1
|
Handschuh-Wang S, Wang T, Gancarz T, Liu X, Wang B, He B, Dickey MD, Wimmer GW, Stadler FJ. The Liquid Metal Age: A Transition From Hg to Ga. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408466. [PMID: 39295483 DOI: 10.1002/adma.202408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Indexed: 09/21/2024]
Abstract
This review offers an illuminating journey through the historical evolution and modern-day applications of liquid metals, presenting a comprehensive view of their significance in diverse fields. Tracing the trajectory from mercury applications to contemporary innovations, the paper explores their pivotal role in industry and research. The analysis spans electrical switches, mechanical applications, electrodes, chemical synthesis, energy storage, thermal transport, electronics, and biomedicine. Each section examines the intricacies of liquid metal integration, elucidating their contributions to technological advancements and societal progress. Moreover, the review critically appraises the challenges and prospects inherent in liquid metal applications, addressing issues of recycling, corrosion management, device stability, economic feasibility, translational hurdles, and market dynamics. By delving into these complexities, the paper advances scholarly understanding and offers actionable insights for researchers, engineers, and policymakers. It aims to catalyze innovation, foster interdisciplinary collaboration, and promote liquid metal-enabled solutions for societal needs. Through its comprehensive analysis and forward-looking perspective, this review serves as a guide for navigating the landscape of liquid metal applications, bridging historical legacies with contemporary challenges, and highlighting the transformative potential of liquid metals in shaping future technologies.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Tao Wang
- Advanced Materials Group Co., LTD, Fusionopolis Link #06-07, Nexus One-North, Singapore, 138543, Singapore
| | - Tomasz Gancarz
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, Krakow, 30-059, Poland
| | - Xiaorui Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Georg W Wimmer
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Florian J Stadler
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Huang Z, Guan M, Bao Z, Dong F, Cui X, Liu G. Ligand Mediation for Tunable and Oxide Suppressed Surface Gold-Decorated Liquid Metal Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306652. [PMID: 37806762 DOI: 10.1002/smll.202306652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2003] [Indexed: 10/10/2023]
Abstract
Gallium-based liquid metal systems hold vast potential in materials science. However, maximizing their possibilities is hindered by gallium's native oxide and interfacial functionalization. In this study, small-molecule ligands are adopted as surfactants to modify the surface of eutectic gallium indium (EGaIn) nanoparticles and suppress oxidation. Different p-aniline derivatives are explored. Next, the reduction of chloroanric acid (HAuCl4 ) onto these p-aniline ligand modified EGaIn nanoparticles is investigated to produce gold-decorated EGaIn nanosystems. It is found that by altering the concentrations of HAuCl4 or the p-aniline ligand, the formation of gold nanoparticles (AuNPs) on EGaIn can be manipulated. The reduction of interfacial oxidation and presence of AuNPs enhances electrical conductivity, plasmonic performance, wettability, stability, and photothermal performance of all the p-aniline derivative modified EGaIn. Of these, EGaIn nanoparticles covered with the ligand of p-aminobenzoic acid offer the most evenly distributed AuNPs decoration and perfect elimination of gallium oxides, resulting in the augmented electrical conductivity, and highest wettability suitable for patterning, enhanced aqueous stability, and favorable photothermal properties. The proof-of-concept application in photothermal therapy of cancer cells demonstrates significantly enhanced photothermal conversion performance along with good biocompatibility. Due to such unique characteristics, the developed gold-decorated EGaIn nanodroplets are expected to offer significant potential in precise medicine.
Collapse
Affiliation(s)
- Ziyang Huang
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Mingyang Guan
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Ziting Bao
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Fengyi Dong
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Xiaolin Cui
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Guozhen Liu
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| |
Collapse
|
3
|
Wang B, Chen S, Sun X, Shan X, Zhu X, Yuan B, Wang H, Zhou G, Liu J. A Photothermally Enhanced Vancomycin-Coated Liquid Metal Antimicrobial Agent with Targeting Capability. Bioengineering (Basel) 2023; 10:748. [PMID: 37508775 PMCID: PMC10376194 DOI: 10.3390/bioengineering10070748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The targeted antimicrobial efficacy of Vancomycin decreases significantly over time due to bacterial resistance, whereas Ga-based liquid metals, which are less prone to inducing bacterial resistance, face challenges in achieving targeted antimicrobial effects. To tackle these issues, a highly efficient antimicrobial agent with targeting properties has been developed by combining Ga-based liquid metals and Vancomycin. Moreover, the performance of this antimicrobial agent can be greatly enhanced through the use of near-infrared light. Microscopic observations reveal that Vancomycin can be effectively encapsulated on the surface of liquid metal, facilitated by the presence of the oxide layer. The resulting core–shell structured antimicrobial agent demonstrates notable targeted antimicrobial effects against S. aureus. Antibacterial tests indicate that Vancomycin effectively improves the antibacterial properties of pure liquid metal. Additionally, this study unveils the excellent photothermal conversion capabilities of liquid metal, enabling the antimicrobial agent exposed to 808nm near-infrared light to exhibit significantly strengthened bactericidal performance. In this scenario, the antimicrobial agent can achieve nearly 100% effectiveness. This work enriches the investigation of integrating Ga-based antimicrobial agents with traditional antibiotics, showcasing promising antibacterial effects and establishing the groundwork for subsequent clinical applications.
Collapse
Affiliation(s)
- Bo Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.W.)
| | - Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuyang Sun
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.W.)
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hongzhang Wang
- Center of Double Helix, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Zhou
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.W.)
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Guo Z, Xie W, Gao X, Lu J, Ye J, Li Y, Fahad A, Zhang G, Zhao L. Nanoheterostructure by Liquid Metal Sandwich-Based Interfacial Galvanic Replacement for Cancer Targeted Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300751. [PMID: 36828793 DOI: 10.1002/smll.202300751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Nanoheterostructures with exquisite interface and heterostructure design find numerous applications in catalysis, plasmonics, electronics, and biomedicine. In the current study, series core-shell metal or metal oxide-based heterogeneous nanocomposite have been successfully fabricated by employing sandwiched liquid metal (LM) layer (i.e., LM oxide/LM/LM oxide) as interfacial galvanic replacement reaction environment. A self-limiting thin oxide layer, which would naturally occur at the metal-air interface under ambient conditions, could be readily delaminated onto the surface of core metal (Fe, Bi, carbonyl iron, Zn, Mo) or metal oxide (Fe3 O4 , Fe2 O3 , MoO3 , ZrO2 , TiO2 ) nano- or micro-particles by van der Waals (vdW) exfoliation. Further on, the sandwiched LM layer could be formed immediately and acted as the reaction site of galvanic replacement where metals (Au, Ag, and Cu) or metal oxide (MnO2 ) with higher reduction potential could be deposited as shell structure. Such strategy provides facile and versatile approaches to design and fabricate nanoheterostructures. As a model, nanocomposite of Fe@Sandwiched-GaIn-Au (Fe@SW-GaIn-Au) is constructed and their application in targeted magnetic resonance imaging (MRI) guided photothermal tumor ablation and chemodynamic therapy (CDT), as well as the enhanced radiotherapy (RT) against tumors, have been systematically investigated.
Collapse
Affiliation(s)
- Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing, 100190, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaohan Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Jingsong Lu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jielin Ye
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Abdul Fahad
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Guifeng Zhang
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing, 100190, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
6
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Lee W, Lee CE, Kim HJ, Kim K. Current Progress in Gallium-based Liquid Metals for Combinatory Phototherapeutic Anticancer Applications. Colloids Surf B Biointerfaces 2023; 226:113294. [PMID: 37043951 DOI: 10.1016/j.colsurfb.2023.113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
A variety of therapeutic approaches using liquid metal (LM) have been intensively investigated, due to its unique physico-chemical properties that include high surface tension, fluidity, shape deformability, thermal conductivity, and electrical conductivity. Among a series of LMs, the relatively lower toxicity and minimal volatility of gallium (Ga)-based LMs (GaLMs) enables their usage in a series of potential biomedical applications, especially implantable platforms, to treat multiple diseases. In addition, the highly efficient conversion of light energy into thermal or chemical energy via GaLMs has led to recent developments in photothermal and photodynamic applications for anticancer treatments. As attractive photothermal agents or photosensitizers, a systematic interpretation of the structural characteristics and photo-responsive behaviors of GaLMs is necessary to develop effective anticancer engineering applications. Therefore, the aim of this review is to provide a comprehensive summary of currently suggested GaLM-mediated photo-therapeutic cancer treatments. In particular, the review summarizes (1) surface coating techniques to form stable and multifunctional GaLM particulates, (2) currently investigated GaLM-mediated photothermal and photodynamic anticancer therapies, (3) synergistic efficacies with the aid of additional interventions, and (4) 3D composite gels embedded with GaLMs particles, to convey the potential technological advances of LM in this field.
Collapse
|
8
|
Baig N, Kammakakam I. Special wettable Azadirachta indica leaves like microarchitecture mesh filtration membrane produced by galvanic replacement reaction for layered oil/water separation. CHEMOSPHERE 2023; 313:137544. [PMID: 36528151 DOI: 10.1016/j.chemosphere.2022.137544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The oil/water separation has received significant attention due to its critical environmental impact. The special wettable surfaces are highly desired to deal with the oil/water mixtures. This work demonstrates a simple two-step method to develop a superhydrophobic Azadirachta indica leaves like Ag-decorated electrochemically copper-coated stainless-steel mesh (SH-AIL-Ag-EC-Cu-Mesh) for efficient separation of oil/water mixtures. In the first step, the electrodeposition of the copper took place on the mesh surface at a suitable applied potential. In the second step, the galvanic replacement reaction between the Ag+ and electrodeposited Cu produced the fascinating superhydrophobic Ag leaves on the mesh surface. The SH-AIL-Ag-EC-Cu-Mesh was thoroughly characterized by the X-ray photoelectron spectroscopy (XPS), Energy Dispersive X-Ray Spectroscopy (EDX), elemental mapping, surface wettability analysis, and the contact analyzer. The morphological analysis has shown the unique leafy structures of the reduced Ag on the surface of the mesh. The XPS analysis has confirmed that most of the Ag present on the surface is in zerovalent form. The combination of the electrodeposition and the displacement reaction between the copper and the silver turned the surface superhydrophobic, and the water contact angle was significantly improved from 115° to 158°. The designed SH-AIL-Ag-EC-Cu-Mesh has shown excellent selectivity for oil in oil/water mixtures with a separation efficiency of 99.1% with an exceptionally high flux of 8963 L m-2h-1. The SH-AIL-Ag-EC-Cu-Mesh has shown excellent reusability, and after 15 cycles of separation, no significant decrease in the oil/water separation efficiency was observed.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Irshad Kammakakam
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487-0203, USA.
| |
Collapse
|
9
|
Shen Y, Zou Y, Bie B, Dong C, Lv Y. Combining dual-targeted liquid metal nanoparticles with autophagy activation and mild photothermal therapy to treat metastatic breast cancer and inhibit bone destruction. Acta Biomater 2023; 157:578-592. [PMID: 36442822 DOI: 10.1016/j.actbio.2022.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Although mild photothermal therapy (mild-PTT) avoids treatment bottleneck of the traditional PTT, the application of mild-PTT in deep and internal tumors is severely restricted due to thermal resistance, limited irradiation area and penetration depth. In addition, bone resorption caused by tumor colonization in distal bone tissue exacerbates tumor progression. Here, a strategy was developed for the treatment of bone metastasis and alleviation of bone resorption, which was based on liquid metal (LM) nanoparticle to resist thermal resistance induced by mild-PTT via autophagy activation. Briefly, LM and autophagy activator (Curcumin, Cur) were loaded into zeolitic imidazolate framework-8 (ZIF-8), which was then functionalized with hyaluronic acid/alendronate (CLALN). CLALN exhibited good photothermal performance, drug release ability under acidic environment, specifical recognition and aggregation at bone metastasis sites. CLALN combined with mild-PPT dramatically inhibited tumor progress by inducing the impaired autophagy and reduced the expression of programmed cell death ligand 1 (PD-L1) protein triggered by mild-PTT, resisting thermal resistance and alleviating the immunosuppression. Besides, CLALN combined with mild-PPT effectively alleviated osteolysis compared with only CLALN or mild-PPT. Our experiments demonstrated that this multi-functional LM-based nanoparticle combined with autophagy activation provided a promising therapeutic strategy for bone metastasis treatment. STATEMENT OF SIGNIFICANCE: Due to the limited light penetration, photothermal therapy (PTT) has limited inhibitory effect on tumor cells colonized in the bone. In addition, nonspecific heat diffusion of PTT may accidentally burn normal tissues and damage peripheral blood vessels, which can block the accumulation of drugs in deep tumors. Here, a multifunctional liquid metal based mild-PTT delivery system is designed to inhibit tumor growth and bone resorption by modulating the bone microenvironment and activating autophagy "on demand". It can overcome the treatment bottleneck of traditional PTT and improve the treatment effect of mild-PTT by resisting photothermal resistance and immune suppression. In addition, it also exhibits favorable heat/acid-responsive drug release performance and can specifically target tumor cells at the site of bone metastases.
Collapse
Affiliation(s)
- Yaping Shen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei 430200, PR China; College of Environmental Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Binglin Bie
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei 430200, PR China
| | - Chanjuan Dong
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei 430200, PR China.
| |
Collapse
|
10
|
Synthesis and Application of Liquid Metal Based-2D Nanomaterials: A Perspective View for Sustainable Energy. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020524. [PMID: 36677585 PMCID: PMC9864318 DOI: 10.3390/molecules28020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
With the continuous exploration of low-dimensional nanomaterials, two dimensional metal oxides (2DMOs) has been received great interest. However, their further development is limited by the high cost in the preparation process and the unstable states caused by the polarization of surface chemical bonds. Recently, obtaining mental oxides via liquid metals have been considered a surprising method for obtaining 2DMOs. Therefore, how to scientifically choose different preparation methods to obtain 2DMOs applying in different application scenarios is an ongoing process worth discussing. This review will provide some new opportunities for the rational design of 2DMOs based on liquid metals. Firstly, the surface oxidation process and in situ electrical replacement reaction process of liquid metals are introduced in detail, which provides theoretical basis for realizing functional 2DMOs. Secondly, by simple sticking method, gas injection method and ultrasonic method, 2DMOs can be obtained from liquid metal, the characteristics of each method are introduced in detail. Then, this review provides some prospective new ideas for 2DMOs in other energy-related applications such as photodegradation, CO2 reduction and battery applications. Finally, the present challenges and future development prospects of 2DMOs applied in liquid metals are presented.
Collapse
|
11
|
Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and Biocompatibility of Liquid Metals. Adv Healthc Mater 2023; 12:e2201924. [PMID: 36314401 DOI: 10.1002/adhm.202201924] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/15/2022] [Indexed: 01/27/2023]
Abstract
Recently, room-temperature liquid metals have attracted increasing attention from researchers owing to their excellent material properties. Systematic interpretation of the potential toxicity issues involved is essential for a wide range of applications, especially in the biomedical and healthcare fields. However, even with the exponential growth of related studies, investigation of the toxicological impact and possible hazards of liquid metals to organisms is still in its infancy. This review aims to provide a comprehensive summary of the current frontier of knowledge on liquid metal toxicology and biocompatibility in different environments. Based on recent studies, this review focuses on Ga and Bi-based in different states. It is necessary to evaluate their toxicity considering the rapid increase in research and utilization of such liquid metal composites. Finally, existing challenges are discussed and suggestions are provided for further investigation of liquid metal toxicology to clarify the toxicological mechanisms and strategies are provided to avoid adverse effects. In addition to resolving the doubts of public concern about the toxicity of liquid metals, this review is expected to promote the healthy and sustainable development of liquid metal-based materials and their use in diverse areas, especially those related to health care.
Collapse
Affiliation(s)
- Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ruiqi Zhao
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuyang Sun
- School of Medicine Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lei Li
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.,Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
12
|
Liquid metals: Preparation, surface engineering, and biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Lv C, Kang W, Liu S, Yang P, Nishina Y, Ge S, Bianco A, Ma B. Growth of ZIF-8 Nanoparticles In Situ on Graphene Oxide Nanosheets: A Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS NANO 2022; 16:11428-11443. [PMID: 35816172 DOI: 10.1021/acsnano.2c05532] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of intracellular ions' overload to interrupt normal bioprocesses and cause cell death has been developed as an efficient strategy (named as ion-interference therapy/IIT) to treat cancer. In this study, we design a multifunctional nanoplatform (called BSArGO@ZIF-8 NSs) by in situ growth of metal organic framework nanoparticles (ZIF-8 NPs) onto the graphene oxide (GO) surface, subsequently reduced by ascorbic acid and modified by bovine serum albumin. This nanocomplex causes the intracellular overload of Zn2+, an increase of reactive oxygen species (ROS), and exerts a broad-spectrum lethality to different kinds of cancer cells. BSArGO@ZIF-8 NSs can promote cell apoptosis by initiating bim (a pro-apoptotic protein)-mediated mitochondrial apoptotic events, up-regulating PUMA/NOXA expression, and down-regulating the level of Bid/p53AIP1. Meanwhile, Zn2+ excess triggers cellular dysfunction and mitochondria damage by activating the autophagy signaling pathways and disturbing the intracellular environmental homeostasis. Combined with the photothermal effect of reduced GO (rGO), BSArGO@ZIF-8 NSs mediated ion-interference and photothermal combined therapy leads to effective apoptosis and inhibits cell proliferation and angiogenesis, bringing a higher efficacy in tumor suppression in vivo. This designed Zn-based multifunctional nanoplatform will allow promoting further the development of IIT and the corresponding combined cancer therapy strategy.
Collapse
Affiliation(s)
- Chunxu Lv
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Wenyan Kang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shuo Liu
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Pishan Yang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
14
|
Liu Y, Yang L, Chen Q, Wang Z, Yang Z, Cao J, Wang X, Li H, Huang X. Deposition of Vertically Aligned Ag/Ag 2 S Nanoflakes on EGaIn Particles for Humidity Sensing. Chemistry 2022; 28:e202200298. [PMID: 35384089 DOI: 10.1002/chem.202200298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/14/2022]
Abstract
Liquid metals, which possess both good electrical conductivity and liquid-like processability, have drawn much attention recently. They are also capable of acting as synthesis templates to guide the deposition of other functional materials. Herein, through an in-situ galvanic replacement reaction assisted by ultrasonication, core-shell EGaIn/Ag particles composed of EGaIn cores and vertically aligned Ag nanoflakes as shells were prepared; they were further sulfurized to yield ternary EGaIn/Ag/Ag2 S core-shell composite particles. A humidity sensor based on EGaIn/Ag/Ag2 S particles showed much higher sensing response than EGaIn and EGaIn/Ag. Such superior performance could be attributed to the n-type semiconducting character of Ag2 S allowing it to receive electrons from water molecules at low humidity, and its highly hydrophilic surface allowing it to absorb more water molecules at higher humidity so as to enable the formation of ion-conductive paths.
Collapse
Affiliation(s)
- Yanlei Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Lei Yang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Zeyi Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhiwei Yang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
15
|
Qi Y, Yu Z, Hu K, Wang D, Zhou T, Rao W. Rigid metal/liquid metal nanoparticles: Synthesis and application for locally ablative therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102535. [PMID: 35181527 DOI: 10.1016/j.nano.2022.102535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Locally ablative therapy, as the main therapy for advanced tumors, has fallen into a bottleneck in recent years. The breakthrough of metal nanoparticles provides a novel approach for ablative therapy. Previous studies have mostly focused on the combined field of rigid metal nanoparticles and ablation. However, with the maturity of the preparation process of liquid metal nanoparticles, liquid metal nanoparticles not only have metallic properties but also have fluid properties, showing the potential to be combined with ablation. At present, there is no review on the combination of liquid metal nanoparticles and ablation. In this article, we first review the preparation, characterization and application characteristics of rigid metal and liquid metal nanoparticles in ablation applications, and then summarize the advantages, disadvantages and possible future development trends of rigid and liquid metal nanoparticles.
Collapse
Affiliation(s)
- Yuxia Qi
- Beijing University of Chinese Medicine, Beijing, China.
| | - Zhongyang Yu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Kaiwen Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing,, China.
| | - Dawei Wang
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, China.
| | - Tian Zhou
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing,, China.
| | - Wei Rao
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, China.
| |
Collapse
|
16
|
Yu Y, Wu Q, Niu M, Gou L, Tan L, Fu C, Ren X, Ren J, Zheng Y, Meng X. A core-shell liquid metal-Cu nanoparticle with glutathione consumption via an in situ replacement strategy for tumor combination treatment of chemodynamic, microwave dynamic and microwave thermal therapy. Biomater Sci 2022; 10:3503-3513. [PMID: 35593298 DOI: 10.1039/d2bm00435f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The presence of high content glutathione (GSH) provides an effective "protective shield" for tumor cells, which undoubtedly is a huge impediment to reactive oxygen species (ROS)-based treatment. Fortunately, divalent copper (Cu2+) can not only consume GSH, destroying the protection mechanism of GSH, but also can be reduced to Cu+ with excellent Fenton-like reaction activity. Hence, capitalizing on the properties of liquid metals, we introduced Cu with three different valances via an in situ replacement reaction. A stable core-shell liquid-metal based "Cu storage pool" was obtained. It can effectively deplete GSH within the cells, and simultaneously produce ·OH through a Fenton-like reaction, further improving the effect of chemodynamic therapy (CDT). Under microwave irradiation, it is also capable of producing a large amount of ROS to promote tumor treatment. In addition, the loading of ionic liquid endows LZC@IL nanoparticles with certain microwave heating performance, which is able to augment microwave thermal therapy (MWTT). With the combination of CDT, microwave dynamic therapy (MDT) and MWTT, LZC@IL has an excellent effect on tumor elimination. This work offers a new idea for the application of liquid metals and the combined treatment of tumors, which has potential application value.
Collapse
Affiliation(s)
- Yongnian Yu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China. .,Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang 110001, China
| | - Li Gou
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| |
Collapse
|
17
|
Gao W, Wang Y, Wang Q, Ma G, Liu J. Liquid metal biomaterials for biomedical imaging. J Mater Chem B 2022; 10:829-842. [PMID: 35048099 DOI: 10.1039/d1tb02399c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liquid metals (LMs) not only retain the basic properties of metallic biomaterials, such as high thermal conductivity and high electrical conductivity, but also possess flexibility, flowability, deformability, plasticity, good adhesion, and so on. Therefore, they open many possibilities of extending soft metals into biomedical sciences including biomedical imaging. One of the special properties of LMs is that they can provide a controllable material system in which the electrical, thermal, mechanical, and chemical properties can be controlled on a large scale. This paper reviews the preparation and characteristics of LM-based biomaterials classified into four categories: LM micro/nanoparticles, surface modified LM droplets, LM composites with inorganic substances, and LM composites with organic polymers. Besides, considering the most important requirement for biomaterials is biocompatibility, the paper also analyzes the toxicity results of various LM biomaterials when used in the biomedical area, from different levels including body weight measurement, histology evaluation, and blood biochemistry tests. Next, the applications of LMs in X-ray, CT, MRI, photoacoustic imaging, and molecular imaging are introduced in detail. And finally, the challenges and opportunities of their application in medical imaging are also discussed.
Collapse
Affiliation(s)
- Wenwen Gao
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China. .,Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Yige Wang
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China. .,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Jing Liu
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. NANOSCALE HORIZONS 2022; 7:141-167. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from their solid counterparts. The low melting points of most post-transition metals (less than 330 °C) allow for the formation of nanodroplets from bulk metal melts under mild mechanical and chemical conditions. At the nanoscale, these liquid state nanodroplets simultaneously offer high electrical and thermal conductivities, tunable reactivities and useful physicochemical properties. They also offer specific alloying and dealloying conditions for the formation of multi-elemental liquid based nanoalloys or the synthesis of engineered solid nanomaterials. To date, while only a few nanosized LM materials have been investigated, extraordinary properties have been observed for such systems. Multi-elemental nanoalloys have shown controllable homogeneous or heterogeneous core and surface compositions with interfacial ordering at the nanoscale. The interactions and synergies of nanosized LMs with polymeric, inorganic and bio-materials have also resulted in new compounds. This review highlights recent progress and future directions for the synthesis and applications of post-transition LMs and their alloys. The review presents the unique properties of these LM nanodroplets for developing functional materials for electronics, sensors, catalysts, energy systems, and nanomedicine and biomedical applications, as well as other functional systems engineered at the nanoscale.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Chu X, Zhang P, Liu Y, Sun B, Huang X, Zhou N, Shen J, Meng N. Multifunctional Carbon Dots-Based Nanoplatform for Bioimaging and Quaternary Ammonium Salt/Photothermal Synergistic Antibacterial. J Mater Chem B 2022; 10:2865-2874. [DOI: 10.1039/d1tb02717d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of drug resistance and superbugs poses a devastating threat to public health, even lead to death. Thus, it is significant to develop a novel antibacterial agent to combat...
Collapse
|
20
|
Lu J, Guo Z, Xie W, Chi Y, Zhang J, Xu W, Guo X, Ye J, Wei Y, Wu H, Yu J, Huang YF, Zhao L. Gold-iron selenide nanocomposites for amplified tumor oxidative stress-augmented photo-radiotherapy. Biomater Sci 2021; 9:3979-3988. [PMID: 34085077 DOI: 10.1039/d1bm00306b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radio-resistance of tumor tissues has been considered a great challenge for cancer radiotherapy (RT).The development of nanoparticle (NP)-based radio-sensitizers can enhance the radio-sensitization of tumor tissues while reducing the side effects to surrounding tissues. However, most of the nano-radiosensitizers show increased radiation deposition with a high-Z element but achieve limited enhancement. Herein, we investigated polyethylene glycol (PEG)-modified gold-iron selenide nanocomposites (Au-FeSe2 NCs) for simultaneously enhancing therapeutic effects in multiple ways. In this study, the high-Z element Au (Z = 79) endows Au-FeSe2 NCs with enhanced X-ray deposition and thus causes more DNA damage. On the other hand, Au-FeSe2 exhibits the ability to produce reactive oxygen species (ROS) by catalyzing endogenous hydrogen peroxide in tumor sites as well as improve the hydrogen peroxide level during ionizing irradiation. Finally, combined with photothermal therapy (PTT), Au-FeSe2 NCs could exhibit a remarkable RT/PTT synergistic effect on tumor treatment.
Collapse
Affiliation(s)
- Jingsong Lu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenhu Guo
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Wensheng Xie
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yongjie Chi
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junxin Zhang
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wanling Xu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Guo
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jielin Ye
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Jing Yu
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsinghua University, Hsinchu 300044, Taiwan and Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu 300044, Taiwan and School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
You J, Liu L, Huang W, Manners I, Dou H. Redox-Active Micelle-Based Reaction Platforms for In Situ Preparation of Noble Metal Nanocomposites with Photothermal Conversion Capability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13648-13657. [PMID: 33688724 DOI: 10.1021/acsami.0c21925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyferrocenylsilane (PFS)-based polymers are an attractive family of organometallic polymers with unique redox-active properties. Herein, we report a novel amphiphilic redox-active PFS-based homopolymer, poly(ferrocenylmethylethylthiocarboxypropylsilane) (PFC), with a hydrophobic backbone chain and hydrophilic carboxylic acid side groups in each repeating unit. Self-assembly was induced by addition of water to a molecularly dispersed solution of PFC in DMSO. Spherical PFC micelles with controllable hydrodynamic diameters (60-180 nm) were obtained under various conditions. These PFC micelles could be readily endocytosed by A549 cells and HUVEC cells and show no significant cytotoxicity toward them at the concentration of 200 μg/mL. On this basis, Au nanoparticles (AuNPs) were prepared through in situ reduction of HAuCl4 by PFC micelles as nanoreactors without requiring any other reductants. The PFC/Au nanocomposites (NCs) were found to exhibit significant photothermal behavior. Moreover, PFC micelles could also act as nanoreactors for other noble metals such as Ag, Pd, and Pt. By taking advantage of properties of the nanostructures and noble metal nanoparticles comprising these materials, the PFC micelles and PFC/noble metal NCs may have great potential in biomedical or catalytic applications.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wanqiu Huang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
22
|
Wang Z, Wang Y, Guo H, Yu N, Ren Q, Jiang Q, Xia J, Peng C, Zhang H, Chen Z. Synthesis of one-for-all type Cu 5FeS 4 nanocrystals with improved near infrared photothermal and Fenton effects for simultaneous imaging and therapy of tumor. J Colloid Interface Sci 2021; 592:116-126. [PMID: 33647560 DOI: 10.1016/j.jcis.2021.02.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
CuS materials exhibit excellent near infrared (NIR) photoabsorption and photothermal effect, but they are lack of magnetic resonance imaging (MRI) ability. Fe-based nanomaterials possess MRI capacity, but they usually exhibit poor NIR photoabsorption. In order to solve the above problems, we synthesize three kinds of CuxFeySz samples, including FeS2, CuFeS2 and Cu5FeS4 nanomaterials. With the Cu/Fe ratios increase from 0/1.0 to 1.0/1.0 and 5.0/1.0, the localized surface plasmon resonances (LSPRs) characteristic peaks shift to longer wavelength, and the photothermal transduction efficiencies go up from 24.4% to 36.6% and 45.9%. Thus, Cu5FeS4 is found to be the most excellent sample. Especially, Cu5FeS4 exhibits photothermal-enhanced Fenton effect, which can produce hydroxyl radical (·OH) under a wide pH range (e.g., pH = 5.4-7.4) to realize the chemodynamic effect. In addition, Cu5FeS4 can be employed as an efficient MRI contrast agent. When Cu5FeS4 dispersion is intravenously injected into the mouse, the tumor can be detected by MRI as well as thermal imaging, and eliminated through photothermal-enhanced chemodynamic effect. Therefore, Cu5FeS4 can be used as an efficient "one-for-all" type agent for MRI-guided photothermal-enhanced chemodynamic therapy of tumor.
Collapse
Affiliation(s)
- Zhaojie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qin Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China.
| | - Chen Peng
- Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Branden Biomedical Park, Qihe Advanced Science & High Technology Development Zone, Qihe, Shandong 251100, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|