1
|
Ferreira LVDO, Amorim RM. Perspectives on Schwann-like cells derived from bone marrow-mesenchymal stem cells: Advancing peripheral nerve injury therapies. World J Stem Cells 2025; 17:102702. [DOI: 10.4252/wjsc.v17.i2.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 01/18/2025] [Indexed: 02/24/2025] Open
Abstract
Peripheral nerve injuries are clinical conditions that often result in functional deficits, compromising patient quality of life. Given the relevance of these injuries, new treatment strategies are constantly being investigated. Although mesenchymal stem cells already demonstrate therapeutic potential due to their paracrine action, the transdifferentiation of these cells into Schwann-like cells (SLCs) represents a significant advancement in nerve injury therapy. Recent studies indicate that SLCs can mimic the functions of Schwann cells, with promising results in animal models. However, challenges remain, such as the diversity of transdifferentiation protocols and the scalability of these therapies for clinical applications. A recent study by Zou et al provided a comprehensive overview of the role of bone marrow-derived mesenchymal stem cells in the treatment of peripheral nerve injuries. Therefore, we would like to discuss and explore the use of SLCs derived from bone marrow-derived mesenchymal stem cells in more detail as a promising alternative in the field of nerve regeneration.
Collapse
Affiliation(s)
- Lucas Vinícius de Oliveira Ferreira
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, São Paulo, Brazil
| | - Rogério Martins Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, São Paulo, Brazil
| |
Collapse
|
2
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 PMCID: PMC11697815 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
3
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
4
|
Yu H, Luo X, Li Y, Shao L, Yang F, Pang Q, Zhu Y, Hou R. Advanced Hybrid Strategies of GelMA Composite Hydrogels in Bone Defect Repair. Polymers (Basel) 2024; 16:3039. [PMID: 39518248 PMCID: PMC11548276 DOI: 10.3390/polym16213039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
To date, severe bone defects remain a significant challenge to the quality of life. All clinically used bone grafts have their limitations. Bone tissue engineering offers the promise of novel bone graft substitutes. Various biomaterial scaffolds are fabricated by mimicking the natural bone structure, mechanical properties, and biological properties. Among them, gelatin methacryloyl (GelMA), as a modified natural biomaterial, possesses a controllable chemical network, high cellular stability and viability, good biocompatibility and degradability, and holds the prospect of a wide range of applications. However, because they are hindered by their mechanical properties, degradation rate, and lack of osteogenic activity, GelMA hydrogels need to be combined with other materials to improve the properties of the composites and endow them with the ability for osteogenesis, vascularization, and neurogenesis. In this paper, we systematically review and summarize the research progress of GelMA composite hydrogel scaffolds in the field of bone defect repair, and discuss ways to improve the properties, which will provide ideas for the design and application of bionic bone substitutes.
Collapse
Affiliation(s)
- Han Yu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Xi Luo
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yanling Li
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, China;
| | - Fang Yang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Qian Pang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yabin Zhu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Ruixia Hou
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| |
Collapse
|
5
|
Chou HD, Chen CA, Liu HY, Liu SJ, Lai PL, Wu WC, Hwang YS, Chen KJ, Tsai TT, Lai CC. Synthesis, Properties, and Biocompatibility of 4-Carboxyphenyboronic Acid-Modified Gelatin-Methacryloyl: A Hydrogel for Retinal Surgeries. ACS OMEGA 2024; 9:42147-42158. [PMID: 39431074 PMCID: PMC11483393 DOI: 10.1021/acsomega.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
The current surgical adjunctive for vitreoretinal surgeries fails to provide an adequate 3D structure for cellular regeneration. A one-pot synthesis of gelatin-methacryloyl (GelMA) followed by modification with 4-carboxyphenylboronic acid (4-CPBA) was performed to fabricate 4-CPBA-modified GelMA (4CPBA@GelMA), a gelatin-based hydrogel. 4CPBA@GelMA was photo-cross-linked by 405 nm violet light and examined using nuclear magnetic resonance (NMR), Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), and rheometry. In vitro biocompatibility was examined by Müller cell proliferation assays exposed to 4CPBA@GelMA and violet light. In vivo retinal biocompatibility was evaluated by electroretinography of rat eyes that were exposed to intravitreally injected and photo-cross-linked 4CPBA@GelMA at days 3, 7, 14, and 28 post-injection. Following electroretinography, histology and immunohistochemistry were performed on the retinas. The NMR results indicated amidation of GelMA by 4-CPBA, and FTIR confirmed the presence of the CPBA ring in 4CPBA@GelMA samples. SEM revealed that 4CPBA@GelMA had significantly larger pores than GelMA (56.9 ± 9.5 vs 35.1 ± 2.8 μm; P < 0.001). Rheological findings showed that, unlike GelMA and gelatin, 4CPBA@GelMA has Newtonian fluid properties at room temperature. Exposure to 4CPBA@GelMA did not significantly affect Müller cell viability in a proliferation assay; moreover, electroretinography findings indicated normal waveforms and implicit times, and histology and immunohistochemistry examinations revealed no significant changes. In this study, we established the high retinal compatibility of 4CPBA@GelMA. The low viscosity of 4CPBA@GelMA is ideal for injection via small-gauge needles, and the larger pore size and three-dimensional network both potentiate cellular migration and growth. These features made 4CPBA@GelMA a candidate for vitreoretinal surgical adjunctive that might promote retinal regeneration.
Collapse
Affiliation(s)
- Hung-Da Chou
- Department
of Ophthalmology, Chang Gung Memorial Hospital,
Linkou Main Branch, Taoyuan 333, Taiwan
| | - Chung-An Chen
- Department
of Orthopaedic Surgery, Spine Section and Bone and Joint Research
Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School
of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hao-Yu Liu
- Department
of Orthopaedic Surgery, Spine Section and Bone and Joint Research
Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shih-Jung Liu
- Department
of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Po-Liang Lai
- Department
of Orthopaedic Surgery, Spine Section and Bone and Joint Research
Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School
of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wei-Chi Wu
- Department
of Ophthalmology, Chang Gung Memorial Hospital,
Linkou Main Branch, Taoyuan 333, Taiwan
| | - Yih-Shiou Hwang
- Department
of Ophthalmology, Chang Gung Memorial Hospital,
Linkou Main Branch, Taoyuan 333, Taiwan
| | - Kuan-Jen Chen
- Department
of Ophthalmology, Chang Gung Memorial Hospital,
Linkou Main Branch, Taoyuan 333, Taiwan
| | - Tsung-Ting Tsai
- Department
of Orthopaedic Surgery, Spine Section and Bone and Joint Research
Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School
of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Chun Lai
- Department
of Ophthalmology, Chang Gung Memorial Hospital,
Linkou Main Branch, Taoyuan 333, Taiwan
- Department
of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| |
Collapse
|
6
|
Liu S, Chen Y, Wang Z, Liu M, Zhao Y, Tan Y, Qu Z, Du L, Wu C. The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives. MedComm (Beijing) 2024; 5:e753. [PMID: 39314888 PMCID: PMC11417428 DOI: 10.1002/mco2.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioprinting is a highly promising application area of additive manufacturing technology that has been widely used in various fields, including tissue engineering, drug screening, organ regeneration, and biosensing. Its primary goal is to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices through software-layered discrete and numerical control molding. Despite its immense potential, bioprinting technology still faces several challenges. It requires concerted efforts from researchers, engineers, regulatory bodies, and industry stakeholders are principal to overcome these challenges and unlock the full potential of bioprinting. This review systematically discusses bioprinting principles, applications, and future perspectives while also providing a topical overview of research progress in bioprinting over the past two decades. The most recent advancements in bioprinting are comprehensively reviewed here. First, printing techniques and methods are summarized along with advancements related to bioinks and supporting structures. Second, interesting and representative cases regarding the applications of bioprinting in tissue engineering, drug screening, organ regeneration, and biosensing are introduced in detail. Finally, the remaining challenges and suggestions for future directions of bioprinting technology are proposed and discussed. Bioprinting is one of the most promising application areas of additive manufacturing technology that has been widely used in various fields. It aims to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices. This review systematically discusses bioprinting principles, applications, and future perspectives, which provides a topical description of the research progress of bioprinting.
Collapse
Affiliation(s)
- Shuge Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yating Chen
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhiyao Wang
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Minggao Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yundi Zhao
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yushuo Tan
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhan Qu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Liping Du
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Chunsheng Wu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| |
Collapse
|
7
|
Akhtar M, Peng P, Bernhardt A, Gelinsky M, Ur Rehman MA, Boccaccini AR, Basu B. Gelatin Methacryloyl (GelMA) - 45S5 Bioactive Glass (BG) Composites for Bone Tissue Engineering: 3D Extrusion Printability and Cytocompatibility Assessment Using Human Osteoblasts. ACS Biomater Sci Eng 2024; 10:5122-5135. [PMID: 39038164 DOI: 10.1021/acsbiomaterials.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
3D extrusion printing has been widely investigated for low-volume production of complex-shaped scaffolds for tissue regeneration. Gelatin methacryloyl (GelMA) is used as a baseline material for the synthesis of biomaterial inks, often with organic/inorganic fillers, to obtain a balance between good printability and biophysical properties. The present study demonstrates how 45S5 bioactive glass (BG) addition and GelMA concentrations can be tailored to develop GelMA composite scaffolds with good printability and buildability. The experimental results suggest that 45S5 BG addition consistently decreases the compression stiffness, irrespective of GelMA concentration, albeit within 20% of the baseline scaffold (without 45S5 BG). The optimal addition of 2 wt % 45S5 BG in 7.5 wt % GelMA was demonstrated to provide the best combination of printability and buildability in the 3D extrusion printing route. The degradation decreases and the swelling kinetics increases with 45S5 BG addition, irrespective of GelMA concentration. Importantly, the dissolution in simulated body fluid over 3 weeks clearly promoted the nucleation and growth of crystalline calcium phosphate particles, indicating the potential of GelMA-45S5 BG to promote biomineralization. The cytocompatibility assessment using human osteoblasts could demonstrate uncompromised cell proliferation or osteogenic marker expression over 21 days in culture for 3D printable 7.5 wt % GelMA -2 wt % 45S5 BG scaffolds when compared to 7.5 wt % GelMA. The results thus encourage further investigations of the GelMA/45S5 BG composite system for bone tissue engineering applications.
Collapse
Affiliation(s)
- Memoona Akhtar
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Peixi Peng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Bikramjit Basu
- Laboratory for Biomaterials Science and Translational Research, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:041001. [PMID: 38996412 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| |
Collapse
|
9
|
Huang Y, Ye K, He A, Wan S, Wu M, Hu D, Xu K, Wei P, Yin J. Dual-layer conduit containing VEGF-A - Transfected Schwann cells promotes peripheral nerve regeneration via angiogenesis. Acta Biomater 2024; 180:323-336. [PMID: 38561075 DOI: 10.1016/j.actbio.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Peripheral nerve injuries (PNIs) can cause neuropathies and significantly affect the patient's quality of life. Autograft transplantation is the gold standard for conventional treatment; however, its application is limited by nerve unavailability, size mismatch, and local tissue adhesion. Tissue engineering, such as nerve guidance conduits, is an alternative and promising strategy to guide nerve regeneration for peripheral nerve repair; however, only a few conduits could reach the high repair efficiency of autografts. The healing process of PNI is frequently accompanied by not only axonal and myelination regeneration but also angiogenesis, which initializes nerve regeneration through vascular endothelial growth factor A (VEGF-A). In this study, a composite nerve conduit with a poly (lactic-co-glycolic acid) (PLGA) hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with VEGF-A transfected Schwann cells (SCs) as the inner layer was established to evaluate its promising ability for peripheral nerve repair. A rat model of peripheral nerve defect was used to examine the efficiency of PLGA/GelMA-SC (VA) conduits, whereas autograft, PLGA, PLGA/GelMA, and PLGA/GelMA-SC (NC) were used as controls. VEGF-A-transfected SCs can provide a stable source for VEGF-A secretion. Furthermore, encapsulation in GelMA cannot only promote proliferation and tube formation of human umbilical vein endothelial cells but also enhance dorsal root ganglia and neuronal cell extension. Previous animal studies have demonstrated that the regenerative effects of PLGA/GelMA-SC (VA) nerve conduit were similar to those of autografts and much better than those of other conduits. These findings indicate that combination of VEGF-A-overexpressing SCs and PLGA/GelMA conduit-guided peripheral nerve repair provides a promising method that enhances angiogenesis and regeneration during nerve repair. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits shows promise for peripheral nerve repair, while achieving the repair efficiency of autografts remains a challenge. In this study, a composite nerve conduit with a PLGA hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with vascular endothelial growth factor A (VEGF-A)-transfected Schwann cells (SCs) as the inner layer was established to evaluate its potential ability for peripheral nerve repair. This approach preserves growth factor bioactivity and enhances material properties. GelMA insertion promotes Schwann cell proliferation and morphology extension. Moreover, transfected SCs serve as a stable VEGF-A source and fostering angiogenesis. This study offers a method preserving growth factor efficacy and safeguarding SCs, providing a comprehensive solution for enhanced angiogenesis and nerve regeneration.
Collapse
Affiliation(s)
- Yuye Huang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Kai Ye
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Andong He
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Shaobo Wan
- Yuyao Traditional Chinese Medicine Hospital, Ningbo 315010, China
| | - Miaoben Wu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Donghao Hu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China.
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China.
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
10
|
Yang L, Guo X, Yang Y, Duan G, Chen K, Wang J, Li Y, Wang Z. Mechanically Controlled Enzymatic Polymerization and Remodeling. ACS Macro Lett 2024; 13:401-406. [PMID: 38511967 DOI: 10.1021/acsmacrolett.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In nature, proteins possess the remarkable ability to sense and respond to mechanical forces, thereby triggering various biological events, such as bone remodeling and muscle regeneration. However, in synthetic systems, harnessing the mechanical force to induce material growth still remains a challenge. In this study, we aimed to utilize low-frequency ultrasound (US) to activate horseradish peroxidase (HRP) and catalyze free radical polymerization. Our findings demonstrate the efficacy of this mechano-enzymatic chemistry in rapidly remodeling the properties of materials through cross-linking polymerization and surface coating. The resulting samples exhibited a significant enhancement in tensile strength, elongation, and Young's modulus. Moreover, the hydrophobicity of the surface could be completely switched within just 30 min of US treatment. This work presents a novel approach for incorporating mechanical sensing and rapid remodeling capabilities into materials.
Collapse
Affiliation(s)
- Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyu Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Ramesh PA, Sethuraman S, Subramanian A. Multichannel Conduits with Fascicular Complementation: Significance in Long Segmental Peripheral Nerve Injury. ACS Biomater Sci Eng 2024; 10:2001-2021. [PMID: 38487853 DOI: 10.1021/acsbiomaterials.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite the advances in tissue engineering approaches, reconstruction of long segmental peripheral nerve defects remains unsatisfactory. Although autologous grafts with proper fascicular complementation have shown meaningful functional recovery according to the Medical Research Council Classification (MRCC), the lack of donor nerve for such larger defect sizes (>30 mm) has been a serious clinical issue. Further clinical use of hollow nerve conduits is limited to bridging smaller segmental defects of denuded nerve ends (<30 mm). Recently, bioinspired multichannel nerve guidance conduits (NGCs) gained attention as autograft substitutes as they mimic the fascicular connective tissue microarchitecture in promoting aligned axonal outgrowth with desirable innervation for complete sensory and motor function restoration. This review outlines the hierarchical organization of nerve bundles and their significance in the sensory and motor functions of peripheral nerves. This review also emphasizes the major challenges in addressing the longer nerve defects with the role of fascicular arrangement in the multichannel nerve guidance conduits and the need for fascicular matching to accomplish complete functional restoration, especially in treating long segmental nerve defects. Further, currently available fabrication strategies in developing multichannel nerve conduits and their inconsistency in existing preclinical outcomes captured in this review would seed a new process in designing an ideal larger nerve conduit for peripheral nerve repair.
Collapse
Affiliation(s)
- Preethy Amruthavarshini Ramesh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401, India
| |
Collapse
|
12
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
13
|
Das S, Thimukonda Jegadeesan J, Basu B. Advancing Peripheral Nerve Regeneration: 3D Bioprinting of GelMA-Based Cell-Laden Electroactive Bioinks for Nerve Conduits. ACS Biomater Sci Eng 2024; 10:1620-1645. [PMID: 38345020 DOI: 10.1021/acsbiomaterials.3c01226] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Peripheral nerve injuries often result in substantial impairment of the neurostimulatory organs. While the autograft is still largely used as the "gold standard" clinical treatment option, nerve guidance conduits (NGCs) are currently considered a promising approach for promoting peripheral nerve regeneration. While several attempts have been made to construct NGCs using various biomaterial combinations, a comprehensive exploration of the process science associated with three-dimensional (3D) extrusion printing of NGCs with clinically relevant sizes (length: 20 mm; diameter: 2-8 mm), while focusing on tunable buildability using electroactive biomaterial inks, remains unexplored. In addressing this gap, we present here the results of the viscoelastic properties of a range of a multifunctional gelatin methacrylate (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)/carbon nanofiber (CNF)/gellan gum (GG) hydrogel bioink formulations and printability assessment using experiments and quantitative models. Our results clearly established the positive impact of the gellan gum on the enhancement of the rheological properties. Interestingly, the strategic incorporation of PEGDA as a secondary cross-linker led to a remarkable enhancement in the strength and modulus by 3 and 8-fold, respectively. Moreover, conductive CNF addition resulted in a 4-fold improvement in measured electrical conductivity. The use of four-component electroactive biomaterial ink allowed us to obtain high neural cell viability in 3D bioprinted constructs. While the conventionally cast scaffolds can support the differentiation of neuro-2a cells, the most important result has been the excellent cell viability of neural cells in 3D encapsulated structures. Taken together, our findings demonstrate the potential of 3D bioprinting and multimodal biophysical cues in developing functional yet critical-sized nerve conduits for peripheral nerve tissue regeneration.
Collapse
Affiliation(s)
- Soumitra Das
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Wu J, Yun Z, Song W, Yu T, Xue W, Liu Q, Sun X. Highly oriented hydrogels for tissue regeneration: design strategies, cellular mechanisms, and biomedical applications. Theranostics 2024; 14:1982-2035. [PMID: 38505623 PMCID: PMC10945336 DOI: 10.7150/thno.89493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels. The design and preparation of highly oriented hydrogels involve strategies like including hydrogels with highly oriented nanofillers, polymer-chain networks, void channels, and microfabricated structures. Understanding the specific mechanism of action of how these highly oriented hydrogels affect cell behavior and their biological applications for repairing highly oriented tissues such as the cornea, skin, skeletal muscle, tendon, ligament, cartilage, bone, blood vessels, heart, etc., requires further exploration and generalization. Therefore, this review aims to fill that gap by focusing on the design strategy of highly oriented hydrogels and their application in the field of tissue engineering. Furthermore, we provide a detailed discussion on the application of highly oriented hydrogels in various tissues and organs and the mechanisms through which highly oriented structures influence cell behavior.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Tao Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Mater Today Bio 2023; 23:100799. [PMID: 37766893 PMCID: PMC10519825 DOI: 10.1016/j.mtbio.2023.100799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The development of cell-laden bioinks that possess high biocompatibility and printability is crucial in the field of bioprinting for the creation of cell-embedded tissue engineering scaffolds. As widely known, methacrylated gelatin (GelMA) is one of the most commonly used photo-crosslinkable bioink for cell-laden bioprinting with different printing methods, but GelMA is the derivative of gelatin, so it loses the unique triple-helix molecular structure of collagen and may not be able to successfully activate the cellular pathways or facilitate cell-matrix interaction as effectively as collagen. Recently, methacrylated collagen (CMA) was developed to be an alternative photocrosslinkable bioink with a good bioactivity, but its low printability and biocompatibility limited that application in tissue engineering. In this study, the synthetic process for CMA was improved by synthesizing under 4 °C and using acidic aqueous solution as solvent. Our CMA bioinks were demonstrated a similar printability as GelMA in extrusion bioprinting, while a better formability in digital light processing (DLP). To further analyze the bioactive properties, CMA bioinks were encapsulated with Schwann cells (SCs) and bone mesenchymal stem cells (BMSCs) for printing. SCs-laden CMA bioinks had a significantly higher proliferation rate and expression of neural stem cell-associated genes than GelMA in DLP bioprinting. While, BMSCs-laden CMA bioinks demonstrated >95% cellular viability, better cell spreading and higher expression of osteogenesis-related genes than that of GelMA. Overall, we speculate that the CMA-based bioink developed in this study could be potential bioinks for 3D cell-laden bioprinting in the future.
Collapse
Affiliation(s)
- Huimin Shi
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
16
|
Ai Y, Dai F, Li W, Xu F, Yang H, Wu J, Yang K, Li L, Ai F, Song L. Photo-crosslinked bioactive BG/BMSCs@GelMA hydrogels for bone-defect repairs. Mater Today Bio 2023; 23:100882. [PMID: 38161508 PMCID: PMC10755535 DOI: 10.1016/j.mtbio.2023.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
The clinical treatments of bone defects remain a challenge. Hydrogels containing bone marrow mesenchymal stem cells (BMSCs) are extensively used to bone regeneration because of excellent biocompatibility and hydrophilicity. However, the insufficient osteo-induction capacity of the BMSC-loaded hydrogels limits their clinical applications. In this study, bio-active glass (BG) and BMSCs were combined with gelatin methacryloyl (GelMA) to fabricate composite hydrogels via photo-crosslinking, and the regulation of bone regeneration was investigated. In vitro experiments showed that the BG/BMSCs@GelMA hydrogel had excellent cytocompatibility and promoted osteogenic differentiation in BMSCs. Furthermore, the BG/BMSCs@GelMA hydrogel was injected into critical-sized calvarial defects, and the results further confirmed its excellent angiogenetic and bone regeneration capacity. In addition, BG/BMSCs@GelMA promoted the polarization of macrophages towards the M2 phenotype. In summary, this novel composite hydrogel demonstrated remarkable potential for application in bone regeneration due to its immunomodulatory, excellent angiogenetic as well as osteo-induction capacity.
Collapse
Affiliation(s)
- Yufeng Ai
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Fang Dai
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| | - Wenfeng Li
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| | - Fancheng Xu
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Hanwen Yang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Jianxin Wu
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Kaiqiang Yang
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Li Li
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Li Song
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| |
Collapse
|
17
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
18
|
Jiang Z, Zhang W, Liu C, Xia L, Wang S, Wang Y, Shao K, Han B. Facilitation of Cell Cycle and Cellular Migration of Rat Schwann Cells by O-Carboxymethyl Chitosan to Support Peripheral Nerve Regeneration. Macromol Biosci 2023; 23:e2300025. [PMID: 37282815 DOI: 10.1002/mabi.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Indexed: 06/08/2023]
Abstract
O-carboxymethyl chitosan (CM-chitosan), holds high potential as a valuable biomaterial for nerve guidance conduits (NGCs). However, the lack of explicit bioactivity on neurocytes and poor duration that does not match nerve repair limit the restorative effects. Herein, CM-chitosan-based NGC is designed to induce the reconstruction of damaged peripheral nerves without addition of other activation factors. CM-chitosan possesses excellent performance in vitro for nerve tissue engineering, such as increasing the organization of filamentous actin and the expression of phospho-Akt, and facilitating the cell cycle and migration of Schwann cells. Moreover, CM-chitosan exhibits increased longevity upon cross-linking (C-CM-chitosan) with 1, 4-Butanediol diglycidyl ether, and C-CM-chitosan fibers possess appropriate biocompatibility. In order to imitate the structure of peripheral nerves, multichannel bioactive NGCs are prepared from lumen fillers of oriented C-CM-chitosan fibers and outer warp-knitted chitosan pipeline. Implantation of the C-CM-chitosan NGCs to rats with 10-mm defects of peripheral nerves effectively improve nerve function reconstruction by increasing the sciatic functional index, decreasing the latent periods of heat tingling, enhancing the gastrocnemius muscle, and promoting nerve axon recovery, showing regenerative efficacy similar to that of autograft. The results lay a theoretical foundation for improving the potential high-value applications of CM-chitosan-based bioactive materials in nerve tissue engineering.
Collapse
Affiliation(s)
- Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wei Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Chenqi Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lixin Xia
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanting Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P. R. China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
19
|
Wan T, Wang YL, Zhang FS, Zhang XM, Zhang YC, Jiang HR, Zhang M, Zhang PX. The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration. Int J Mol Sci 2023; 24:14132. [PMID: 37762437 PMCID: PMC10531895 DOI: 10.3390/ijms241814132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.
Collapse
Affiliation(s)
- Teng Wan
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
20
|
Chang J, Sun X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front Bioeng Biotechnol 2023; 11:1255782. [PMID: 37671193 PMCID: PMC10475545 DOI: 10.3389/fbioe.2023.1255782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Bioprinting is an emerging field that utilizes 3D printing technology to fabricate intricate biological structures, including tissues and organs. Among the various promising bioprinting techniques, laser-induced forward transfer (LIFT) stands out by employing a laser to precisely transfer cells or bioinks onto a substrate, enabling the creation of complex 3D architectures with characteristics of high printing precision, enhanced cell viability, and excellent technical adaptability. This technology has found extensive applications in the production of biomolecular microarrays and biological structures, demonstrating significant potential in tissue engineering. This review briefly introduces the experimental setup, bioink ejection mechanisms, and parameters relevant to LIFT bioprinting. Furthermore, it presents a detailed summary of both conventional and cutting-edge applications of LIFT in fabricating biomolecule microarrays and various tissues, such as skin, blood vessels and bone. Additionally, the review addresses the existing challenges in this field and provides corresponding suggestions. By contributing to the ongoing development of this field, this review aims to inspire further research on the utilization of LIFT-based bioprinting in biomedical applications.
Collapse
Affiliation(s)
- Jinlong Chang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Xuming Sun
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
21
|
Zhang M, An H, Zhang F, Jiang H, Wan T, Wen Y, Han N, Zhang P. Prospects of Using Chitosan-Based Biopolymers in the Treatment of Peripheral Nerve Injuries. Int J Mol Sci 2023; 24:12956. [PMID: 37629137 PMCID: PMC10454829 DOI: 10.3390/ijms241612956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Haoran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| |
Collapse
|
22
|
Zennifer A, Thangadurai M, Sundaramurthi D, Sethuraman S. Additive manufacturing of peripheral nerve conduits - Fabrication methods, design considerations and clinical challenges. SLAS Technol 2023; 28:102-126. [PMID: 37028493 DOI: 10.1016/j.slast.2023.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Tissue-engineered nerve guidance conduits (NGCs) are a viable clinical alternative to autografts and allografts and have been widely used to treat peripheral nerve injuries (PNIs). Although these NGCs are successful to some extent, they cannot aid in native regeneration by improving native-equivalent neural innervation or regrowth. Further, NGCs exhibit longer recovery period and high cost limiting their clinical applications. Additive manufacturing (AM) could be an alternative to the existing drawbacks of the conventional NGCs fabrication methods. The emergence of the AM technique has offered ease for developing personalized three-dimensional (3D) neural constructs with intricate features and higher accuracy on a larger scale, replicating the native feature of nerve tissue. This review introduces the structural organization of peripheral nerves, the classification of PNI, and limitations in clinical and conventional nerve scaffold fabrication strategies. The principles and advantages of AM-based techniques, including the combinatorial approaches utilized for manufacturing 3D nerve conduits, are briefly summarized. This review also outlines the crucial parameters, such as the choice of printable biomaterials, 3D microstructural design/model, conductivity, permeability, degradation, mechanical property, and sterilization required to fabricate large-scale additive-manufactured NGCs successfully. Finally, the challenges and future directions toward fabricating the 3D-printed/bioprinted NGCs for clinical translation are also discussed.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
23
|
Wang Z, Huang C, Liu H, Shi Z, Han X, Li S, Huang J, Wang Z, Yan Y, Chen Z. Two-step method fabricating a 3D nerve cell model with brain-like mechanical properties and tunable porosity vascular structures via coaxial printing. Colloids Surf B Biointerfaces 2023; 224:113202. [PMID: 36801526 DOI: 10.1016/j.colsurfb.2023.113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Three-dimensional (3D) nerve cell models have been widely developed to understand the mechanisms and discover treatment methods of ischemic stroke and neurodegenerative disease. However, there is a contradiction in the production of 3D models that they should possess high modulus to ensure mechanical stability while low modulus to provide mechanical stimuli for nerve cells. In addition, it is challenging to maintain the long-term viability of 3D models when lacking vascular structures. Here, a 3D nerve cell model with brain-like mechanical properties and tunable porosity vascular structures has been fabricated. The matrix materials with brain-like low mechanical properties were favorable for promoting HT22 proliferation. The nerve cells could exchange nutrients and waste with the cultural environment through vascular structures. The vascular structures also played a supporting role, and model stability was enhanced by combining matrix materials with vascular structures. Furthermore, the porosity of vascular structure walls was adjusted by adding sacrificial materials to the tube walls during 3D coaxial printing and removing them after preparation, resulting in tunable porosity vascular structures. Finally, HT22 cells showed better cell viability and proliferation performance after culturing 7 days in the 3D models with vascular structures than in the 3D models with solid structures. All these results suggest that this 3D nerve cell model possesses good mechanical stability and long-term viability, which is expected to be used in pathological studies and drug screening for ischemic stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China; School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhenyu Shi
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yonggan Yan
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
24
|
A vertical additive-lathe printing system for the fabrication of tubular constructs using gelatin methacryloyl hydrogel. J Mech Behav Biomed Mater 2023; 139:105665. [PMID: 36640542 DOI: 10.1016/j.jmbbm.2023.105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Reproducing both the mechanical and biological performance of native blood vessels remains an ongoing challenge in vascular tissue engineering. Additive-lathe printing offers an attractive method of fabricating long tubular constructs as a potential vascular graft for the treatment of cardiovascular diseases. Printing hydrogels onto rotating horizontal mandrels often leads to sagging, resulting in poor and variable mechanical properties. In this study, an additive-lathe printing system with a vertical mandrel to fabricate tubular constructs is presented. Various concentrations of gelatin methacryloyl (gelMA) hydrogel were used to print grafts on the rotating mandrel in a helical pattern. The printing parameters were selected to achieve the bonding of consecutive gelMA filaments to improve the quality of the printed graft. The hydrogel filaments were fused properly under the action of gravity on the vertical mandrel. Thus, the vertical additive-lathe printing system was used to print uniform wall thickness grafts, eliminating the hydrogel sagging problem. Tensile testing performed in both circumferential and longitudinal direction revealed that the anisotropic properties of printed gelMA constructs were similar to those observed in the native blood vessels. In addition, no leakage was detected through the walls of the gelMA grafts during burst pressure measurement. Therefore, the current printing setup could be utilized to print vascular grafts for the treatment of cardiovascular diseases.
Collapse
|
25
|
The application of 3D bioprinting in urological diseases. Mater Today Bio 2022; 16:100388. [PMID: 35967737 PMCID: PMC9364106 DOI: 10.1016/j.mtbio.2022.100388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Urologic diseases are commonly diagnosed health problems affecting people around the world. More than 26 million people suffer from urologic diseases and the annual expenditure was more than 11 billion US dollars. The urologic cancers, like bladder cancer, prostate cancer and kidney cancer are always the leading causes of death worldwide, which account for approximately 22% and 10% of the new cancer cases and death, respectively. Organ transplantation is one of the major clinical treatments for urological diseases like end-stage renal disease and urethral stricture, albeit strongly limited by the availability of matching donor organs. Tissue engineering has been recognized as a highly promising strategy to solve the problems of organ donor shortage by the fabrication of artificial organs/tissue. This includes the prospective technology of three-dimensional (3D) bioprinting, which has been adapted to various cell types and biomaterials to replicate the heterogeneity of urological organs for the investigation of organ transplantation and disease progression. This review discusses various types of 3D bioprinting methodologies and commonly used biomaterials for urological diseases. The literature shows that advances in this field toward the development of functional urological organs or disease models have progressively increased. Although numerous challenges still need to be tackled, like the technical difficulties of replicating the heterogeneity of urologic organs and the limited biomaterial choices to recapitulate the complicated extracellular matrix components, it has been proved by numerous studies that 3D bioprinting has the potential to fabricate functional urological organs for clinical transplantation and in vitro disease models. Outline the advantages and characteristics of 3D printing compared with traditional methods for urological diseases. Guide the selection of 3D bioprinting technology and material in urological tissue engineering. Discuss the challenges and future perspectives of 3D bioprinting in urological diseases and clinical translation.
Collapse
|
26
|
Multichannel nerve conduit based on chitosan derivates for peripheral nerve regeneration and Schwann cell survival. Carbohydr Polym 2022; 301:120327. [DOI: 10.1016/j.carbpol.2022.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
27
|
Ye K, He A, Wu M, Qiu X, Chen Z, Yin J, Song Q, Huang Y, Xu K, Huang Y, Wei P. In vitro study of decellularized rat tissues for nerve regeneration. Front Neurol 2022; 13:986377. [PMID: 36188412 PMCID: PMC9520319 DOI: 10.3389/fneur.2022.986377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injuries cause an absence or destruction of nerves. Decellularized nerves, acting as a replacement for autografts, have been investigated in the promotion of nerve repair and regeneration, always being incorporated with stem cells or growth factors. However, such a strategy is limited by size availability. The potential application in heterotopic transplantation of other decellularized tissues needs to be further explored. In this study, rat decellularized kidney (dK) was selected to be compared with decellularized peripheral nerve (dN), since dK has aboundant ECM components and growth factors. The PC-12 cells were cultured on dK and dN scaffolds, as shown in the similar behaviors of cell metabolism and viability, but have a more regular arrangement on dN compared to dK, indicating that the natural structure plays an important role in guiding cell extension. However, we found significant upregulation of axon–growth–associated genes and proteins of PC-12 cells in the dK group compared to the dN group by qRT-PCR, immunofluorescence, and western blotting. Furthermore, various neurotrophic factors and growth factors of acellular kidney and nerve were evaluated by ELISA assay. The lower expression of neurotrophic factors but higher expression of growth factors such as VEGF and HGF from dK suggests that axon growth and extension for PC-12 cells may be partially mediated by VEGF and HGF expression from decellularized kidney, which further points to a potential application in nerve repair and regeneration.
Collapse
Affiliation(s)
- Kai Ye
- School of Medicine, Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Xiaodong Qiu
- Department of Surgery, Beilun Binhai New City Hospital, Ningbo, China
| | - Zhiwu Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Qinghua Song
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
| | - Yi Huang
- Medical Research Center, Ningbo First Hospital, Ningbo, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Central Laboratory, Center for Medical and Engineering Innovation, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Kailei Xu
| | - Yuye Huang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- Central Laboratory, Center for Medical and Engineering Innovation, Ningbo First Hospital, Ningbo, China
- Yuye Huang
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- *Correspondence: Peng Wei
| |
Collapse
|
28
|
Yu H, Feng M, Mao G, Li Q, Zhang Z, Bian W, Qiu Y. Implementation of Photosensitive, Injectable, Interpenetrating, and Kartogenin-Modified GELMA/PEDGA Biomimetic Scaffolds to Restore Cartilage Integrity in a Full-Thickness Osteochondral Defect Model. ACS Biomater Sci Eng 2022; 8:4474-4485. [PMID: 36074133 DOI: 10.1021/acsbiomaterials.2c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cartilage defects caused by mechanical tear and wear are challenging clinical problems. Articular cartilage has unique load-bearing properties and limited self-repair ability. The current treatment methods, such as microfractures and autogenous cartilage transplantation to repair full-thickness cartilage defects, have apparent limitations. Tissue engineering technology has the potential to repair cartilage defects and directs current research development. To enhance the regenerative capacities of cartilage in weight-bearing areas, we attempted to develop a biomimetic scaffold loaded with a chondroprotective factor that can recreate structure, restore mechanical properties, and facilitate anabolic metabolism in larger joint defects. For enhanced spatial control over both bone and cartilage layers, it is envisioned that biomaterials that meet the needs of both tissue components are required for successful osteochondral repair. We used gelatin methacrylate (GELMA) and polyethylene glycol diacrylate (PEGDA) light-cured dual-network cross-linking modes that can significantly increase the mechanical properties of scaffolds and are capable of restoring function and prolonging the degradation time. Once the hydrogel complex was injected into the osteochondral defect, in situ UV light curing was applied to seamlessly connect the defect repair tissue with the surrounding normal cartilage tissue. The small molecule active substance kartogenin (KGN) can promote cartilage repair. We encapsulated KGN in biomimetic scaffolds so that, as the scaffold degrades, scaffold-loaded KGN was slowly released to induce endogenous mesenchymal stem cells to home and differentiate into chondrocytes to repair defective cartilage tissue. Our experiments have proven that, compared with the control group, GELMA/PEGDA + KGN repaired cartilage defects and restored cartilage to hyaline cartilage. Our study suggests that implementing photosensitive, injectable, interpenetrating, and kartogenin-modified GELMA/PEDGA biomimetic scaffolds may be a novel approach to restore cartilage integrity in full-thickness osteochondral defects.
Collapse
Affiliation(s)
- Haiquan Yu
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang 050001, People's Republic of China
| | - Meng Feng
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Genwen Mao
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Qian Li
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang 050001, People's Republic of China
| | - Zhifeng Zhang
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Weiguo Bian
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yusheng Qiu
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
29
|
Raza A, Mumtaz M, Hayat U, Hussain N, Ghauri MA, Bilal M, Iqbal HM. Recent advancements in extrudable gel-based bioinks for biomedical settings. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Zhang Y, Chen H, Li J. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Int J Biol Macromol 2022; 221:91-107. [DOI: 10.1016/j.ijbiomac.2022.08.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
|
31
|
Li H, Yu K, Zhang P, Ye Y, Shu Q. A printability study of multichannel nerve guidance conduits using projection-based three-dimensional printing. J Biomater Appl 2022; 37:538-550. [PMID: 35549934 DOI: 10.1177/08853282221101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multichannel nerve guidance conduits (NGCs) replicating the native architecture of peripheral nerves have emerged as promising alternatives to autologous nerve grafts. However, manufacturing multichannel NGCs is challenging in terms of desired structural stability and resolution. In this study, we systematically investigated the effects of photopolymer properties, inner diameter dimensions, printing parameters, and different conditions on multichannel NGCs printability using projection-based three-dimensional printing. Low viscosity and rapid photocuring properties were essential requirements. A standard model was generated to evaluate multichannel NGC printed quality. The results showed that printing deviations decreased with increased mechanical strength and inner diameter. Subsequently, gelatin methacrylate (GelMA) NGCs was selected as a representative. It was found that printing conditions, including printing temperature, peeling, and shrinkage affected final NGC accuracy and quality. PC-12 cells cultured with the GelMA NGCs displayed non-toxic and promoted cell migration. Our research provides an effective, time-saving, and high-resolution technology for manufacturing multichannel NGCs with high fidelity, which may be used as reference templates for biomedical applications.
Collapse
Affiliation(s)
- Haibing Li
- Department of Paediatric Orthopaedics, The Children's Hospital, 605254Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, 529107Zhejiang University, Hangzhou, China
| | - Peng Zhang
- Engineering for Life Group (EFL), 529107Zhejiang University School of Mechanical Engineering, China
| | - Yensong Ye
- Department of Paediatric Orthopaedics, The Children's Hospital, 605254Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Department of Paediatric Orthopaedics, The Children's Hospital, 605254Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
32
|
Sun W, Zhang J, Qin Y, Tang H, Chen Y, Lin W, She Y, Zhang K, Yin J, Chen C. A Simple and Efficient Strategy for Preparing a Cell-Spheroid-Based Bioink. Adv Healthc Mater 2022; 11:e2200648. [PMID: 35543489 DOI: 10.1002/adhm.202200648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Indexed: 12/28/2022]
Abstract
Cell spheroids are a promising bioprinting building block that can mimic several physiological conditions in embryonic development. However, it remains challenging to efficiently prepare cell-spheroid-based bioink (Sph-bioink) with favorable printability and spheroid fusion ability. In this work, a poly(N-isopropylacrylamide) (PNIPAAm)-based porous hydrogel is developed as an "all-in-one" platform for Sph-bioink preparation. On the one hand, the nonadhesive porous structure in hydrogels is an effective tool for fabricating adipose-derived stem cell (ASC) spheroids in high yield, and the hydrogel itself also serves as a "carrier" for conveniently transferring cell spheroids to the bioprinter. On the other hand, the integration of redox/thermo-responsiveness allows the hydrogel to shift from a solid spheroid-making tool to an extrudable bioprinting medium that is sensitive to temperature. These features enabled a simple procedure for preparing Sph-bioink, in which the cell spheroids were densely packed to retain fusion capability. The present study also demonstrates that ASC spheroids formed in hydrogels have good biological preservation and superior chondrogenic differentiation, and verified the feasibility of using Sph-bioink to build custom-shaped mature cartilage. In conclusion, this strategy provides a simple, efficient, and standardized approach for Sph-bioink preparation, making it possible to produce tissue-engineered constructs with accelerated maturation and functionalization.
Collapse
Affiliation(s)
- Weiyan Sun
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
| | - Jiahui Zhang
- Department of Polymer Materials School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China
| | - Yechi Qin
- Department of Polymer Materials School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China
| | - Hai Tang
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
| | - Yi Chen
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
| | - Weikang Lin
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
| | - Yunlang She
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Lung Transplantation Shanghai 200433 P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China
- Interventional Cancer Institute of Chinese Integrative Medicine Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai 200060 P. R. China
| | - Jingbo Yin
- Department of Polymer Materials School of Materials Science and Engineering Shanghai University Shanghai 200444 P. R. China
| | - Chang Chen
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Lung Transplantation Shanghai 200433 P. R. China
| |
Collapse
|
33
|
Zhan Z, Liu Z, Nan H, Li J, Xie Y, Hu C. Heterogeneous spheroids with tunable interior morphologies by droplet-based microfluidics. Biofabrication 2022; 14. [PMID: 35290971 DOI: 10.1088/1758-5090/ac5e12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
Abstract
Heterogeneous spheroids that mimic the complex three-dimensional environment of natural tissues are needed in various biomedical applications. Geometric cues from cellular matrix play invaluable roles in governing cell behavior and phenotype. However, the structural complexity of interior morphologies of spheroids is currently limited due to poor spatial resolution of positioning/orientation of cellular constructs. Here, a coaxial capillary microfluidic device is developed to generate gelatin methacrylate (GelMA) microspheres with tunable dimensions and interior morphologies, such as core-shell, or microspheres with interior undulated wavy, or spiral canals, by manipulating the two-phase flow of hydrogel precursor solution and methylcellulose solution. The formation of diverse and exquisite interior morphologies is caused by the interacting viscous instabilities of the two-phase flow in the microfluidic system, followed by water-in-oil emulsion and photo-initiated polymerization. Polyethylene glycol diacrylate (PEGDA) is incorporated into the GelMA solution to tune the mechanical properties of the fabricated microspheres, and an optimized concentration of PEGDA is confirmed by evaluating the in vitro proliferation and vascularization of human umbilical endothelial cells. Further, a heterogeneous spheroid with spiral blood vessel lumen is constructed to demonstrate the versatility and potential of the proposed droplet-based microfluidic approach for building functional tissue constructs.
Collapse
Affiliation(s)
- Zhen Zhan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Zeyang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Haochen Nan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Jianjie Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Yuan Xie
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| | - Chengzhi Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No 1088, xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong, China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
34
|
Promotion of Adrenal Pheochromocytoma (PC-12) Cell Proliferation and Outgrowth Using Schwann Cell-Laden Gelatin Methacrylate Substrate. Gels 2022; 8:gels8020084. [PMID: 35200467 PMCID: PMC8871842 DOI: 10.3390/gels8020084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries cause different degrees of nerve palsy and function loss. Due to the limitations of autografts, nerve tissue engineering (TE) scaffolds incorporated with various neurotrophic factors and cells have been investigated to promote nerve regeneration. However, the molecular mechanism is still poorly understood. In this study, we co-cultured Schwann cells (SCs) and rat adrenal pheochromocytoma (PC-12) cells on 50% degrees of methacryloyl substitution gelatin methacrylate (GelMA) scaffold. The SCs were encapsulated within the GelMA, and PC-12 cells were on the surface. A 5% GelMA was used as the co-culture scaffold since it better supports SCs proliferation, viability, and myelination and promotes higher neurotrophic factors secretion than 10% GelMA. In the co-culture, PC-12 cells demonstrated a higher cell proliferation rate and axonal extension than culturing without SCs, indicating that the secretion of neurotrophic factors from SCs can stimulate PC-12 growth and axonal outgrowth. The mRNA level for neurotrophic factors of SCs in 5% GelMA was further evaluated. We found significant upregulation when compared with a 2D culture, which suggested that this co-culture system could be a potential scaffold to investigate the mechanism of how SCs affect neuronal behaviors.
Collapse
|
35
|
Hayat U, Raza A, Bilal M, Iqbal HM, Wang JY. Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 2022; 67:103014. [DOI: 10.1016/j.jddst.2021.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Liu X, Lu X, Wang Z, Yang X, Dai G, Yin J, Huang Y. Effect of bore fluid composition on poly(lactic-co-glycolic acid) hollow fiber membranes fabricated by dry-jet wet spinning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Visible light-induced crosslinking of unmodified gelatin with PEGDA for DLP-3D printable hydrogels. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Xu K, Liu X, Li X, Yin J, Wei P, Qian J, Sun J. Effect of Electrical and Electromechanical Stimulation on PC12 Cell Proliferation and Axon Outgrowth. Front Bioeng Biotechnol 2021; 9:757906. [PMID: 34746110 PMCID: PMC8566739 DOI: 10.3389/fbioe.2021.757906] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injuries have become a common clinical disease with poor prognosis and complicated treatments. The development of tissue engineering pointed a promising direction to produce nerve conduits for nerve regeneration. Electrical and mechanical stimulations have been incorporated with tissue engineering, since such external stimulations could promote nerve cell proliferation, migration and differentiation. However, the combination of electrical and mechanical stimulations (electromechanical stimulation) and its effects on neuron proliferation and axon outgrowth have been rarely investigated. Herein, silver nanowires (AgNWs) embedded polydimethylsiloxane (PDMS) electrodes were developed to study the effects of electromechanical stimulation on rat pheochromocytoma cells (PC12 cells) behaviors. AgNWs/PDMS electrodes demonstrated good biocompatibility and established a stable electric field during mechanical stretching. PC12 cells showed enhanced proliferation rate and axon outgrowth under electrical stimulation alone, and the cell number significantly increased with higher electrical stimulation intensity. The involvement of mechanical stretching in electrical stimulation reduced the cell proliferation rate and axon outgrowth, compared with the case of electrical stimulation alone. Interestingly, the cellular axons outgrowth was found to depend on the stretching direction, where the axons prefer to align perpendicularly to the stretch direction. These results suggested that AgNWs/PDMS electrodes provide an in vitro platform to investigate the effects of electromechanical stimulation on nerve cell behaviors and can be potentially used for nerve regeneration in the future.
Collapse
Affiliation(s)
- Kailei Xu
- Central Laboratory, Ningbo First Hospital, Ningbo, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Xixia Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- School of Mechanical Engineering, Guizhou University, Guiyang, China
| | - Xiaokeng Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Peng Wei
- Department of Hand and Foot Microsurgery, Ningbo First Hospital, Ningbo, China
| | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jie Sun
- Central Laboratory, Ningbo First Hospital, Ningbo, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
39
|
Han Y, Yin J. Industry news: the additive manufacturing of nerve conduits for the treatment of peripheral nerve injury. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00166-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Zhang Y, Chen H, Long X, Xu T. The effect of neural cell integrated into 3D co-axial bioprinted BMMSC structures during osteogenesis. Regen Biomater 2021; 8:rbab041. [PMID: 34350030 PMCID: PMC8329473 DOI: 10.1093/rb/rbab041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
A three-dimensional (3D) bioprinting is a new strategy for fabricating 3D cell-laden constructs that mimic the structural and functional characteristics of various tissues and provides a similar architecture and microenvironment of the native tissue. However, there are few reported studies on the neural function properties of bioengineered bone autografts. Thus, this study was aimed at investigating the effects of neural cell integration into 3D bioprinted bone constructs. The bioprinted hydrogel constructs could maintain long-term cell survival, support cell growth for human bone marrow-derived mesenchymal stem cells (BMMSCs), reduce cell surface biomarkers of stemness, and enhance orthopedic differentiation with higher expression of osteogenesis-related genes, including osteopontin (OPN) and bone morphogenetic protein-2. More importantly, the bioprinted constructs with neural cell integration indicated higher OPN gene and secretory alkaline phosphatase levels. These results suggested that the innervation in bioprinted bone constructs can accelerate the differentiation and maturation of bone development and provide patients with an option for accelerated bone function restoration.
Collapse
Affiliation(s)
- Yi Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Haiyan Chen
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Tao Xu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
41
|
Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021; 10:e2001600. [PMID: 33200587 PMCID: PMC8711131 DOI: 10.1002/adhm.202001600] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The human nervous system is a remarkably complex physiological network that is inherently challenging to study because of obstacles to acquiring primary samples. Animal models offer powerful alternatives to study nervous system development, diseases, and regenerative processes, however, they are unable to address some species-specific features of the human nervous system. In vitro models of the human nervous system have expanded in prevalence and sophistication, but still require further advances to better recapitulate microenvironmental and cellular features. The field of neural tissue engineering (TE) is rapidly adopting new technologies that enable scientists to precisely control in vitro culture conditions and to better model nervous system formation, function, and repair. 3D bioprinting is one of the major TE technologies that utilizes biocompatible hydrogels to create precisely patterned scaffolds, designed to enhance cellular responses. This review focuses on the applications of 3D bioprinting in the field of neural TE. Important design parameters are considered when bioprinting neural stem cells are discussed. The emergence of various bioprinted in vitro platforms are also reviewed for developmental and disease modeling and drug screening applications within the central and peripheral nervous systems, as well as their use as implants for in vivo regenerative therapies.
Collapse
Affiliation(s)
- Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
42
|
Zhao C, Wu Z, Chu H, Wang T, Qiu S, Zhou J, Zhu Q, Liu X, Quan D, Bai Y. Thiol-Rich Multifunctional Macromolecular Crosslinker for Gelatin-Norbornene-Based Bioprinting. Biomacromolecules 2021; 22:2729-2739. [PMID: 34057830 DOI: 10.1021/acs.biomac.1c00421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Extrusion-based bioprinting is an emerging and most frequently used technique for the fabrication of cell-laden constructs. A suitable hydrogel-based bioink for cell encapsulation and protection is critical for printability, structural stability, and post-printing cell viability. The thiol-ene chemistry-based gelatin-norbornene (GelNB) hydrogels have drawn much attention as a promising substitution of gelatin methacryloyl (GelMA), owing to the fast and controllable step-growth polymerization mechanism, as well as a significant reduction in reactive oxygen species (ROS) accumulation. Herein, thiolated heparin (HepSH) was synthesized and used as a macromolecular crosslinker for GelNB-based bioprinting, so that GelNB gelation became less sensitive to the thiol/ene ratio. The mechanical stability and moduli of GelNB/HepSH hydrogels were easily manipulated by the concentration and/or degree of thiol substitution. The GelNB/HepSH hydrogel allowed little intracellular ROS for encapsulated cells but provided vascular endothelial growth factor binding affinity for potential facilitation of neovascularization. Finally, the GelNB/HepSH bioink enabled a convenient printing process for both complex-structured bioscaffolds and cell-laden constructs, and resulted in good printability and high post-crosslinking cell viability. The crosslinker HepSH may serve as a multifunctional macromolecule that enables GelNB-based bioprinting in broad applications in regenerative medicine.
Collapse
Affiliation(s)
- Cailing Zhao
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Zejia Wu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Hanyu Chu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Tao Wang
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510080, China.,Guangdong Provincial Soft Tissue Biofabrication Engineering Laboratory, Guangdong, Guangzhou 510080, China
| | - Shuai Qiu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Jing Zhou
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Qingtang Zhu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510080, China.,Guangdong Provincial Soft Tissue Biofabrication Engineering Laboratory, Guangdong, Guangzhou 510080, China
| | - Xiaolin Liu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Daping Quan
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Ying Bai
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangdong, Guangzhou 510275, China.,Guangdong Provincial Soft Tissue Biofabrication Engineering Laboratory, Guangdong, Guangzhou 510080, China
| |
Collapse
|
43
|
Liu X, Yan J, Liu J, Wang Y, Yin J, Fu J. Fabrication of a dual-layer cell-laden tubular scaffold for nerve regeneration and bile duct reconstruction. Biofabrication 2021; 13. [PMID: 33873178 DOI: 10.1088/1758-5090/abf995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023]
Abstract
Tubular scaffolds serve as a controllable extracellular environment to guide the repair and regeneration of tissues. But it is still a challenge to achieve both excellent mechanical properties and cell compatibility of artificial scaffolds for long-term structural and biological stability. In this study, a four-step solution casting method was developed to fabricate dual-layer cell-laden tubular scaffolds for nerve and bile duct regeneration. The dual-layer tubular scaffold consisted of a bone marrow mesenchymal stem cells (BMSCs)-laden hydrogel inner layer and an outer layer of gelatin methacrylate (GelMA)/polyethylene glycol diacrylate. While the inner layer had a good biocompatibility, the outer layer had desired mechanical properties. The interfacial toughness, Young's modulus, maximum tensile strain, and compressive modulus of dual-layer tubular scaffolds were 65 J m-2, 122.37 ± 23.21 kPa, 100.87 ± 40.10%, and 39.14 ± 18.56 N m-1, respectively. More importantly, the fabrication procedure was very cell-friendly, since the BMSC viability encapsulated in the inner layer of 10% (w/v) GelMA reached 94.68 ± 0.43% after 5 d of culture. Then, a preliminary evaluation of the potential application of dual-layer tubular scaffolds as nerve conduits and biliary scaffolds was performed, and demonstrated that the cell-laden dual-layer tubular scaffolds proposed in this work are expected to extend the application of tubular scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Xixia Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang University Innovation Center of Minimally Invasive Technology and Medical Equipment, Hangzhou 310016, People's Republic of China
| | - Jingyi Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China.,Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310016, People's Republic of China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, People's Republic of China
| |
Collapse
|
44
|
Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021; 9:5385-5413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decade, 3D bioprinting technology has progressed tremendously in the field of tissue engineering in its ability to fabricate individualized biological constructs with precise geometric designability, which offers us the capability to bridge the divergence between engineered tissue constructs and natural tissues. In this work, we first review the current widely used 3D bioprinting approaches, cells, and materials. Next, the updated applications of this technique in tissue engineering, including bone tissue, cartilage tissue, vascular grafts, skin, neural tissue, heart tissue, liver tissue and lung tissue, are briefly introduced. Then, the prominent advantages of 3D bioprinting in tissue engineering are summarized in detail: rapidly prototyping the customized structure, delivering cell-laden materials with high precision in space, and engineering with a highly controllable microenvironment. The current technical deficiencies of 3D bioprinted constructs in terms of mechanical properties and cell behaviors are afterward illustrated, as well as corresponding improvements. Finally, we conclude with future perspectives about 3D bioprinting in tissue engineering.
Collapse
Affiliation(s)
- Baosen Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Shaolei Gan
- Jiangxi Borayer Biotech Co., Ltd, Nanchang 330052, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wenyong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
45
|
Yu J, Park SA, Kim WD, Ha T, Xin YZ, Lee J, Lee D. Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering. Polymers (Basel) 2020; 12:E2958. [PMID: 33322291 PMCID: PMC7764360 DOI: 10.3390/polym12122958] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters have been developed to fulfill certain requirements in terms of resolution, cell viability, cell density, etc. Simultaneously, various bio-inks based on natural-synthetic biomaterials have been developed and applied for successful tissue regeneration. To engineer more realistic artificial tissues/organs, mixtures of bio-inks with various recipes have also been developed. Taken together, this review describes the fundamental characteristics of the existing bioprinters and bio-inks that have been currently developed, followed by their advantages and disadvantages. Finally, various tissue engineering applications using 3D bioprinting are briefly introduced.
Collapse
Affiliation(s)
- JunJie Yu
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea;
- Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (S.A.P.); (W.D.K.)
| | - Su A Park
- Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (S.A.P.); (W.D.K.)
| | - Wan Doo Kim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (S.A.P.); (W.D.K.)
| | - Taeho Ha
- Department of 3D Printing, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea;
| | - Yuan-Zhu Xin
- Department of Engineering Mechanics, School of Mechanical and Aerospace Engineering, Jilin University, No. 5988, Renmin Street, Changchun 130025, China;
| | - JunHee Lee
- Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (S.A.P.); (W.D.K.)
| | - Donghyun Lee
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea;
| |
Collapse
|