extracted ABL was carried out by Bradford staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, followed by the MTT assay for evaluation of cell viability on ABL-coated PDMS. Moreover, field emission scanning electron microscopy and profilometry were used for the determination of optimal coating thickness, and the appropriate coating concentration was identified and used in the study. The binding and retention of ABL to PDMS were confirmed by Fourier transform infrared spectroscopy and bicinchoninic acid assay. Sessile drop static water contact angle measurements on substrates showed that the combined chemical functionalization and nano 3D cell-imprinting on the PDMS surface improved surface wettability by 66% compared to plain PDMS. The results of ALP measurement, alizarin red S staining, immunofluorescence staining, and real-time PCR showed that the nano 3D cell-imprinted PDMS surface functionalized by extracted bone proteins, ABL, is able to guide the fate of adipose derived stem cellss toward osteogenic differentiation. Eventually, chemical modification of the cell-imprinted PDMS substrate by bone protein extraction not only improved the cell adhesion and proliferation but also contributed to the topographical effect itself and caused a significant synergistic influence on the process of osteogenic differentiation.
Collapse
Affiliation(s)
- Mahrokh Babaei
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Bahram Nasernejad
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Elham Sharifikolouei
- Department
of Applied Science and Technology, Politecnico
di Torino, Turin 10129, Italy
| | | | - Shahin Bonakdar
- National
Cell Bank, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
14
|
Jia W, He W, Wang G, Goldman J, Zhao F. Enhancement of Lymphangiogenesis by Human Mesenchymal Stem Cell Sheet. Adv Healthc Mater 2022; 11:e2200464. [PMID: 35678079 DOI: 10.1002/adhm.202200464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Preparation of human mesenchymal stem cell (hMSC) suspension for lymphedema treatment relies on conventional enzymatic digestion methods, which severely disrupts cell-cell and cell-extracellular matrix (ECM) connections, and drastically impairs cell retention and engraftment after transplantation. The objective of the present study is to evaluate the ability of hMSC-secreted ECM to augment lymphangiogenesis by using an in vitro coculturing model of hMSC sheets with lymphatic endothelial cells (LECs) and an in vivo mouse tail lymphedema model. Results demonstrate that the hMSC-secreted ECM augments the formation of lymphatic capillary-like structure by a factor of 1.2-3.6 relative to the hMSC control group, by serving as a prolymphangiogenic growth factor reservoir and facilitating cell regenerative activities. hMSC-derived ECM enhances MMP-2 mediated matrix remodeling, increases the synthesis of collagen IV and laminin, and promotes lymphatic microvessel-like structure formation. The injection of rat MSC sheet fragments into a mouse tail lymphedema model confirms the benefits of the hMSC-derived ECM by stimulating lymphangiogenesis and wound closure.
Collapse
Affiliation(s)
- Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| |
Collapse
|
15
|
Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, Pountos I, Caterson EJ. Highlights on Advancing Frontiers in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:633-664. [PMID: 34210148 PMCID: PMC9242713 DOI: 10.1089/ten.teb.2021.0012] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The field of tissue engineering continues to advance, sometimes in exponential leaps forward, but also sometimes at a rate that does not fulfill the promise that the field imagined a few decades ago. This review is in part a catalog of success in an effort to inform the process of innovation. Tissue engineering has recruited new technologies and developed new methods for engineering tissue constructs that can be used to mitigate or model disease states for study. Key to this antecedent statement is that the scientific effort must be anchored in the needs of a disease state and be working toward a functional product in regenerative medicine. It is this focus on the wildly important ideas coupled with partnered research efforts within both academia and industry that have shown most translational potential. The field continues to thrive and among the most important recent developments are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies that warrant special attention. Developments in the aforementioned areas as well as future directions are highlighted in this article. Although several early efforts have not come to fruition, there are good examples of commercial profitability that merit continued investment in tissue engineering. Impact statement Tissue engineering led to the development of new methods for regenerative medicine and disease models. Among the most important recent developments in tissue engineering are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies. These technologies and an understanding of them will have impact on the success of tissue engineering and its translation to regenerative medicine. Continued investment in tissue engineering will yield products and therapeutics, with both commercial importance and simultaneous disease mitigation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan, USA
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Annabelle Fricker
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ehsanul Hoque Apu
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Taby Ahsan
- RoosterBio, Inc., Frederick, Maryland, USA
| | - Ippokratis Pountos
- Academic Department of Trauma and Orthopaedics, University of Leeds, Leeds, United Kingdom
| | - Edward J. Caterson
- Division of Plastic Surgery, Department of Surgery, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
16
|
Measurement of the Adipose Stem Cells Cell Sheets Transmittance. Bioengineering (Basel) 2021; 8:bioengineering8070093. [PMID: 34356200 PMCID: PMC8301134 DOI: 10.3390/bioengineering8070093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
In the field of cell therapy, the interest in cell sheet technology is increasing. To determine the cell sheet harvesting time requires experience and practice, and different factors could change the harvesting time (variability among donors and culture media, between cell culture dishes, initial cell seeding density). We have developed a device that can measure the transmittance of the multilayer cell sheets, using a light emitting diode and a light detector, to estimate the harvesting time. The transmittance of the adipose stromal cells cell sheets (ASCCS) was measured every other day as soon as the cells were confluent, up to 12 days. The ASCCS, from three different initial seeding densities, were harvested at 8, 10, and 12 days after seeding. Real-time PCR and immunostaining confirmed the expression of specific cell markers (CD29, CD73, CD90, CD105, HLA-A, HLA-DR), but less than the isolated adipose stromal cells. The number of cells per cell sheets, the average thickness per cell sheet, and the corresponding transmittance showed no correlation. Decrease of the transmittance seems to be correlated with the cell sheet maturation. For the first time, we are reporting the success development of a device to estimate ASCCS harvesting time based on their transmittance.
Collapse
|
17
|
Ehlinger C, Mathieu E, Rabineau M, Ball V, Lavalle P, Haikel Y, Vautier D, Kocgozlu L. Insensitivity of dental pulp stem cells migration to substrate stiffness. Biomaterials 2021; 275:120969. [PMID: 34157563 DOI: 10.1016/j.biomaterials.2021.120969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
Dental pulp stem cells (DPSCs) are a promising cell source for regeneration of dental pulp. Migration is a key event but influence of the microenvironment rigidity (5 kPa at the center of dental pulp to 20 GPa for the dentin) is largely unknown. Mechanical signals are transmitted from the extracellular matrix to the cytoskeleton, to the nuclei, and to the chromatin, potentially regulating gene expression. To identify the microenvironmental influence on migration, we analyzed motility on PDMS substrates with stiffness increasing from 1.5 kPa up to 2.5 MPa. We found that migration speed slightly increases as substrate stiffness decreases in correlation with decreasing focal adhesion size. Motility is relatively insensitive to substrate stiffness, even on a bi-rigidity PDMS substrate where DPSCs migrate without preferential direction. Migration is independent of both myosin II activity and YAP translocation after myosin II inhibition. Additionally, inhibition of Arp2/3 complex leads to significant speed decrease for all rigidities, suggesting contribution of the lamellipodia in the migration. Interestingly, the chromatin architecture remains stable after a 7-days exposure on the PDMS substrates for all rigidity. To design scaffold mimicking dental pulp environment, similar DPSCs migration for all rigidity, leaves field open to choose this mechanical parameter.
Collapse
Affiliation(s)
- Claire Ehlinger
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Eric Mathieu
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Morgane Rabineau
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Vincent Ball
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Philippe Lavalle
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Youssef Haikel
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Dominique Vautier
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France.
| | - Leyla Kocgozlu
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France.
| |
Collapse
|
18
|
Choi A, Yoon H, Han SJ, Lee JH, Rhyou IH, Kim DS. Rapid harvesting of stem cell sheets by thermoresponsive bulk poly( N-isopropylacrylamide) (PNIPAAm) nanotopography. Biomater Sci 2021; 8:5260-5270. [PMID: 32930245 DOI: 10.1039/d0bm01338b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, cell sheet engineering-based technologies have actualized diverse scaffold-free bio-products to revitalize unintentionally damaged tissues/organs, including cardiomyopathy, corneal defects, and periodontal damage. Although substantial interest is now centered on the practical utilization of these bio-products for patients, the long harvest period of stem cells- or other primary cell-sheets has become a huge hurdle. Here, we dramatically reduce the total harvest period of a cell sheet (from cell layer formation to cell sheet detachment) composed of human bone marrow mesenchymal stem cells (hBMSCs) down to 2 d with the help of bulk thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) substrate nanotopography, which is not achievable via the previous grafting methods using PNIPAAm. We directly replicated an isotropic 400 nm-nanopore-array pattern on a bulk PNIPAAm substrate through UV polymerization of highly concentrated NIPAAm monomers, which was achieved using a remarkably increased Young's modulus of bulk PNIPAAm that was 1500 times higher than conventional PNIPAAm. The rapid harvesting of the hBMSC sheet on the bulk PNIPAAm substrate nanotopography was not only based on the accelerated formation and maturation of the hBMSC layer, but also the easy detachment of the hBMSC sheet induced by the abrupt change in the surface roughness of the substrate below the lower critical solution temperature (LCST) owing to the enlarged surface area of the substrate. Our findings may contribute to reverse presumptions about the limitations regarding the grafting methods for the cell sheet harvest and could broaden the practical utilization of cell sheets for patients in the near future.
Collapse
Affiliation(s)
- Andrew Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Korea.
| | - Hyungjun Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Korea.
| | - Seon Jin Han
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Korea.
| | - Ji-Ho Lee
- Department of Orthopedic Surgery, Pohang Semyeong Christianity Hospital, 351 Posco-daero, Pohang, 37816, Korea
| | - In Hyeok Rhyou
- Department of Orthopedic Surgery, Pohang Semyeong Christianity Hospital, 351 Posco-daero, Pohang, 37816, Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Korea.
| |
Collapse
|
19
|
Aydemir D, Dogru S, Alaca BE, Ulusu NN. Impact of the surface modifications and cell culture techniques on the biomechanical properties of PDMS in relation to cell growth behavior. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1919670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Duygu Aydemir
- Biochemistry Department, Koç University School of Medicine, Sariyer, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Turkey
| | - Sedat Dogru
- Department of Mechanical Engineering, Koç University, Sariyer, Turkey
| | - B. Erdem Alaca
- Department of Mechanical Engineering, Koç University, Sariyer, Turkey
- Surface Science and Technology Center, KUYTAM, Koç University, Sariyer, Turkey
| | - Nuriye Nuray Ulusu
- Biochemistry Department, Koç University School of Medicine, Sariyer, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Turkey
| |
Collapse
|
20
|
Öztürk-Öncel MÖ, Erkoc-Biradli FZ, Rasier R, Marcali M, Elbuken C, Garipcan B. Rose petal topography mimicked poly(dimethylsiloxane) substrates for enhanced corneal endothelial cell behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112147. [PMID: 34082958 DOI: 10.1016/j.msec.2021.112147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Low proliferation capacity of corneal endothelial cells (CECs) and worldwide limitations in transplantable donor tissues reveal the critical need of a robust approach for in vitro CEC growth. However, preservation of CEC-specific phenotype with increased proliferation has been a great challenge. Here we offer a biomimetic cell substrate design, by optimizing mechanical, topographical and biochemical characteristics of materials with CEC microenvironment. We showed the surprising similarity between topographical features of white rose petals and corneal endothelium due to hexagonal cell shapes and physiologically relevant cell density (≈ 2000 cells/mm2). Polydimethylsiloxane (PDMS) substrates with replica of white rose petal topography and cornea-friendly Young's modulus (211.85 ± 74.9 kPa) were functionalized with two of the important corneal extracellular matrix (ECM) components, collagen IV (COL 4) and hyaluronic acid (HA). White rose petal patterned and COL 4 modified PDMS with optimized stiffness provided enhanced bovine CEC response with higher density monolayers and increased phenotypic marker expression. This biomimetic approach demonstrates a successful platform to improve in vitro cell substrate properties of PDMS for corneal applications, suggesting an alternative environment for CEC-based therapies, drug toxicity investigations, microfluidics and organ-on-chip applications.
Collapse
Affiliation(s)
| | | | - Rıfat Rasier
- Department of Ophthalmology, Demiroglu Bilim University, Istanbul, Turkey
| | - Merve Marcali
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Caglar Elbuken
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey; Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
| | - Bora Garipcan
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
21
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Asencio IO. The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering (Basel) 2021; 8:50. [PMID: 33922428 PMCID: PMC8146165 DOI: 10.3390/bioengineering8050050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
22
|
Joseph E, Rajput SS, Patil S, Nisal A. Mechanism of Adhesion of Natural Polymer Coatings to Chemically Modified Siloxane Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2974-2984. [PMID: 33645228 DOI: 10.1021/acs.langmuir.1c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface coatings play an important role in improving the performance of biomedical implants. Polydimethylsiloxane (PDMS) is a commonly used material for biomedical implants, and surface-coated PDMS implants frequently face problems such as delamination or cracking of the coating. In this work, we have measured the performance of nano-coatings of the biocompatible protein polymer silk fibroin (SF) on pristine as well as modified PDMS surfaces. The PDMS surfaces have been modified using oxygen plasma treatment and 3-amino-propyl-triethoxy-silane (APTES) treatment. Although these techniques of PDMS modification have been known, their effects on adhesion of SF nano-coatings have not been studied. Interestingly, testing of the coated samples using a bulk technique such as tensile and bending deformation showed that the SF nano-coating exhibits improved crack resistance when the PDMS surface has been modified using APTES treatment as compared to an oxygen plasma treatment. These results were validated at the microscopic and mesoscopic length scales through nano-scratch and nano-indentation measurements. Further, we developed a unique method using modified atomic force microscopy to measure the adhesive energy between treated PDMS surfaces and SF molecules. These measurements indicated that the adhesive strength of PDMS-APTES-SF is 10 times more compared to PDMS-O2-SF due to the higher number of molecular linkages formed in this nanoscale contact. This lower number of molecular linkages in the PDMS-O2 indicates that only fewer numbers of surface hydroxyl groups interact with the SF protein through secondary interactions such as hydrogen bonding. On the other hand, a larger number of amine groups present on PDMS-APTES surface hydrogen bond with the polar amino acids present on the silk fibroin protein chain, resulting in better adhesion. Thus, APTES modification to the PDMS substrate results in improved adhesion of nano-coating to the substrate and enhances the delamination and crack resistance of the nano-coatings.
Collapse
Affiliation(s)
- Emmanuel Joseph
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shatruhan Singh Rajput
- Center for Energy Science, Department of Physics, Indian Institute of Science Education and Research, Pune 411008 India
| | - Shivprasad Patil
- Center for Energy Science, Department of Physics, Indian Institute of Science Education and Research, Pune 411008 India
| | - Anuya Nisal
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Priyadarshani J, Roy T, Das S, Chakraborty S. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology. ACS Biomater Sci Eng 2021; 7:1263-1277. [PMID: 33555875 DOI: 10.1021/acsbiomaterials.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several disease conditions, such as cancer metastasis and atherosclerosis, are deeply connected with the complex biophysical phenomena taking place in the complicated architecture of the tiny blood vessels in human circulatory systems. Traditionally, these diseases have been probed by devising various animal models, which are otherwise constrained by ethical considerations as well as limited predictive capabilities. Development of an engineered network-on-a-chip, which replicates not only the functional aspects of the blood-carrying microvessels of human bodies, but also its geometrical complexity and hierarchical microstructure, is therefore central to the evaluation of organ-assist devices and disease models for therapeutic assessment. Overcoming the constraints of reported resource-intensive fabrication techniques, here, we report a facile, simple yet niche combination of surface engineering and microfabrication strategy to devise a highly ordered hierarchical microtubular network embedded within a polydimethylsiloxane (PDMS) slab for dynamic cell culture on a chip, with a vision of addressing the exclusive aspects of the vascular transport processes under medically relevant paradigms. The design consists of hierarchical complexity ranging from capillaries (∼80 μm) to large arteries (∼390 μm) and a simultaneous tuning of the interfacial material chemistry. The fluid flow behavior is characterized numerically within the hierarchical network, and a confluent endothelial layer is realized on the inner wall of microfluidic device. We further explore the efficacy of the device as a vascular deposition assay of circulatory tumor cells (MG-63 osteosarcoma cells) present in whole blood. The proposed paradigm of mimicking an in vitro vascular network in a low-cost paradigm holds further potential for probing cellular dynamics as well as offering critical insights into various vascular transport processes.
Collapse
Affiliation(s)
- Jyotsana Priyadarshani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
24
|
Yu S, Liu D, Wang T, Lee YZ, Wong JCN, Song X. Micropatterning of polymer substrates for cell culture. J Biomed Mater Res B Appl Biomater 2021; 109:1525-1533. [PMID: 33590658 DOI: 10.1002/jbm.b.34811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 01/14/2021] [Indexed: 11/11/2022]
Abstract
The cell microenvironment such as substrate topology plays an important role in biological processes. In this study, microgrooves were successfully produced on surfaces of both thermoplastic and thermoset polymers using cost-effective techniques for mass production. The micropatterning of thermoplastic polystyrene (PS) petri dish was accomplished efficiently using an in-house developed low-cost hot embossing system. The high replication fidelity of the microgroove with depth and width of 2 μm and spacing of 2 μm was achieved by using silicone rubber as a soft counter mold. This patterned petri dish subsequently served as the cast to replicate the micropattern onto thermoset polydimethylsiloxane (PDMS). It was found that the micropattern increased the hydrophobicity of both PS and PDMS surfaces. The effect of the substrate micropattern on cellular behaviors was preliminarily investigated with untreated and treated PS petri dish as well as PDMS. The results show that the micropattern significantly improved cell adhesion and proliferation for cells cultured on untreated PS petri dish and PDMS substrates. Moreover, the micropattern induced obvious cell alignment along the microgrooves for culturing on all substrates which were studied.
Collapse
Affiliation(s)
- Suzhu Yu
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore
| | - Dan Liu
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore.,Biomanufacturing Technology Group 2, Bioprocessing Technology Institute, Singapore
| | - Tianyi Wang
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore
| | - Yi Zhen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Joshua Cheng Ning Wong
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore.,Advanced Remanufacturing and Technology Centre, Singapore
| | - Xu Song
- Polymer Processing Group, Singapore Institute of Manufacturing Technology, Singapore.,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong
| |
Collapse
|
25
|
Razavi M, Primavera R, Vykunta A, Thakor AS. Silicone-based bioscaffolds for cellular therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111615. [DOI: 10.1016/j.msec.2020.111615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
|
26
|
Lam M, Migonney V, Falentin-Daudre C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater 2021; 121:68-88. [PMID: 33212233 DOI: 10.1016/j.actbio.2020.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Silicone implants are widely used in the medical field for plastic or reconstructive surgeries for the purpose of soft tissue issues. However, as with any implanted object, healthcare-associated infections are not completely avoidable. The material suffers from a lack of biocompatibility and is often subject to bacterial/microbial infections characterized by biofilm growth. Numerous strategies have been developed to either prevent, reduce, or fight bacterial adhesion by providing an antibacterial property. The present review summarizes the diverse approaches to deal with bacterial infections on silicone surfaces along with the different methods to activate/oxidize the surface before any surface modifications. It includes antibacterial coatings with antibiotics or nanoparticles, covalent attachment of active bacterial molecules like peptides or polymers. Regarding silicone surfaces, the activation step is essential to render the surface reactive for any further modifications using energy sources (plasma, UV, ozone) or chemicals (acid solutions, sol-gel strategies, chemical vapor deposition). Meanwhile, corresponding work on breast silicone prosthesis is discussed. The latter is currently in the line of sight for causing severe capsular contractures. Specifically, to that end, besides chemical modifications, the antibacterial effect can also be achieved by physical surface modifications by adjusting the surface roughness and topography for instance.
Collapse
|
27
|
Shin W, Ambrosini YM, Shin YC, Wu A, Min S, Koh D, Park S, Kim S, Koh H, Kim HJ. Robust Formation of an Epithelial Layer of Human Intestinal Organoids in a Polydimethylsiloxane-Based Gut-on-a-Chip Microdevice. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2. [PMID: 33532747 PMCID: PMC7849371 DOI: 10.3389/fmedt.2020.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is a silicone polymer that has been predominantly used in a human organ-on-a-chip microphysiological system. The hydrophobic surface of a microfluidic channel made of PDMS often results in poor adhesion of the extracellular matrix (ECM) as well as cell attachment. The surface modification by plasma or UV/ozone treatment in a PDMS-based device produces a hydrophilic surface that allows robust ECM coating and the reproducible attachment of human intestinal immortalized cell lines. However, these surface-activating methods have not been successful in forming a monolayer of the biopsy-derived primary organoid epithelium. Several existing protocols to grow human intestinal organoid cells in a PDMS microchannel are not always reproducibly operative due to the limited information. Here, we report an optimized methodology that enables robust and reproducible attachment of the intestinal organoid epithelium in a PDMS-based gut-on-a-chip. Among several reported protocols, we optimized a method by performing polyethyleneimine-based surface functionalization followed by the glutaraldehyde cross linking to activate the PDMS surface. Moreover, we discovered that the post-functionalization step contributes to provide uniform ECM deposition that allows to produce a robust attachment of the dissociated intestinal organoid epithelium in a PDMS-based microdevice. We envision that our optimized protocol may disseminate an enabling methodology to advance the integration of human organotypic cultures in a human organ-on-a-chip for patient-specific disease modeling.
Collapse
Affiliation(s)
- Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yoko M Ambrosini
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yong Cheol Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Alexander Wu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Soyoun Min
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Domin Koh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Sowon Park
- Severance Fecal Microbiota Transplantation Center, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Kim
- Severance Fecal Microbiota Transplantation Center, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Koh
- Severance Fecal Microbiota Transplantation Center, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
28
|
Drebezghova V, Gojzewski H, Allal A, Hempenius MA, Nardin C, Vancso GJ. Network Mesh Nanostructures in Cross‐Linked Poly(Dimethylsiloxane) Visualized by AFM. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Viktoriia Drebezghova
- Universite de Pau et des Pays de l'AdourE2S UPPACNRSIPREMTechnopôle Hélioparc 2 avenue du Président Angot Pau 64053 France
- Materials Science and Technology of PolymersFaculty of Science and TechnologyUniversity of Twente Drienerlolaan 5 Enschede NB 7522 The Netherlands
| | - Hubert Gojzewski
- Materials Science and Technology of PolymersFaculty of Science and TechnologyUniversity of Twente Drienerlolaan 5 Enschede NB 7522 The Netherlands
| | - Ahmed Allal
- Universite de Pau et des Pays de l'AdourE2S UPPACNRSIPREMTechnopôle Hélioparc 2 avenue du Président Angot Pau 64053 France
| | - Mark A. Hempenius
- Materials Science and Technology of PolymersFaculty of Science and TechnologyUniversity of Twente Drienerlolaan 5 Enschede NB 7522 The Netherlands
| | - Corinne Nardin
- Universite de Pau et des Pays de l'AdourE2S UPPACNRSIPREMTechnopôle Hélioparc 2 avenue du Président Angot Pau 64053 France
| | - G. Julius Vancso
- Materials Science and Technology of PolymersFaculty of Science and TechnologyUniversity of Twente Drienerlolaan 5 Enschede NB 7522 The Netherlands
| |
Collapse
|
29
|
Sharma D, Ferguson M, Zhao F. A step-by-step protocol for generating human fibroblast cell-derived completely biological extracellular matrix scaffolds. Methods Cell Biol 2020; 156:3-13. [DOI: 10.1016/bs.mcb.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Ryan CNM, Zeugolis DI. Engineering the Tenogenic Niche In Vitro with Microenvironmental Tools. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina N. M. Ryan
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| |
Collapse
|
31
|
Agarwal T, Maiti TK, Behera B, Ghosh SK, Apoorva A, Padmavati M. Biofunctionalized cellulose paper matrix for cell delivery applications. Int J Biol Macromol 2019; 139:114-127. [PMID: 31374267 DOI: 10.1016/j.ijbiomac.2019.07.201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
The present study delineates the preparation, characterization, and application of (3-Aminopropyl)triethoxysilane (APTES)/Caprine liver-derived extracellular matrix (CLECM) coated paper matrix for cell delivery. Here, we exploited positively charged surface of the paper matrix (as imparted by APTES derivatization) to improve the biological responses of the cells. Our results demonstrated that the functionalized paper matrixes favored the adhesion, growth, and proliferation of multiple cell types including normal, transformed, cancerous, and stem cells as compared to the pristine paper matrix. Upon implantation into the mice model, the developed paper matrix supported infiltration of the host cells and vasculature without showing any evidence of significant systemic toxicity. Moreover, the cells cultured on the paper matrix, when delivered to the CAM and mouse models, showed an enhanced vascular network around the substrate, thereby confirming its potential to deliver the cells in vivo. Together, the study confirms that the reported paper-based platform is easy to fabricate, cheap, portable and could efficiently be applied to cell delivery applications for either tissue repair or the development of humanized animal model.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Birendra Behera
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India.
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Anupam Apoorva
- School of Biosciences, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Manchikanti Padmavati
- Rajiv Gandhi School of Intellectual Property Law, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
32
|
Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture. Bioact Mater 2019; 4:142-150. [PMID: 30873506 PMCID: PMC6400012 DOI: 10.1016/j.bioactmat.2019.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Natural tissues contain highly organized cellular architecture. One of the major challenges in tissue engineering is to develop engineered tissue constructs that promote cellular growth in physiological directionality. To address this issue, micro-patterned polydimethylsiloxane (PDMS) substrates have been widely used in cell sheet engineering due to their low microfabrication cost, higher stability, excellent biocompatibility, and most importantly, ability to guide cellular growth and patterning. However, the current methods for PDMS surface modification either require a complicated procedure or generate a non-uniform surface coating, leading to the production of poor-quality cell layers. A simple and efficient surface coating method is critically needed to improve the uniformity and quality of the generated cell layers. Herein, a fast, simple and inexpensive surface coating method was analyzed for its ability to uniformly coat polydopamine (PD) with or without collagen on micro-grated PDMS substrates without altering essential surface topographical features. Topographical feature, stiffness and cytotoxicity of these PD and/or collagen based surface coatings were further analyzed. Results showed that the PD-based coating method facilitated aligned and uniform cell growth, therefore holds great promise for cell sheet engineering as well as completely biological tissue biomanufacturing.
Collapse
|