1
|
Panda G, Barik D, Dash M. Understanding Matrix Stiffness in Vinyl Polymer Hydrogels: Implications in Bone Tissue Engineering. ACS OMEGA 2024; 9:17891-17902. [PMID: 38680357 PMCID: PMC11044159 DOI: 10.1021/acsomega.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
Matrix elasticity helps to direct bone cell differentiation, impact healing processes, and modify extracellular matrix deposition, all of which are required for tissue growth and maintenance. In this work, we evaluated the role of inorganic nanocrystals or mineral inducers such as nanohydroxyapatite, alkaline phosphatase, and nanoclay also known as montmorillonite deposited on vinyl-based hydrogels in generating matrices with different stiffness and their role in cell differentiation. Poly-2-(dimethylamino)ethyl methacrylate (PD) and poly-2-hydroxypropylmethacrylamide (PH) are the two types of vinyl polymers chosen for preparing hydrogels via thermal cross-linking. The hydrogels exhibited porosity, which decreased with an increase in stiffness. Each of the compositions is non-cytotoxic and maintains the viability of pre-osteoblasts (MC3T3-E1) and human bone marrow mesenchymal stem cells (hBMSCs). The PD hydrogels in the presence of ALP showed the highest mineralization ability confirmed through the alizarin assay and a better structural environment for their use as scaffolds for tissue engineering. The study reveals that understanding such interactions can generate hydrogels that can serve as efficient 3D models to study biomineralization.
Collapse
Affiliation(s)
| | - Debyashreeta Barik
- Institute
of Life Sciences, Nalco
Square, Bhubaneswar, Odisha 751023, India
- School
of Biotechnology, Kalinga Institute of Industrial
Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Mamoni Dash
- Institute
of Life Sciences, Nalco
Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
2
|
Govindarajan D, Saravanan S, Sudhakar S, Vimalraj S. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications. ACS OMEGA 2024; 9:67-80. [PMID: 38222554 PMCID: PMC10785094 DOI: 10.1021/acsomega.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Department
of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat
& Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Sekaran Saravanan
- Department
of Prosthodontics, Saveetha Dental College and Hospital, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Swathi Sudhakar
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
3
|
Zhang M, Xu F, Cao J, Dou Q, Wang J, Wang J, Yang L, Chen W. Research advances of nanomaterials for the acceleration of fracture healing. Bioact Mater 2024; 31:368-394. [PMID: 37663621 PMCID: PMC10474571 DOI: 10.1016/j.bioactmat.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The bone fracture cases have been increasing yearly, accompanied by the increased number of patients experiencing non-union or delayed union after their bone fracture. Although clinical materials facilitate fracture healing (e.g., metallic and composite materials), they cannot fulfill the requirements due to the slow degradation rate, limited osteogenic activity, inadequate osseointegration ability, and suboptimal mechanical properties. Since early 2000, nanomaterials successfully mimic the nanoscale features of bones and offer unique properties, receiving extensive attention. This paper reviews the achievements of nanomaterials in treating bone fracture (e.g., the intrinsic properties of nanomaterials, nanomaterials for bone defect filling, and nanoscale drug delivery systems in treating fracture delayed union). Furthermore, we discuss the perspectives on the challenges and future directions of developing nanomaterials to accelerate fracture healing.
Collapse
Affiliation(s)
- Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fan Xu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jingcheng Cao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| |
Collapse
|
4
|
Chen C, Zhan C, Huang X, Zhang S, Chen J. Three-dimensional printing of cell-laden bioink for blood vessel tissue engineering: influence of process parameters and components on cell viability. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2411-2437. [PMID: 37725406 DOI: 10.1080/09205063.2023.2251781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
Three-dimensional (3D) bioprinting is a potential therapeutic method for tissue engineering owing to its ability to prepare cell-laden tissue constructs. The properties of bioink are crucial to accurately control the printing structure. Meanwhile, the effect of process parameters on the precise structure is not nonsignificant. We investigated the correlation between process parameters of 3D bioprinting and the structural response of κ-carrageenan-based hydrogels to explore the controllable structure, printing resolution, and cell survival rate. Small-diameter (<6 mm) gel filaments with different structures were printed by varying the shear stress of the extrusion bioprinter to simulate the natural blood vessel structure. The cell viability of the scaffold was evaluated. The in vitro culture of human umbilical vein endothelium cells (HUVECs) on the κ-carrageenan (kc) and composite gels (carrageenan/carbon nanotube and carrageenan/sodium alginate) demonstrated that the cell attachment and proliferation on composite gels were better than those on pure kc. Our results revealed that the carrageenan-based composite bioinks offer better printability, sufficient mechanical stiffness, interconnectivity, and biocompatibility. This process can facilitate precise adjustment of the pore size, porosity, and pore distribution of the hydrogel structure by optimising the printing parameters as well as realise the precise preparation of the internal structure of the 3D hydrogel-based tissue engineering scaffold. Moreover, we obtained perfused tubular filament by 3D printing at optimal process parameters.
Collapse
Affiliation(s)
- Chongshuai Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Congcong Zhan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xia Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shanfeng Zhang
- Experimental Center for Basic Medicine, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Junying Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
5
|
Karmakar R, Dey S, Alam A, Khandelwal M, Pati F, Rengan AK. Attributes of Nanomaterials and Nanotopographies for Improved Bone Tissue Engineering and Regeneration. ACS APPLIED BIO MATERIALS 2023; 6:4020-4041. [PMID: 37691480 DOI: 10.1021/acsabm.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bone tissue engineering (BTE) is a multidisciplinary area that can solve the limitation of conventional grafting methods by developing viable and biocompatible bone replacements. The three essential components of BTE, i.e., Scaffold material and Cells and Growth factors altogether, facilitate support and guide for bone formation, differentiation of the bone tissues, and enhancement in the cellular activities and bone regeneration. However, there is a scarcity of the appropriate materials that can match the mechanical property as well as functional similarity to native tissue, considering the bone as hard tissue. In such scenarios, nanotechnology can be leveraged upon to achieve the desired aspects of BTE, and that is the key point of this review article. This review article examines the significant areas of nanotechnology research that have an impact on regeneration of bone: (a) scaffold with nanomaterials helps to enhance physicochemical interactions, biocompatibility, mechanical stability, and attachment; (b) nanoparticle-based approaches for delivering bioactive chemicals, growth factors, and genetic material. The article begins with the introduction of components and healing mechanisms of bone and the factors associated with them. The focus of this article is on the various nanotopographies that are now being used in scaffold formation, by describing how they are made, and how these nanotopographies affect the immune system and potential underlying mechanisms. The advantages of 4D bioprinting in BTE by using nanoink have also been mentioned. Additionally, we have investigated the importance of an in silico approach for finding the interaction between drugs and their related receptors, which can help to formulate suitable systems for delivery. This review emphasizes the role of nanoscale approach and how it helps to increase the efficacy of parameters of scaffold as well as drug delivery system for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Rounik Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| |
Collapse
|
6
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
|
7
|
Umapathy VR, Natarajan PM, Swamikannu B. Review of the Role of Nanotechnology in Overcoming the Challenges Faced in Oral Cancer Diagnosis and Treatment. Molecules 2023; 28:5395. [PMID: 37513267 PMCID: PMC10385509 DOI: 10.3390/molecules28145395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Throughout the world, oral cancer is a common and aggressive malignancy with a high risk of morbidity, mortality, and recurrence. The importance of early detection in cancer prevention and disease treatment cannot be overstated. Conventional therapeutic strategies have minor difficulties but considerable side effects and unfavourable consequences in clinical applications. Hence, there is a requirement for effective ways for early detection and treatment of oral cancer. At present, numerous forms of nanoparticles have piqued researchers' interest as a potentially useful tool for diagnostic probes and medicinal devices. Because of their inherent physicochemical properties and customizable surface modification, they are able to circumvent some of restrictions and accomplish the intended diagnostic and therapeutic impact. Nanotechnology is a unique field that has revolutionised the industry and is paving the way for new treatments for oral cancer. It can help with a better diagnosis with less harmful substances and is setting current guidelines for treatment. The use of nanotechnology in cancer diagnosis, therapy, and care improves clinical practise dramatically. The different types of nanoparticles that have been developed for the diagnosis and therapy of oral cancers will be covered in this study. The difficulties and potential uses of nanoparticles in the treatment and diagnosis of oral cancer are then highlighted. In order to emphasise existing difficulties and potential remedies for oral cancer, a prospective view of the future is also provided.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
8
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
9
|
Stoica Oprea AE, Bîrcă AC, Gherasim O, Ficai A, Grumezescu AM, Oprea OC, Vasile BȘ, Balta C, Andronescu E, Hermenean AO. Electrospun Fibrous Silica for Bone Tissue Engineering Applications. Pharmaceutics 2023; 15:1728. [PMID: 37376176 DOI: 10.3390/pharmaceutics15061728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The production of highly porous and three-dimensional (3D) scaffolds with biomimicking abilities has gained extensive attention in recent years for tissue engineering (TE) applications. Considering the attractive and versatile biomedical functionality of silica (SiO2) nanomaterials, we propose herein the development and validation of SiO2-based 3D scaffolds for TE. This is the first report on the development of fibrous silica architectures, using tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) during the self-assembly electrospinning (ES) processing (a layer of flat fibers must first be created in self-assembly electrospinning before fiber stacks can develop on the fiber mat). The compositional and microstructural characteristics of obtained fibrous materials were evaluated by complementary techniques, in both the pre-ES aging period and post-ES calcination. Then, in vivo evaluation confirmed their possible use as bioactive scaffolds in bone TE.
Collapse
Affiliation(s)
- Alexandra Elena Stoica Oprea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- HTP Research and Consulting, Joita, 087150 Giurgiu, Romania
- Research Center for Advanced Materials, Products and Processes, University of Bucharest, 060042 Bucharest, Romania
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310025 Arad, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Anca Oana Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310025 Arad, Romania
| |
Collapse
|
10
|
Mo X, Zhang D, Liu K, Zhao X, Li X, Wang W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24021291. [PMID: 36674810 PMCID: PMC9867487 DOI: 10.3390/ijms24021291] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nano-hydroxyapatite (n-HAp) is similar to human bone mineral in structure and biochemistry and is, therefore, widely used as bone biomaterial and a drug carrier. Further, n-HAp composite scaffolds have a great potential role in bone regeneration. Loading bioactive factors and drugs onto n-HAp composites has emerged as a promising strategy for bone defect repair in bone tissue engineering. With local delivery of bioactive agents and drugs, biological materials may be provided with the biological activity they lack to improve bone regeneration. This review summarizes classification of n-HAp composites, application of n-HAp composite scaffolds loaded with bioactive factors and drugs in bone tissue engineering and the drug loading methods of n-HAp composite scaffolds, and the research direction of n-HAp composite scaffolds in the future is prospected.
Collapse
Affiliation(s)
- Xiaojing Mo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dianjian Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Keda Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoxi Zhao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.L.); (W.W.)
| | - Wei Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Correspondence: (X.L.); (W.W.)
| |
Collapse
|
11
|
Ma X, Luan Z, Li J. Inorganic Nanoparticles-Based Systems in Biomedical Applications of Stem Cells: Opportunities and Challenges. Int J Nanomedicine 2023; 18:143-182. [PMID: 36643862 PMCID: PMC9833678 DOI: 10.2147/ijn.s384343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Stem cells (SC) are a kind of cells with self renewing ability and multipotent differentiation, which can differentiate into many types of cells such as osteoblast, chondrocyte, neurocyte to treat disease like osteoporosis, osteoarthritis and Alzheimer's disease. Despite the development of novel methods for inducing cell differentiation, the inefficiency and complexity of controlling differentiation of stem cells remain a serious challenge, which necessary to develop a new and alternative approach for effectively controlling the direction of stem cell differentiation in vitro and in vivo in stem cells therapy. Recent advancement in nanotechnology for developing a new class of inorganic nanoparticles that exhibit unique chemical and physical properties holds promise for the treatment of stem cells. Over the last decade, inorganic nanoparticle-based approaches against stem cells have been directed toward developing nanoparticles with drug delivery, or utilizing nanoparticles for controlled cell behaviors, and applying nanoparticles for inducing cell differentiation directly. In addition, a strategy to functionalize inorganic nanoparticles as a nanoprobe towards enhanced penetration through near-infrared light or nuclear magnetic resonance has been receiving considerable interest by means of long-term tracking stem cell in vivo. This review summarizes and highlights the recent development of these inorganic nanoparticle-based approaches as potential therapeutics for controlling differentiation of stem cells and so on for stem cell therapy, along with current opportunities and challenges that need to be overcome for their successful clinical translation.
Collapse
Affiliation(s)
- Xulu Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Zhao Luan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Jinming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Correspondence: Jinming Li, Tel +86 20 85211438, Email
| |
Collapse
|
12
|
Huang Y, Zhang L, Ji Y, Deng H, Long M, Ge S, Su Y, Chan SY, Loh XJ, Zhuang A, Ruan J. A non-invasive smart scaffold for bone repair and monitoring. Bioact Mater 2023; 19:499-510. [PMID: 35600976 PMCID: PMC9097555 DOI: 10.1016/j.bioactmat.2022.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Existing strategies for bone defect repair are difficult to monitor. Smart scaffold materials that can quantify the efficiency of new bone formation are important for bone regeneration and monitoring. Carbon nanotubes (CNT) have promising bioactivity and electrical conductivity. In this study, a noninvasive and intelligent monitoring scaffold was prepared for bone regeneration and monitoring by integrating carboxylated CNT into chemically cross-linked carboxymethyl chitosan hydrogel. CNT scaffold (0.5% w/v) demonstrated improved mechanical properties with good biocompatibility and electrochemical responsiveness. Cyclic voltammetry and electrochemical impedance spectroscopy of CNT scaffold responded sensitively to seed cell differentiation degree in both cellular and animal levels. Interestingly, the CNT scaffold could make up the easy deactivation shortfall of bone morphogenetic protein 2 by sustainably enhancing stem cell osteogenic differentiation and new bone tissue formation through CNT roles. This research provides new ideas for the development of noninvasive and electrochemically responsive bioactive scaffolds, marking an important step in the development of intelligent tissue engineering. Existing strategies for bone defect repair are difficult to monitor. In this study, a noninvasive and intelligent monitoring scaffold was prepared for bone regeneration and monitoring. This scaffold was a combination of CNT integrated into a chemically cross-linked carboxymethyl chitosan hydrogel. CNT scaffold showed improved mechanical properties with biocompatibility and electrochemical responsiveness.
Collapse
|
13
|
Injectable decellularized cartilage matrix hydrogel encapsulating urine-derived stem cells for immunomodulatory and cartilage defect regeneration. NPJ Regen Med 2022; 7:75. [PMID: 36550127 PMCID: PMC9780205 DOI: 10.1038/s41536-022-00269-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of complex cartilage defects has remained a great challenge for tissue engineering due to the lack of stem cells and chronic inflammation within the joint. In this study, we have developed an injectable pig cartilage-derived decellularized extracellular matrix (dECM) hydrogels for the repair of cartilage defects, which has shown sound biocompatibility and immunomodulatory capacity both in vitro and in vivo. The dECM hydrogels can enhance the chondrogenic differentiation of human urine-derived stem cells (USCs). As shown by in vitro experiment, the USCs in the dECM hydrogels have survived, proliferated, and produced a mass of cartilage-specific extracellular matrix containing collagen II and aggrecan. And the USCs-laden dECM hydrogels have shown the capacity to promote the secretion of extracellular matrix, modulate the immune response and promote cartilage regeneration in the rat model for cartilage defect.
Collapse
|
14
|
Cao Y, Sun L, Liu Z, Shen Z, Jia W, Hou P, Sang S. 3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone. Regen Biomater 2022; 10:rbac104. [PMID: 36683741 PMCID: PMC9847519 DOI: 10.1093/rb/rbac104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Osteochondral defect caused by trauma or osteoarthritis exhibits a major challenge in clinical treatment with limited symptomatic effects at present. The regeneration and remodeling of subchondral bone play a positive effect on cartilage regeneration and further promotes the repair of osteochondral defects. Making use of the strengths of each preparation method, the combination of 3D printing and electrospinning is a promising method for designing and constructing multi-scale scaffolds that mimic the complexity and hierarchical structure of subchondral bone at the microscale and nanoscale, respectively. In this study, the 3D printed-electrospun poly(ɛ-caprolactone)/nano-hydroxyapatites/multi-walled carbon nanotubes (PCL/nHA/MWCNTs) scaffolds were successfully constructed by the combination of electrospinning and layer-by-layer 3D printing. The resulting dual-scale scaffold consisted of a dense layer of disordered nanospun fibers and a porous microscale 3D scaffold layer to support and promote the ingrowth of subchondral bone. Herein, the biomimetic PCL/nHA/MWCNTs scaffolds enhanced cell seeding efficiency and allowed for higher cell-cell interactions that supported the adhesion, proliferation, activity, morphology and subsequently improved the osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Together, this study elucidates that the construction of 3D printed-electrospun PCL/nHA/MWCNTs scaffolds provides an alternative strategy for the regeneration of subchondral bone and lays a foundation for subsequent in vivo studies.
Collapse
Affiliation(s)
- Yanyan Cao
- College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China,Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Wendan Jia
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Peiyi Hou
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China,Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | | |
Collapse
|
15
|
Hu H, Zhang H, Bu Z, Liu Z, Lv F, Pan M, Huang X, Cheng L. Small Extracellular Vesicles Released from Bioglass/Hydrogel Scaffold Promote Vascularized Bone Regeneration by Transferring miR-23a-3p. Int J Nanomedicine 2022; 17:6201-6220. [PMID: 36531118 PMCID: PMC9749034 DOI: 10.2147/ijn.s389471] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The treatment of critical-size bone defect is a great difficulty in orthopedics. Osteogenesis and angiogenesis are critical issue during the process of bone repair and remodeling. Mesenchymal stem cells (MSCs)-derived exosomes have the same therapeutic effect to MSCs-based therapies. The effect of human umbilical cord MSCs-derived sEVs (hUC-MSCs-sEVs) on vascularized bone regeneration and the potential mechanism remains to be investigated. Herein, we aimed to explore the therapeutic effect and the mechanism of hUC-MSCs-sEVs on critical-size bone defect. METHODS To investigate the potential osteogenesis and angiogenesis effects of sEVs in vitro, we extracted sEVs from hUC-MSCs, and then sEVs were co-incubated with BMSCs and HUVECs. We next investigated the effect and potential mechanism of sEVs on the effects of osteogenesis and angiogenesis. We fabricated 3D-printed bioglass scaffold with Gelma/nanoclay hydrogel coatings to load sEVs (BG-gel-sEVs) to ensure in vivo sustained efficacy of sEVs. Finally, the skull defect model was used to evaluate the capacity of vascularized bone regeneration of the composited scaffolds. RESULTS hUC-MSCs-sEVs facilitated calcium deposition and the endothelial network formation, inducing osteogenic differentiation and angiogenesis by delivering miR-23a-3p to activate PTEN/AKT signaling pathway. Additionally, the BG-gel-sEVs composited scaffold achieved vascularized bone regeneration in vivo. CONCLUSION This finding illuminated that hUC-MSCs-sEVs promoted osteogenesis and angiogenesis by delivering miR-23a-3p to activate PTEN/AKT signaling pathway, achieving vascularized bone regeneration.
Collapse
Affiliation(s)
- Hongxing Hu
- Department of Orthopedics Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Hang Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ziheng Bu
- Department of Orthopedics Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China
| | - Zhongtang Liu
- Department of Orthopedics Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China
| | - Fang Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Science and School of Life Science, East China Normal University, Shanghai, People’s Republic of China
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, People’s Republic of China
| | - Mingmang Pan
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, People’s Republic of China
| | - Xuan Huang
- Department of Orthopedics Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China
| | - Liming Cheng
- Department of Orthopedics Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
16
|
Mesoporous Silica Promotes Osteogenesis of Human Adipose-Derived Stem Cells Identified by a High-Throughput Microfluidic Chip Assay. Pharmaceutics 2022; 14:pharmaceutics14122730. [PMID: 36559224 PMCID: PMC9781822 DOI: 10.3390/pharmaceutics14122730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Silicon-derived biomaterials are conducive to regulating the fate of osteo-related stem cells, while their effects on the osteogenic differentiation of human adipose-derived stem cells (hADSCs) remain inconclusive. Mesoporous silica (mSiO2) is synthesized in a facile route that exhibited the capability of promoting osteogenic differentiation of hADSCs. The metabolism of SiO2 in cells is proposed according to the colocalization fluorescence analysis between lysosomes and nanoparticles. The released silicon elements promote osteogenic differentiation. The detection of secretory proteins through numerous parallel experiments performed via a microfluidic chip confirms the positive effect of SiO2 on the osteogenic differentiation of hADSCs. Moreover, constructed with superparamagnetic iron oxide (Fe3O4), the magnetic nanoparticles (MNPs) of Fe3O4@mSiO2 endow the cells with magnetic resonance imaging (MRI) properties. The MNP-regulated osteogenic differentiation of autologous adipose-derived stem cells provides considerable clinical application prospects for stem cell therapy of bone tissue repair with an effective reduction in immune rejection.
Collapse
|
17
|
Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
18
|
Lv B, Wu J, Xiong Y, Xie X, Lin Z, Mi B, Liu G. Functionalized multidimensional biomaterials for bone microenvironment engineering applications: Focus on osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:1023231. [PMID: 36406210 PMCID: PMC9672076 DOI: 10.3389/fbioe.2022.1023231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
As bone biology develops, it is gradually recognized that bone regeneration is a pathophysiological process that requires the simultaneous participation of multiple systems. With the introduction of osteoimmunology, the interplay between the immune system and the musculoskeletal diseases has been the conceptual framework for a thorough understanding of both systems and the advancement of osteoimmunomodulaty biomaterials. Various therapeutic strategies which include intervention of the surface characteristics or the local delivery systems with the incorporation of bioactive molecules have been applied to create an ideal bone microenvironment for bone tissue regeneration. Our review systematically summarized the current research that is being undertaken in the field of osteoimmunomodulaty bone biomaterials on a case-by-case basis, aiming to inspire more extensive research and promote clinical conversion.
Collapse
Affiliation(s)
| | | | | | | | | | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Wang B, Feng C, Liu Y, Mi F, Dong J. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:233-248. [PMID: 36065207 PMCID: PMC9440077 DOI: 10.1016/j.jdsr.2022.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anatomy of the oral and maxillofacial sites is complex, and bone defects caused by trauma, tumors, and inflammation in these zones are extremely difficult to repair. Among the most effective and reliable methods to attain osteogenesis, the guided bone regeneration (GBR) technique is extensively applied in defective oral and maxillofacial GBR. Furthermore, endowing biofunctions is crucial for GBR materials applied in repairing defective alveolar and maxillofacial bones. In this review, recent advances in designing and fabricating GBR materials applied in oral and maxillofacial sites are classified and discussed according to their biofunctions, including maintaining space for bone growth; facilitating the adhesion, migration, and proliferation of osteoblasts; facilitating the migration and differentiation of progenitor cells; promoting vascularization; providing immunoregulation to induce osteogenesis; suppressing infection; and effectively mimicking natural tissues using graded biomimetic materials. In addition, new processing strategies (e.g., 3D printing) and new design concepts (e.g., developing bone mimetic extracellular matrix niches and preparing scaffolds to suppress connective tissue to actively acquire space for bone regeneration), are particularly worthy of further study. In the future, GBR materials with richer biological functions are expected to be developed based on an in-depth understanding of the mechanism of bone-GBR-material interactions.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Corresponding author at: Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| | - Chengmin Feng
- Department of Otorhinolaryngology & Head Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yiming Liu
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Fanglin Mi
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Corresponding author at: Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| | - Jun Dong
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Corresponding author.
| |
Collapse
|
20
|
Gui X, Peng W, Xu X, Su Z, Liu G, Zhou Z, Liu M, Li Z, Song G, Zhou C, Kong Q. Synthesis and application of nanometer hydroxyapatite in biomedicine. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Nano-hydroxyapatite (nano-HA) has been widely studied as a promising biomaterial because of its potential mechanical and biological properties. In this article, different synthesis methods for nano-HA were summarized. Key factors for the synthesis of nano-HA, including reactant concentration, effects of temperature, PH, additives, aging time, and sintering, were separately investigated. The biological performances of the nano-HA depend strongly on its structures, morphology, and crystallite sizes. Nano-HA with different morphologies may cause different biological effects, such as protein adsorption, cell viability and proliferation, angiogenesis, and vascularization. Recent research progress with respect to the biological functions of the nano-HA in some specific biological applications are summarized and the future development of nano-sized hydroxyapatite is prospected.
Collapse
Affiliation(s)
- Xingyu Gui
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Wei Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Xiujuan Xu
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Zixuan Su
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Gang Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhigang Zhou
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhao Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Geyang Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| |
Collapse
|
21
|
Duan JZ, Yang Y, Wang H. Effects of Antibacterial Co-Cr-Mo-Cu Alloys on Osteoblast Proliferation, Differentiation, and the Inhibition of Apoptosis. Orthop Surg 2022; 14:758-768. [PMID: 35293695 PMCID: PMC9002069 DOI: 10.1111/os.13253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the effects of antibacterial Co‐Cr‐Mo‐Cu alloys with different Cu contents on osteoblast proliferation, differentiation, and the inhibition of apoptosis to optimize the selection of surgical implantation. Methods Microstructure, phase structure, and ion release were evaluated using X‐ray diffraction, scanning electron microscopy (SEM), and inductively coupled plasma (ICP) spectrometry. The effects on osteoblast proliferation, differentiation, and apoptosis were characterized by cell proliferation assay, alkaline phosphatase (ALP) activity assay, and western blotting, respectively. Results Compared to the original Co‐Cr‐Mo alloys, the released Cu ions from Co‐Cu alloys promoted osteoblast proliferation and differentiation and inhibited apoptosis. It can be noted that the optical density (OD490) and the ALP activity have increased to 1.237 and 1.053, respectively, in Co‐2Cu alloy (0.604 and 0.171 for original Co‐Cr‐Mo alloy). Meanwhile, these effects were evaluated through the upregulation of ROS levels and 4E‐binding protein 1 (4E‐BP1) expression and the downregulation of adenosine 5′‐monophosphate (AMP)‐activated protein kinase (AMPK) and p‐AMPK. Moreover, the antibacterial properties of the Co‐Cu alloys were also enhanced, as demonstrated by the strong antibacterial activity of Cu phases in Co‐Cu alloys incubated with Staphylococcus aureus, in which more than 99.8% of the bacteria has been killed. Conclusions The addition of Cu element in the Co‐Cr‐Mo alloys could induce OB proliferation and differentiation and inhibited OB apoptosis. Meanwhile, it can be recognized that the Co‐Cu alloys with 2wt% Cu exhibit the highest performance among all the samples, indicating that the effects of osteoblast differentiation and the inhibition of apoptosis are highly dependent on the adding of Cu elements. Co‐Cr‐Mo‐Cu alloys with an excellent antibacterial property could be used as a tool to improve osteogenic ability and antibacterial properties in orthopaedic implant operations.
Collapse
Affiliation(s)
- Jing-Zhu Duan
- Department of Orthopaedic, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan Wang
- Department of Orthopaedic, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
The Ability and Mechanism of nHAC/CGF in Promoting Osteogenesis and Repairing Mandibular Defects. NANOMATERIALS 2022; 12:nano12020212. [PMID: 35055231 PMCID: PMC8781663 DOI: 10.3390/nano12020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Nano-hydroxyapatite/collagen (nHAC) is a new type of bone tissue engineering scaffold material. To speed up the new bone formation of nHAC, this study used concentrated growth factor (CGF) and nHAC in combination to repair rabbit mandibular defects. nHAC/CGF and nHAC were implanted into rabbit mandibles, and X-ray, Micro-CT, HE and Masson staining, immunohistochemical staining and biomechanical testing were performed at 8, 16 and 24 weeks after surgery. The results showed that as the material degraded, the rate of new bone formation in the nHAC/CGF group was better than that in the nHAC group. The results of the HE and Masson staining showed that the bone continuity or maturity of the nHAC/CGF group was better than that of the nHAC group. Immunohistochemical staining showed that OCN expression gradually increased with time. The nHAC/CGF group showed significantly higher BMP2 than the nHAC group at 8 weeks and the difference gradually decreased with time. The biomechanical test showed that the compressive strength and elastic modulus of the nHAC/CGF group were higher than those of the nHAC group. The results suggest that nHAC/CGF materials can promote new bone formation, providing new ideas for the application of bone tissue engineering scaffold materials in oral clinics.
Collapse
|
23
|
Graphene-Oxide Porous Biopolymer Hybrids Enhance In Vitro Osteogenic Differentiation and Promote Ectopic Osteogenesis In Vivo. Int J Mol Sci 2022; 23:ijms23010491. [PMID: 35008918 PMCID: PMC8745160 DOI: 10.3390/ijms23010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.
Collapse
|
24
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
25
|
Vitus V, Ibrahim F, Wan Kamarul Zaman WS. Modelling of Stem Cells Microenvironment Using Carbon-Based Scaffold for Tissue Engineering Application-A Review. Polymers (Basel) 2021; 13:4058. [PMID: 34883564 PMCID: PMC8658938 DOI: 10.3390/polym13234058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.
Collapse
Affiliation(s)
- Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
26
|
Cheng J, Liu J, Wu B, Liu Z, Li M, Wang X, Tang P, Wang Z. Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Front Bioeng Biotechnol 2021; 9:734688. [PMID: 34660555 PMCID: PMC8511325 DOI: 10.3389/fbioe.2021.734688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023] Open
Abstract
Bone regeneration or replacement has been proved to be one of the most effective methods available for the treatment of bone defects caused by different musculoskeletal disorders. However, the great contradiction between the large demand for clinical therapies and the insufficiency and deficiency of natural bone grafts has led to an urgent need for the development of synthetic bone graft substitutes. Bone tissue engineering has shown great potential in the construction of desired bone grafts, despite the many challenges that remain to be faced before safe and reliable clinical applications can be achieved. Graphene, with outstanding physical, chemical and biological properties, is considered a highly promising material for ideal bone regeneration and has attracted broad attention. In this review, we provide an introduction to the properties of graphene and its derivatives. In addition, based on the analysis of bone regeneration processes, interesting findings of graphene-based materials in bone regenerative medicine are analyzed, with special emphasis on their applications as scaffolds, membranes, and coatings in bone tissue engineering. Finally, the advantages, challenges, and future prospects of their application in bone regenerative medicine are discussed.
Collapse
Affiliation(s)
- Junyao Cheng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Bing Wu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zhongyang Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zheng Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021; 7:4718-4735. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the main load-bearing structure in the human body, bone and cartilage are susceptible to damage in sports and other activities. The repair and regeneration of bone and articular cartilage have been extensively studied in the past decades. Traditional approaches have been widely applied in clinical practice, but the effect varies from person to person and may cause side effects. With the rapid development of tissue engineering and regenerative medicine, various biomaterials show great potential in the regeneration of bone and cartilage. Carbon-based nanomaterials are solid materials with different structures and properties composed of allotropes of carbon, which are classified into zero-, one-, and two-dimensional ones. This Review systemically summarizes the different types of carbon-based nanomaterials, including zero-dimensional (fullerene, carbon dots, nanodiamonds), one-dimensional (carbon nanotubes), and two-dimensional (graphenic materials) as well as their applications in bone, cartilage, and osteochondral regeneration. Current limitations and future perspectives of carbon-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
28
|
Santos Silva T, Melo Soares M, Oliveira Carreira AC, de Sá Schiavo Matias G, Coming Tegon C, Massi M, de Aguiar Oliveira A, da Silva Júnior LN, Costa de Carvalho HJ, Doná Rodrigues Almeida GH, Silva Araujo M, Fratini P, Miglino MA. Biological Characterization of Polymeric Matrix and Graphene Oxide Biocomposites Filaments for Biomedical Implant Applications: A Preliminary Report. Polymers (Basel) 2021; 13:3382. [PMID: 34641197 PMCID: PMC8512758 DOI: 10.3390/polym13193382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Carbon nanostructures application, such as graphene (Gr) and graphene oxide (GO), provides suitable efforts for new material acquirement in biomedical areas. By aiming to combine the unique physicochemical properties of GO to Poly L-lactic acid (PLLA), PLLA-GO filaments were produced and characterized by X-ray diffraction (XRD). The in vivo biocompatibility of these nanocomposites was performed by subcutaneous and intramuscular implantation in adult Wistar rats. Evaluation of the implantation inflammatory response (21 days) and mesenchymal stem cells (MSCs) with PLLA-GO took place in culture for 7 days. Through XRD, new crystallographic planes were formed by mixing GO with PLLA (PLLA-GO). Using macroscopic analysis, GO implanted in the subcutaneous region showed particles' organization, forming a structure similar to a ribbon, without tissue invasion. Histologically, no tissue architecture changes were observed, and PLLA-GO cell adhesion was demonstrated by scanning electron microscopy (SEM). Finally, PLLA-GO nanocomposites showed promising results due to the in vivo biocompatibility test, which demonstrated effective integration and absence of inflammation after 21 days of implantation. These results indicate the future use of PLLA-GO nanocomposites as a new effort for tissue engineering (TE) application, although further analysis is required to evaluate their proliferative capacity and viability.
Collapse
Affiliation(s)
- Thamires Santos Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Marcelo Melo Soares
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Carolina Coming Tegon
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Marcos Massi
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Andressa de Aguiar Oliveira
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Leandro Norberto da Silva Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Hianka Jasmyne Costa de Carvalho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| |
Collapse
|
29
|
Bai R, Liu J, Zhang J, Shi J, Jin Z, Li Y, Ding X, Zhu X, Yuan C, Xiu B, Liu H, Yuan Z, Liu Z. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche. J Nanobiotechnology 2021; 19:252. [PMID: 34425841 PMCID: PMC8381546 DOI: 10.1186/s12951-021-00993-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The niche of tissue development in vivo involves the growth matrix, biophysical cues and cell-cell interactions. Although natural extracellular matrixes may provide good supporting for seeding cells in vitro, it is evitable to destroy biophysical cues during decellularization. Reconstructing the bioactivities of extracellular matrix-based scaffolds is essential for their usage in tissue repair. RESULTS In the study, a hybrid hydrogel was developed by incorporating single-wall carbon nanotubes (SWCNTs) into heart-derived extracellular matrixes. Interestingly, insoluble SWCNTs were well dispersed in hybrid hydrogel solution via the interaction with extracellular matrix proteins. Importantly, an augmented integrin-dependent niche was reconstructed in the hybrid hydrogel, which could work like biophysical cues to activate integrin-related pathway of seeding cells. As supporting scaffolds in vitro, the hybrid hydrogels were observed to significantly promote seeding cell adhesion, differentiation, as well as structural and functional development towards mature cardiac tissues. As injectable carrier scaffolds in vivo, the hybrid hydrogels were then used to delivery stem cells for myocardial repair in rats. Similarly, significantly enhanced cardiac differentiation and maturation(12.5 ± 2.3% VS 32.8 ± 5%) of stem cells were detected in vivo, resulting in improved myocardial regeneration and repair. CONCLUSIONS The study represented a simple and powerful approach for exploring bioactive scaffold to promote stem cell-based tissue repair.
Collapse
Affiliation(s)
- Rui Bai
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jianfeng Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiao Zhang
- Department of Cardiology, Beijing Electric Power Hospital, State Grid Corporation of China, Beijing, 100073, China
| | - Jinmiao Shi
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhigeng Jin
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yi Li
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Xiaoyu Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoming Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chao Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Bingshui Xiu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huiliang Liu
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
30
|
Kadkhoda J, Akrami-Hasan-Kohal M, Tohidkia MR, Khaledi S, Davaran S, Aghanejad A. Advances in antibody nanoconjugates for diagnosis and therapy: A review of recent studies and trends. Int J Biol Macromol 2021; 185:664-678. [PMID: 34224755 DOI: 10.1016/j.ijbiomac.2021.06.191] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023]
Abstract
Nowadays, the targeted imaging probe and drug delivery systems are the novel breakthrough area in the nanomedicine and treatment of various diseases. Conjugation of monoclonal antibodies and their fragments on nanoparticles (NPs) have a remarkable impact on personalized medicine, such that it provides specific internalization and accumulation in the tumor microenvironment. Targeted imaging and early detection of cancer is presumably the strong participant to a diminution in mortality and recurrence of cancer disease that will be the next generation of the imaging device in clinical application. These intelligent delivery systems can deliver therapeutic agents that target cancerous tissue with minimal side effects and a wide therapeutic window. Overall, the linkage between the antibody and NPs is a critical subject and requires precise design and development. The attachment of antibody nanoconjugates (Ab-NCs) on the antigen surface shouldn't affect the function of the antibody-antigen binding. Also, the stability of the antibody nanoconjugates in blood circulation is concerned to avoid the release of drug in non-targeted regions and the possible for specific toxicity while disposal to the desired site. Here, we update the recent progress of Ab-NCs to improve early detection and cancer therapy.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Akrami-Hasan-Kohal
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Khaledi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Zheng W, Zhou Q, Yuan C. Nanoparticles for Oral Cancer Diagnosis and Therapy. Bioinorg Chem Appl 2021; 2021:9977131. [PMID: 33981334 PMCID: PMC8088384 DOI: 10.1155/2021/9977131] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is the sixth most common malignant cancer, affecting the health of people with an unacceptably high mortality rate. Despite numerous clinical methods in the diagnosis and therapy of oral cancer (e.g., magnetic resonance imaging, computed tomography, surgery, and chemoradiotherapy), they still remain far from optimal. Therefore, an urgent need exists for effective and practical techniques of early diagnosis and effective therapy of oral cancer. Currently, various types of nanoparticles have aroused wide public concern, representing a promising tool for diagnostic probes and therapeutic devices. Their inherent physicochemical features, including ultrasmall size, high reactivity, and tunable surface modification, enable them to overcome some of the limitations and achieve the expected diagnostic and therapeutic effect. In this review, we introduce different types of nanoparticles that emerged for the diagnosis and therapy of oral cancers. Then, the challenges and future perspectives for nanoparticles applied in oral cancer diagnosis and therapy are presented. The objective of this review is to help researchers better understand the effect of nanoparticles on oral cancer diagnosis and therapy and may accelerate breakthroughs in this field.
Collapse
Affiliation(s)
- Weiping Zheng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
32
|
任 义, 黄 若, 王 存, 马 亚, 李 晓. [Advantages and challenges of carbon nanotubes as bone repair materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:271-277. [PMID: 33719233 PMCID: PMC8171765 DOI: 10.7507/1002-1892.202009073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Indexed: 11/03/2022]
Abstract
With the in-depth research on bone repair process, and the progress in bone repair materials preparation and characterization, a variety of artificial bone substitutes have been fully developed in the treatment of bone related diseases such as bone defects. However, the current various natural or synthetic biomaterials are still unable to achieve the structure and properties of natural bone. Carbon nanotubes (CNTs) have provided a new direction for the development of new materials in the field of bone repair due to their excellent structural stability, mechanical properties, and functional group modifiability. Moreover, CNTs and their composites have broad prospects in the design of bone repair materials and as drug delivery carriers. This paper describes the advantages of CNTs related to bone tissue regeneration from the aspects of morphology, chemistry, mechanics, electromagnetism, and biosafety, as well as the application of CNTs in drug delivery carriers and reinforcement components of scaffold materials. In addition, the potential problems and prospects of CNTs in bone regenerative medicine are discussed.
Collapse
Affiliation(s)
- 义行 任
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 若愚 黄
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 存阳 王
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 亚洁 马
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 晓明 李
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| |
Collapse
|
33
|
Alavije AA, Barati F, Barati M, Nazari H, Karimi I. Polyethersulfone/MWCNT nanocomposite scaffold for endometrial cell culture: preparation, characterization, and in vitroinvestigation. Biomed Phys Eng Express 2021; 7. [PMID: 35014622 DOI: 10.1088/2057-1976/abd67f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022]
Abstract
Endometrial cell culture is a method for investigating physiological or pathological conditions or simulatingin vivoconditions for embryo culture. The natural function of the endometrium depends on a polarized epithelium and 3D stromal compartments. The polymer-based scaffolds of simple polyethersulfone (PES), laser scratched PES (PES-LS), and multiwall carbon nanotubes (MWCNT) composited PES (PES-MWCNT) were prepared and used for bovine endometrial cells (bECs) culture. For better investigation of the relationship between physical structure and cell growth behavior, the surface morphologies of the scaffolds were evaluated by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) techniques. Three synthesized membranes (PES, PES-LS, and PES-MWCNT) were evaluated for the cell morphology, viability and, doubling time. Results showed acceptable physical and chemical fabrication of the polymers with no significant differences in the proportions of live cells to primary cultured cells, dead to live cells, and the cell doubling time among groups during the experiment (P > 0.05). Total cell count (live and dead cells) was significantly different on Day 2 among types of polymers. The results showed the comparable potential of the PES-MWCNT membrane for the bECs culture.
Collapse
Affiliation(s)
- Ali Alirezaei Alavije
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Farid Barati
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Barati
- Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hasan Nazari
- Institute of Farm Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Iraj Karimi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
34
|
Du Z, Cao G, Li K, Zhang R, Li X. Nanocomposites for the delivery of bioactive molecules in tissue repair: vital structural features, application mechanisms, updated progress and future perspectives. J Mater Chem B 2020; 8:10271-10289. [PMID: 33084730 DOI: 10.1039/d0tb01670e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, nanocomposites have attracted great attention in tissue repair as carriers for bioactive molecule delivery due to their biochemical and nanostructural similarity to that of physiological tissues, and controlled delivery of bioactive molecules. In this review, we aim to comprehensively clarify how the applications of nanocomposites for bioactive molecule delivery in tissue repair are achieved by focusing on the following aspects: (1) vital structural features (size, shape, pore, etc.) of nanocomposites that have crucial effects on the biological properties and function of bioactive molecule-delivery systems, (2) delivery performance of bioactive molecules possessing high entrapment efficiency of bioactive molecules and good controlled- and sustained-release of bioactive molecules, (3) application mechanisms of nanocomposites to deliver and release bioactive molecules in tissue repair, (4) updated research progress of nanocomposites for bioactive molecule delivery in hard and soft tissue repair, and (5) future perspectives in the development of bioactive molecule-delivery systems based on nanocomposites.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ruihong Zhang
- Department of Research and Teaching, the Fourth Central Hospital of Baoding City, Baoding 072350, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
35
|
Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020; 15:7523-7551. [PMID: 33116486 PMCID: PMC7547809 DOI: 10.2147/ijn.s271917] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, People's Republic of China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China
| | - Ruihong Zhang
- Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, People's Republic of China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China
| |
Collapse
|