1
|
Deng Y, Yao H, Zhao J, Wei J. Immunomodulatory and osteogenic effects of chitosan-based injectable hydrogel with geniposide-loaded mesoporous bioactive glass. Int J Biol Macromol 2025; 284:138050. [PMID: 39608523 DOI: 10.1016/j.ijbiomac.2024.138050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
The immune response dominated by macrophages plays a pivotal role in the regeneration of bone tissue. In this work, an injectable temperature-responsive hydrogel composed of geniposide-loaded mesoporous bioactive glass, chitosan and β-glycerophosphate (G-M Gel) was prepared, showing robustly networks, uniform pore structure, excellent biocompatibility, immunomodulatory effect and osteogenic potential. In an inflammatory microenvironment elicited by lipopolysaccharide (LPS), the proportion of M1 and M2 macrophages measured by flow cytometry were 33.17 % and 2.07 %, respectively. After G-M Gel treatment, the proportion of M1 macrophages decreased to 14.4 %, while the proportion of M2 macrophages increased significantly to 16.2 %. LPS treated macrophage conditioned medium inhibited the expression of osteogenic related factors (OCN, OPN, Runx2), alkaline phosphatase (ALP) and alizarin red S (ARS) in MC3T3-E1 cells. In contrast, LPS + G-M Gel treated macrophage conditioned medium significantly increased the expression of osteogenic related factors, ALP and ARS. These results demonstrated that G-M Gel can augment bone formation by promoting the polarization of M2 macrophages, showing great potential clinical application of G-M Gel in bone regeneration field.
Collapse
Affiliation(s)
- Yunyun Deng
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China
| | - Haiyan Yao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jian Zhao
- Hospital of Nanchang University, Nangchang University, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, China.
| |
Collapse
|
2
|
Hasan ML, Lee JR, Rahaman KA, Yang DH, Joung YK. Versatile effects of galectin-1 protein-containing lipid bilayer coating for cardiovascular applications. Bioact Mater 2024; 42:207-225. [PMID: 39285911 PMCID: PMC11403261 DOI: 10.1016/j.bioactmat.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
Modulating inflammatory cells in an implantation site leads to severe complications and still unsolved challenges for blood-contacting medical devices. Inspired by the role of galectin-1 (Gal-1) in selective functions on multiple cells and immunomodulatory processes, we prepared a biologically target-specific surface coated with the lipid bilayer containing Gal-1 (Gal-1-SLB) and investigate the proof of the biological effects. First, lipoamido-dPEG-acid was deposited on a gold-coated substrate to form a self-assembled monolayer and then conjugated dioleoylphosphatidylethanolamine (DOPE) onto that to produce a lower leaflet of the supported lipid bilayer (SLB) before fusing membrane-derived vesicles extracted from B16-F10 cells. The Gal-1-SLB showed the expected anti-fouling activity by revealing the resistance to protein adsorption and bacterial adhesion. In vitro studies showed that the Gal-1-SLB can promote endothelial function and inhibit smooth muscle cell proliferation. Moreover, Gal-1- SLB presents potential function for endothelial cell migration and angiogenic activities. In vitro macrophage culture studies showed that the Gal-1-SLB attenuated the LPS-induced inflammation and the production of macrophage-secreted inflammatory cytokines. Finally, the implanted Gal-1-SLB reduced the infiltration of immune cells at the tissue-implant interface and increased markers for M2 polarization and blood vessel formation in vivo. This straightforward surface coating with Gal-1 can be a useful strategy for modulating the vascular and immune cells around a blood-contacting device.
Collapse
Affiliation(s)
- Md Lemon Hasan
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ju Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Khandoker Asiqur Rahaman
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
- KHU-KIST Department of Conversing Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zhang X, Chen Y, Zhou S, Liu Y, Zhu S, Jia X, Lu Z, Zhang Y, Zhang W, Ye Z, Cai B, Kong L, Liu F. RNA Coating Promotes Peri-Implant Osseointegration. ACS Biomater Sci Eng 2024; 10:7030-7042. [PMID: 38943625 PMCID: PMC11558559 DOI: 10.1021/acsbiomaterials.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
In addition to transmitting and carrying genetic information, RNA plays an important abiotic role in the world of nanomaterials. RNA is a natural polyanionic biomacromolecule, and its ability to promote osteogenesis by binding with other inorganic materials as an osteogenic induction agent was discovered only recently. However, whether it can promote osseointegration on implants has not been reported. Here, we investigated the effect of the RNA-containing coating materials on peri-implant osseointegration. Total RNA extracted from rat muscle tissue was used as an osteogenic induction agent, and hyaluronic acid (HA) was used to maintain its negative charge. In simulated body fluids (SBF), in vitro studies demonstrated that the resulting material encouraged calcium salt deposition. Cytological experiments showed that the RNA-containing coating induced greater cell adhesion and osteogenic differentiation in comparison to the control. The results of animal experiments showed that the RNA-containing coating had osteoinductive and bone conduction activities, which are beneficial for bone formation and osseointegration. Therefore, the RNA-containing coatings are useful for the surface modification of titanium implants to promote osseointegration.
Collapse
Affiliation(s)
- Xiao Zhang
- College
of Life Sciences, Northwest University, Xi’an 710069, China
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Yicheng Chen
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Shanluo Zhou
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Ya Liu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Simin Zhu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xuelian Jia
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Zihan Lu
- College
of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yufan Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Wenhui Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Zhou Ye
- Applied
Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, S.A.R., China
| | - Bolei Cai
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Liang Kong
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| | - Fuwei Liu
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Clinical
Research Center for Oral Diseases, Department of Oral and Maxillofacial
Surgery, School of Stomatology, The Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Yu T, Zhao IS, Pan H, Yang J, Wang H, Deng Y, Zhang Y. Extracellular vesicle-functionalized bioactive scaffolds for bone regeneration. Asian J Pharm Sci 2024; 19:100945. [PMID: 39483718 PMCID: PMC11525715 DOI: 10.1016/j.ajps.2024.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
The clinical need for effective bone regeneration in compromised conditions continues to drive demand for innovative solutions. Among emerging strategies, extracellular vesicles (EVs) have shown promise as an acellular approach for bone regeneration. However, their efficacy is hindered by rapid sequestration and clearance when administered via bolus injection. To address this challenge, EV-functionalized scaffolds have recently been proposed as an alternative delivery strategy to enhance EV retention and subsequent healing efficacy. This review aims to consolidate recent advancements in the development of EV-functionalized scaffolds for augmenting bone regeneration. It explores various sources of EVs and different strategies for integrating them into biomaterials. Furthermore, the mechanisms underlying their therapeutic effects in bone regeneration are elucidated. Current limitations in clinical translation and perspectives on the design of more efficient EVs for improved therapeutic efficacy are also presented. Overall, this review can provide inspiration for the development of novel EV-assisted grafts with superior bone regeneration potential.
Collapse
Affiliation(s)
- Taozhao Yu
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518015, China
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
| | - Hongguang Pan
- Department of Otolaryngology, Shenzhen Children Hospital, Shenzhen 518034, China
| | - Jianhua Yang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Deng
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518015, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
5
|
Sun T, Huang H, Zhao Y, Li Z, Wang H, Zhou G. Low-Temperature Deposited Amorphous Poly(aryl ether ketone) Hierarchically Porous Scaffolds with Strontium-Doped Mineralized Coating for Bone Defect Repair. Adv Healthc Mater 2024; 13:e2400927. [PMID: 38717232 DOI: 10.1002/adhm.202400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Indexed: 06/06/2024]
Abstract
In recent years, the demand for clinical bone grafting has increased. As a new solution for orthopedic implants, polyether ether ketone (PEEK, crystalline PAEK) has excellent comprehensive performance and is practically applied in the clinic. In this research, a noteworthy elevated scheme to enhance the performance of PEEK scaffolds is presented. The amorphous aggregated poly (aryl ether ketone) (PAEK) resin is prepared as the matrix material, which maintains high mechanical strength and can be processed through the solution. So, the tissue engineering scaffolds with multilevel pores can be printed by low-temperature deposited manufacturing (LDM) to improve biologically inert scaffolds with smooth surfaces. Also, the feature of PAEK's solution processing is profitable to uniformly add the functional components for bone repair. Ultimately, A system of orthopedic implantable PAEK material based on intermolecular interactions, surface topology, and surface modification is established. The specific steps include synthesizing PAEK that contain polar carboxyl structures, preparing bioinks and fabricating scaffolds by LDM, preparation of scaffolds with strontium-doped mineralized coatings, evaluation of their osteogenic properties in vitro and in vivo, and investigation on the effect and mechanism of scaffolds in promoting osteogenic differentiation. This work provides an upgraded system of PAEK implantable materials for clinical application.
Collapse
Affiliation(s)
- Tianze Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Huagui Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yantao Zhao
- Institute of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Honghua Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
6
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
7
|
Yang K, Wu Z, Zhang K, Weir MD, Xu HHK, Cheng L, Huang X, Zhou W. Unlocking the potential of stimuli-responsive biomaterials for bone regeneration. Front Pharmacol 2024; 15:1437457. [PMID: 39144636 PMCID: PMC11322102 DOI: 10.3389/fphar.2024.1437457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Bone defects caused by tumors, osteoarthritis, and osteoporosis attract great attention. Because of outstanding biocompatibility, osteogenesis promotion, and less secondary infection incidence ratio, stimuli-responsive biomaterials are increasingly used to manage this issue. These biomaterials respond to certain stimuli, changing their mechanical properties, shape, or drug release rate accordingly. Thereafter, the activated materials exert instructive or triggering effects on cells and tissues, match the properties of the original bone tissues, establish tight connection with ambient hard tissue, and provide suitable mechanical strength. In this review, basic definitions of different categories of stimuli-responsive biomaterials are presented. Moreover, possible mechanisms, advanced studies, and pros and cons of each classification are discussed and analyzed. This review aims to provide an outlook on the future developments in stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Ke Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhuoshu Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Zhang M, Yuan Q, Wang P, Zhang F, Wu D, Bai H, Liu J, Liu H, Yuan X. Bone Marrow Mesenchymal Stem Cell-Derived Nanovesicles Containing H8 Improve Hepatic Glucose and Lipid Metabolism and Exert Ameliorative Effects in Type 2 Diabetes. Int J Nanomedicine 2024; 19:6643-6658. [PMID: 38979532 PMCID: PMC11230129 DOI: 10.2147/ijn.s455021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.
Collapse
Affiliation(s)
- Meng Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
- The First Hospital of Qiqihar, Qiqihar, People's Republic of China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Fan Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Dan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - He Bai
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Haifeng Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
9
|
Zhu F, Wang T, Wang G, Yan C, He B, Qiao B. The Exosome-Mediated Bone Regeneration: An Advanced Horizon Toward the Isolation, Engineering, Carrying Modalities, and Mechanisms. Adv Healthc Mater 2024; 13:e2400293. [PMID: 38426417 DOI: 10.1002/adhm.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Exosomes, nanoparticles secreted by various cells, composed of a bilayer lipid membrane, and containing bioactive substances such as proteins, nucleic acids, metabolites, etc., have been intensively investigated in tissue engineering owing to their high biocompatibility and versatile biofunction. However, there is still a lack of a high-quality review on bone defect regeneration potentiated by exosomes. In this review, the biogenesis and isolation methods of exosomes are first introduced. More importantly, the engineered exosomes of the current state of knowledge are discussed intensively in this review. Afterward, the biomaterial carriers of exosomes and the mechanisms of bone repair elucidated by compelling evidence are presented. Thus, future perspectives and concerns are revealed to help devise advanced modalities based on exosomes to overcome the challenges of bone regeneration. It is totally believed this review will attract special attention from clinicians and provide promising ideas for their future works.
Collapse
Affiliation(s)
- Fukang Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Taiyou Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Guangjian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Department of Orthopaedics, The People's Hospital of Rongchang District, Chongqing, 402460, P. R. China
| | - Caiping Yan
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Bin He
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Qiao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
10
|
Tang J, Wang X, Lin X, Wu C. Mesenchymal stem cell-derived extracellular vesicles: a regulator and carrier for targeting bone-related diseases. Cell Death Discov 2024; 10:212. [PMID: 38697996 PMCID: PMC11066013 DOI: 10.1038/s41420-024-01973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The escalating threat of bone-related diseases poses a significant challenge to human health. Mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs), as inherent cell-secreted natural products, have emerged as promising treatments for bone-related diseases. Leveraging outstanding features such as high biocompatibility, low immunogenicity, superior biological barrier penetration, and extended circulating half-life, MSC-EVs serve as potent carriers for microRNAs (miRNAs), long no-code RNAs (lncRNAs), and other biomolecules. These cargo molecules play pivotal roles in orchestrating bone metabolism and vascularity through diverse mechanisms, thereby contributing to the amelioration of bone diseases. Additionally, engineering modifications enhance the bone-targeting ability of MSC-EVs, mitigating systemic side effects and bolstering their clinical translational potential. This review comprehensively explores the mechanisms through which MSC-EVs regulate bone-related disease progression. It delves into the therapeutic potential of MSC-EVs as adept drug carriers, augmented by engineered modification strategies tailored for osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis, and osteosarcoma. In conclusion, the exceptional promise exhibited by MSC-EVs positions them as an excellent solution with considerable translational applications in clinical orthopedics.
Collapse
Affiliation(s)
- Jiandong Tang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xiangyu Wang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xu Lin
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Chao Wu
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China.
| |
Collapse
|
11
|
Bai Z, Zhao Y, Cui C, Yan J, Qin D, Tong J, Peng H, Liu Y, Sun L, Wu X, Li B, Li X. Multifaceted Materials for Enhanced Osteogenesis and Antimicrobial Properties on Bioplastic Polyetheretherketone Surfaces: A Review. ACS OMEGA 2024; 9:17784-17807. [PMID: 38680314 PMCID: PMC11044237 DOI: 10.1021/acsomega.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yifan Zhao
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Chenying Cui
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jingyu Yan
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Danlei Qin
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jiahui Tong
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Hongyi Peng
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Lingxiang Sun
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Bing Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xia Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| |
Collapse
|
12
|
Wang Y, Wen J, Lu T, Han W, Jiao K, Li H. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone-Related Diseases: Intercellular Communication Messengers and Therapeutic Engineering Protagonists. Int J Nanomedicine 2024; 19:3233-3257. [PMID: 38601346 PMCID: PMC11005933 DOI: 10.2147/ijn.s441467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024] Open
Abstract
Extracellular vesicles (EVs) can deliver various bioactive molecules among cells, making them promising diagnostic and therapeutic alternatives in diseases. Mesenchymal stem cell-derived EVs (MSC-EVs) have shown therapeutic potential similar to MSCs but with drawbacks such as lower yield, reduced biological activities, off-target effects, and shorter half-lives. Improving strategies utilizing biotechniques to pretreat MSCs and enhance the properties of released EVs, as well as modifying MSC-EVs to enhance targeting abilities and achieve controlled release, shows potential for overcoming application limitations and enhancing therapeutic effects in treating bone-related diseases. This review focuses on recent advances in functionalizing MSC-EVs to treat bone-related diseases. Firstly, we underscore the significance of MSC-EVs in facilitating crosstalk between cells within the skeletal environment. Secondly, we highlight strategies of functional-modified EVs for treating bone-related diseases. We explore the pretreatment of stem cells using various biotechniques to enhance the properties of resulting EVs, as well as diverse approaches to modify MSC-EVs for targeted delivery and controlled release. Finally, we address the challenges and opportunities for further research on MSC-EVs in bone-related diseases.
Collapse
Affiliation(s)
- Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Tong Lu
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Wei Han
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
13
|
Huang C, Zhao L, Xiao Y, Tang Z, Jing L, Guo K, Tian L, Zong C. M2 macrophage-derived exosomes carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1. Mol Cell Biochem 2024; 479:993-1010. [PMID: 37269411 DOI: 10.1007/s11010-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Radiotherapy is essential to cancer treatment, while it inevitably injures surrounding normal tissues, and bone tissue is one of the most common sites prone to irradiation. Bone marrow mesenchymal stem cells (BMMSCs) are sensitive to irradiation and the irradiated dysfunction of BMMSCs may be closely related to irradiation-induced bone damage. Macropahges play important role in regulating stem cell function, bone metabolic balance and irradiation response, but the effects of macrophages on irradiated BMMSCs are still unclear. This study aimed to investigate the role of macrophages and macrophage-derived exosomes in restoring irradiated BMMSCs function. The effects of macrophage conditioned medium (CM) and macrophage-derived exosomes on osteogenic and fibrogenic differentiation capacities of irradiated BMMSCs were detected. The key microribonucleic acids (miRNAs) and targeted proteins in exosomes were also determined. The results showed that irradiation significantly inhibited the proliferation of BMMSCs, and caused differentiation imbalance of BMMSCs, with decreased osteogenic differentiation and increased fibrogenic differentiation. M2 macrophage-derived exosomes (M2D-exos) inhibited the fibrogenic differentiation and promoted the osteogenic differentiation of irradiated BMMSCs. We identified that miR-142-3p was significantly overexpressed in M2D-exos and irradiated BMMSCs treated with M2D-exos. After inhibition of miR-142-3p in M2 macrophage, the effects of M2D-exos on irradiated BMMSCs differentiation were eliminated. Furthermore, transforming growth factor beta 1 (TGF-β1), as a direct target of miR-142-3p, was significantly decreased in irradiated BMMSCs treated with M2D-exos. This study indicated that M2D-exos could carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1. These findings pave a new way for promising and cell-free method to treat irradiation-induced bone damage.
Collapse
Affiliation(s)
- Chong Huang
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 Taibai North Road, 710069, Xi'an, People's Republic of China
| | - Lu Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Yun Xiao
- School of Stomatology, Jiamusi University, 522 Hongqi Street, Jiamusi, 154000, People's Republic of China
| | - Zihao Tang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Li Jing
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Kai Guo
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Lei Tian
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China.
| | - Chunlin Zong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
14
|
Lu T, Liu Y, Huang X, Sun S, Xu H, Jin A, Wang X, Gao X, Liu J, Zhu Y, Dai Q, Wang C, Lin K, Jiang L. Early-Responsive Immunoregulation Therapy Improved Microenvironment for Bone Regeneration Via Engineered Extracellular Vesicles. Adv Healthc Mater 2024; 13:e2303681. [PMID: 38054523 DOI: 10.1002/adhm.202303681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Overactivated inflammatory reactions hinder the bone regeneration process. Timely transformation of microenvironment from pro-inflammatory to anti-inflammatory after acute immune response is favorable for osteogenesis. Macrophages play an important role in the immune response to inflammation. Therefore, this study adopts TIM3 high expression extracellular vesicles (EVs) with immunosuppressive function to reshape the early immune microenvironment of bone injury, mainly by targeting macrophages. These EVs can be phagocytosed by macrophages, thereby increasing the infiltration of TIM3-positive macrophages (TIM3+ macrophages) and M2 subtypes. The TIM3+ macrophage group has some characteristics of M2 macrophages and secretes cytokines, such as IL-10 and TGF-β1 to regulate inflammation. TIM3, which is highly expressed in the engineered EVs, mediates the release of anti-inflammatory cytokines by inhibiting the p38/MAPK pathway and promotes osseointegration by activating the Bmp2 promoter to enhance macrophage BMP2 secretion. After evenly loading the engineered EVs into the hydrogel, the continuous and slow release of EVsTIM3OE recruits more anti-inflammatory macrophages during the early stages of bone defect repair, regulating the immune microenvironment and eliminating the adverse effects of excessive inflammation. In summary, this study provides a new strategy for the treatment of refractory wounds through early inflammation control.
Collapse
Affiliation(s)
- Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qinggang Dai
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 201999, China
| | - Chao Wang
- Department of Obstetrics & Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200433, China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
15
|
Jiang C, Ding M, Zhang J, Zhu C, Qin W, Zhao Z, Jiao T. 3D Printed Porous Zirconia Biomaterials based on Triply Periodic Minimal Surfaces Promote Osseointegration In Vitro by Regulating Osteoimmunomodulation and Osteo/Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38501200 DOI: 10.1021/acsami.3c18799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The triply periodic minimal surface (TPMS) is a highly useful structure for bone tissue engineering owing to its nearly nonexistent average surface curvature, high surface area-to-volume ratio, and exceptional mechanical energy absorption properties. However, limited literature is available regarding bionic zirconia implants using the TPMS structure for bone regeneration. Herein, we employed the digital light processing (DLP) technology to fabricate four types of zirconia-based TPMS structures: P-cell, S14, IWP, and Gyroid. For cell proliferation, the four porous TPMS structures outperformed the solid zirconia group (P-cell > S14 > Gyroid > IWP > ZrO2). In vitro assessments on the biological responses and osteogenic properties of the distinct porous surfaces identified the IWP and Gyroid structures as promising candidates for future clinical applications of porous zirconia implants because of their superior osteogenic capabilities (IWP > Gyroid > S14 > P-cell > ZrO2) and mechanical properties (ZrO2 > IWP > Gyroid > S14 > P-cell). Furthermore, the physical properties of the IWP/Gyroid surface had more substantial effects on bone immune regulation by reducing macrophage M1 phenotype polarization while increasing M2 phenotype polarization compared with the solid zirconia surface. Additionally, the IWP and Gyroid groups exhibited enhanced immune osteogenesis and angiogenesis abilities. Collectively, these findings highlight the substantial impact of topology on bone/angiogenesis and immune regulation in promoting bone integration.
Collapse
Affiliation(s)
- Chunlan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200062, P. R. China
| | - Mengting Ding
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200062, P. R. China
| | - Jin Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200062, P. R. China
| | - Chenyuan Zhu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200062, P. R. China
| | - Wei Qin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200062, P. R. China
| | - Zhe Zhao
- Jiaxing CeramPlus Technology Co. Ltd., Jiashan 314100, Zhejiang, P. R. China
| | - Ting Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200062, P. R. China
| |
Collapse
|
16
|
Qi L, Fang X, Yan J, Pan C, Ge W, Wang J, Shen SG, Lin K, Zhang L. Magnesium-containing bioceramics stimulate exosomal miR-196a-5p secretion to promote senescent osteogenesis through targeting Hoxa7/MAPK signaling axis. Bioact Mater 2024; 33:14-29. [PMID: 38024235 PMCID: PMC10661166 DOI: 10.1016/j.bioactmat.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Stem cell senescence is characterized by progressive functional dysfunction and secretory phenotypic changes including decreased proliferation, dysfunction of osteogenic and angiogenic differentiation, increased secretion of the senescence-associated secretory phenotype (SASP), which bring difficulties for bone repair. Rescuing or delaying senescence of aged bone marrow mesenchymal stem cells (O-BMSCs) was considered as effective strategy for bone regeneration in aging microenvironment. Magnesium (Mg) ion released from bioceramics was reported to facilitate bone regeneration via enhancing osteogenesis and alleviating senescence. In this study, Akermanite biocreamics (Akt) containing Mg ion as a model was demonstrated to promote osteogenesis and angiogenesis effects of O-BMSCs by activating the MAPK signaling pathway in vitro. Moreover, the enhanced osteogenesis effects might be attributed to enhanced Mg-containing Akt-mediated exosomal miR-196a-5p cargo targeting Hoxa7 and activation of MAPK signaling pathway. Furthermore, the in vivo study confirmed that 3D-printed porous Mg-containing Akt scaffolds effectively increased bone regeneration in cranial defects of aged rats. The current results indicated that the exosomal-miR-196a-5p/Hoxa7/MAPK signaling axis might be the potential mechanism underlying Akt-mediated osteogenesis. The exosome-meditaed therapy stimulated by the released Mg ion contained in Akt biocreamics or other biomaterials might serve as a candidate strategy for bone repair in aged individuals.
Collapse
Affiliation(s)
- Lei Qi
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Xin Fang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Jinge Yan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Cancan Pan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Weiwen Ge
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Jing Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Steve Gf Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lei Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
17
|
Yang SY, Zhou YN, Yu XG, Fu ZY, Zhao CC, Hu Y, Lin KL, Xu YJ. A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration. J Nanobiotechnology 2024; 22:59. [PMID: 38347563 PMCID: PMC10863132 DOI: 10.1186/s12951-024-02323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Coordination between osteo-/angiogenesis and the osteoimmune microenvironment is essential for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing complex bone defects in clinical practice, it is essential to endow 3D-printed scaffold the above key capabilities. RESULTS Herein, by introducing xonotlite nanofiber (Ca6(Si6O17) (OH)2, CS) into the 3D-printed silk fibroin/gelatin basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo-/angiogenic differentiation of bone mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone repair and create a regeneration-friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 and Smad7, both of which participate in the transforming growth factor-β (TGF-β) signaling pathway. CONCLUSION Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro-osteo-/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions into account.
Collapse
Affiliation(s)
- Shi-Yuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Ning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Ge Yu
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yu Fu
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Can-Can Zhao
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai-Li Lin
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuan-Jin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Ma T, Chen S, Wang J, Liang S, Chen M, Liu Q, Zhang Z, Liu G, Yang Y, Hu Y, Xie J. Enhanced Osteolysis Targeted Therapy through Fusion of Exosomes Derived from M2 Macrophages and Bone Marrow Mesenchymal Stem Cells: Modulating Macrophage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303506. [PMID: 37806770 DOI: 10.1002/smll.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Aseptic loosening of prostheses is a highly researched topic, and wear particle-induced macrophage polarization is a significant cause of peri-prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2-Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2-Exos and BMSCs-Exos fused exosomes (M2-BMSCs-Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2-BMSCs-Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2-BMSCs-Exos can be used as a precise and reliable molecular drug for peri-prosthetic osteolysis. Fused exosomes M2-BMSCs-Exos were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.
Collapse
Affiliation(s)
- Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410012, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410012, China
| | - Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
19
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
20
|
Ma S, Ma B, Yang Y, Mu Y, Wei P, Yu X, Zhao B, Zou Z, Liu Z, Wang M, Deng J. Functionalized 3D Hydroxyapatite Scaffold by Fusion Peptides-Mediated Small Extracellular Vesicles of Stem Cells for Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3064-3081. [PMID: 38215277 DOI: 10.1021/acsami.3c13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
3D printing technology offers extensive applications in tissue engineering and regenerative medicine (TERM) because it can create a three-dimensional porous structure with acceptable porosity and fine mechanical qualities that can mimic natural bone. Hydroxyapatite (HA) is commonly used as a bone repair material due to its excellent biocompatibility and osteoconductivity. Small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMSCs) can regulate bone metabolism and stimulate the osteogenic differentiation of stem cells. This study has designed a functionalized bone regeneration scaffold (3D H-P-sEVs) by combining the biological activity of BMSCs-sEVs and the 3D-HA scaffold to improve bone regeneration. The scaffold utilizes the targeting of fusion peptides to increase the loading efficiency of sEVs. The composition, structure, mechanical properties, and in vitro degradation performance of the 3D H-P-sEVs scaffolds were examined. The composite scaffold demonstrated good biocompatibility, substantially increased the expression of osteogenic-related genes and proteins, and had a satisfactory bone integration effect in the critical skull defect model of rats. In conclusion, the combination of EVs and 3D-HA scaffold via fusion peptide provides an innovative composite scaffold for bone regeneration and repair, improving osteogenic performance.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, China
| | - Beibei Ma
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yilin Yang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Xueqiao Yu
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Zhenyu Zou
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, China
| | - Zihao Liu
- Tianjin Zhongnuo Dental Hospital, Dingfu Building at the intersection of Nanma Road and Nankai Sanma Road in Nankai District, Tianjin 300100, China
| | - Minggang Wang
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| |
Collapse
|
21
|
Fang X, Sun D, Li Y, Han X, Gan Y, Jiao J, Jiang M, Gong H, Qi Y, Zhao J. Macrophages in the process of osseointegration around the implant and their regulatory strategies. Connect Tissue Res 2024; 65:1-15. [PMID: 38166507 DOI: 10.1080/03008207.2023.2300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE/AIM OF THE STUDY To summarize and discuss macrophage properties and their roles and mechanisms in the process of osseointegration in a comprehensive manner, and to provide theoretical support and research direction for future implant surface modification efforts. MATERIALS AND METHODS Based on relevant high-quality articles, this article reviews the role of macrophages in various stages of osseointegration and methods of implant modification. RESULTS AND CONCLUSIONS Macrophages not only promote osseointegration through immunomodulation, but also secrete a variety of cytokines, which play a key role in the angiogenic and osteogenic phases of osseointegration. There is no "good" or "bad" difference between the M1 and M2 phenotypes of macrophages, but their timely presence and sequential switching play a crucial role in implant osseointegration. In the implant surface modification strategy, the induction of sequential activation of the M1 and M2 phenotypes of macrophages is a brighter prospect for implant surface modification than inducing the polarization of macrophages to the M1 or M2 phenotypes individually, which is a promising pathway to enhance the effect of osseointegration and increase the success rate of implant surgery.
Collapse
Affiliation(s)
- Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Duo Sun
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Heyi Gong
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
- Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Zhivodernikov IV, Markina YV, Kirichenko TV, Popov MA, Markin AM. Exosomes as a potential therapeutic approach in osteoimmunology. Front Immunol 2023; 14:1309015. [PMID: 38173718 PMCID: PMC10763248 DOI: 10.3389/fimmu.2023.1309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Exosomes are natural extracellular vesicles that play a key role in inter- and intracellular communication. Currently they are considered as a promising therapeutic strategy for the treatment of various diseases. In osteoimmunology, exosomes can serve as biomarkers of bone homeostasis disorders and, at the same time, promising therapeutic agents with high stability in the biological environment, low immunogenicity and good bioavailability. In this review, we attempted to examine exosomes as natural mediators of intercellular communication, playing an essential role in the interaction of the immune system and bone tissue, based on an analysis of the PubMed database up to October 2023.
Collapse
Affiliation(s)
- Ivan V. Zhivodernikov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - Mikhail A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Center of Surgery, Moscow, Russia
- Medical Institute, Poples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russia
| |
Collapse
|
23
|
Liu C, Liu W, Qi B, Fan L, Liu S, Yang Q, Yang Y, Yang S, Zhang Y, Wei X, Zhu L. Bone Homeostasis Modulating Orthopedic Adhesive for the Closed-Loop Management of Osteoporotic Fractures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302704. [PMID: 37605327 DOI: 10.1002/smll.202302704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Patients with osteoporotic fractures often require effective fixation and subsequent bone repair. However, currently available materials are often limited functionally, failing to improve this cohort's outcomes. Herein, kaempferol-loaded mesoporous bioactive glass nanoparticles (MBGNs)-doped orthopedic adhesives are prepared to assist osteoporotic fracture fixation and restore dysregulated bone homeostasis, including promoting osteoblast formation while inhibiting osteoclastic bone-resorbing activity to synergistically promote osteoporotic fracture healing. The injectability, reversible adhesiveness and malleable properties endowed the orthopedic adhesives with high flexibility and hemostatic performance to adapt to complex clinical scenarios. Moreover, Ca2+ and SiO4 4- ions released from MBGNs can accelerate osteogenesis via the PI3K/AKT pathway, while kaempferol mediated osteoclastogenesis inhibition and can slow down the bone resorption process through NF-κB pathway, which regulated bone regeneration and remodeling. Importantly, implementing the orthopedic adhesive is validated as an effective closed-loop management approach in restoring the dysregulated bone homeostasis of osteoporotic fractures.
Collapse
Affiliation(s)
- Can Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| |
Collapse
|
24
|
Li Y, Yang G, Wang Y, Li Y, Zhang S, Li R, Yang L, Wang J, Pei X, Wan Q, Chen J. Osteoimmunity-regulating nanosilicate-reinforced hydrogels for enhancing osseointegration. J Mater Chem B 2023; 11:9933-9949. [PMID: 37822156 DOI: 10.1039/d3tb01509b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Following the introduction of osteo-immunomodulation as a new and important strategy to enhance material osseointegration, achieving an appropriate immune response after biomaterial implantation has become a significant challenge for efficient bone repair. In this study, a nanosilicate-reinforced sodium alginate (SA) hydrogel was fabricated by introducing montmorillonite (MMT) nanoparticles. Meanwhile, an immunogenically bioactive agent, harmine (HM), was loaded and released to induce macrophage differentiation into the M2 type. The fabricated SA/MMT/HM (SMH) hydrogel exhibited improved mechanical stiffness and stability, which also efficiently promoted macrophage anti-inflammatory M2 phenotype polarization and enhanced the secretion of pro-tissue healing cytokines for inducing a favorable immunomodulatory microenvironment for the osteogenic differentiation of bone marrow stromal cells (BMSCs). Furthermore, a rat air-pouch model and a critical-size bone defect model were used and the results showed that the SMH hydrogel increased the proportion of M2 macrophages and markedly reduced local inflammation, while enhancing desirable new bone formation. Transcriptomic analysis revealed that the SMH hydrogel accelerated the M1-to-M2 transition of macrophages by inhibiting relevant inflammatory signaling pathways and activating the PI3K-AKT1 signaling pathway. Taken together, this high-intensity immunomodulatory hydrogel may be a promising biomaterial for bone regeneration and provide a valuable base and positive enlightenment for massive bone defect repair.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Guangmei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Yuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Yahong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Shu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Ruyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Linxin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu 610041, China
| |
Collapse
|
25
|
Liu X, Zhou Z, Zeng WN, Zeng Q, Zhang X. The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Front Cell Dev Biol 2023; 11:1277686. [PMID: 37941898 PMCID: PMC10629627 DOI: 10.3389/fcell.2023.1277686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Osteoimmunology is a concept involving molecular and cellular crosstalk between the skeletal and immune systems. Toll-like receptors (TLRs) are widely expressed both on mesenchymal stromal cells (MSCs), the hematopoietic cells, and immune cells in the osteogenic microenvironment for bone development or repair. TLRs can sense both exogenous pathogen-associated molecular patterns (PAMPs) derived from microorganisms, and damage-associated molecular patterns (DAMPs) derived from normal cells subjected to injury, inflammation, or cell apoptosis under physiological or pathological conditions. Emerging studies reported that TLR signaling plays an important role in bone remodeling by directly impacting MSC osteogenic differentiation or osteoimmunology. However, how to regulate TLR signaling is critical and remains to be elucidated to promote the osteogenic differentiation of MSCs and new bone formation for bone tissue repair. This review outlines distinct TLR variants on MSCs from various tissues, detailing the impact of TLR pathway activation or inhibition on MSC osteogenic differentiation. It also elucidates TLR pathways' interplay with osteoclasts, immune cells, and extracellular vesicles (EVs) derived from MSCs. Furthermore, we explore biomaterial-based activation to guide MSCs' osteogenic differentiation. Therefore, understanding TLRs' role in this context has significant implications for advancing bone regeneration and repair strategies.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Nan Zeng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Chen M, Ren M, Shi Y, Liu X, Wei H. State-of-the-art polyetheretherketone three-dimensional printing and multifunctional modification for dental implants. Front Bioeng Biotechnol 2023; 11:1271629. [PMID: 37929192 PMCID: PMC10621213 DOI: 10.3389/fbioe.2023.1271629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer with an elastic modulus close to that of the jawbone. PEEK has the potential to become a new dental implant material for special patients due to its radiolucency, chemical stability, color similarity to teeth, and low allergy rate. However, the aromatic main chain and lack of surface charge and chemical functional groups make PEEK hydrophobic and biologically inert, which hinders subsequent protein adsorption and osteoblast adhesion and differentiation. This will be detrimental to the deposition and mineralization of apatite on the surface of PEEK and limit its clinical application. Researchers have explored different modification methods to effectively improve the biomechanical, antibacterial, immunomodulatory, angiogenic, antioxidative, osteogenic and anti-osteoclastogenic, and soft tissue adhesion properties. This review comprehensively summarizes the latest research progress in material property advantages, three-dimensional printing synthesis, and functional modification of PEEK in the fields of implant dentistry and provides solutions for existing difficulties. We confirm the broad prospects of PEEK as a dental implant material to promote the clinical conversion of PEEK-based dental implants.
Collapse
Affiliation(s)
- Meiqing Chen
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mei Ren
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingqi Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuyu Liu
- Hospital of Stomatogy, Jilin University, Changchun, China
| | - Hongtao Wei
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Xiao T, Liu J, Li Y, Cai Y, Xing X, Shao M, Zhang C, Duan D, Liu S, Tan G, Wang L, Wu Z, Gong Z, Zhou L. Microenvironment-responsive Cu-phenolic networks coated nanofibrous dressing with timely macrophage phenotype transition for chronic MRSA infected wound healing. Mater Today Bio 2023; 22:100788. [PMID: 37680584 PMCID: PMC10480781 DOI: 10.1016/j.mtbio.2023.100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection is a pressing clinical issue that impedes wound healing. Pro-inflammatory M1 macrophages is required to clear bacteria and recruit various cell types during the initial phase of wound healing, but timing of this process is crucial. Herein, a microenvironment-responsive nanofibrous dressing capable of timely macrophage phenotype transition in vivo is constructed by coating copper ions (Cu2+)-polydopamine (PDA) networks on poly (ε-caprolactone) fiber (PCL-fiber) membrane. During the initial post-implantation period, the nanofibrous dressing show pH-sensitive Cu2+ release in the acidic infection microenvironment. The release Cu2+ have a direct killing effect on MRSA, and promote the proinflammatory M1 phenotype of macrophages to enhance the antibacterial macrophage response. Later, PDA to become a reactive oxygen species (ROS) scavenger when in microenvironments with elevated ROS levels, which conferred the dressing with an immunomodulatory activity that convert M1 macrophages into M2 macrophages. In vivo examination in an MRSA infected full-thickness skin wounds of rat model demonstrates that this dressing significantly facilitated infection eradication and wound healing through modulating local inflammatory phenotype. Overall, this study offers a simple and effective approach for timely manipulation of inflammation progression to promote infected wound healing.
Collapse
Affiliation(s)
- Tianhua Xiao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Jiamin Liu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanxin Li
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yu Cai
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Xudan Xing
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Ming Shao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Chi Zhang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Dongming Duan
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Song Liu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Le Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Zenghui Wu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Zunlei Gong
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| |
Collapse
|
28
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
29
|
Yang Q, Su S, Liu S, Yang S, Xu J, Zhong Y, Yang Y, Tian L, Tan Z, Wang J, Yu Z, Shi Z, Liang F. Exosomes-loaded electroconductive nerve dressing for nerve regeneration and pain relief against diabetic peripheral nerve injury. Bioact Mater 2023; 26:194-215. [PMID: 36923267 PMCID: PMC10008840 DOI: 10.1016/j.bioactmat.2023.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Over the years, electroconductive hydrogels (ECHs) have been extensively applied for stimulating nerve regeneration and restoring locomotor function after peripheral nerve injury (PNI) with diabetes, given their favorable mechanical and electrical properties identical to endogenous nerve tissue. Nevertheless, PNI causes the loss of locomotor function and inflammatory pain, especially in diabetic patients. It has been established that bone marrow stem cells-derived exosomes (BMSCs-Exos) have analgesic, anti-inflammatory and tissue regeneration properties. Herein, we designed an ECH loaded with BMSCs-Exos (ECH-Exos) electroconductive nerve dressing to treat diabetic PNI to achieve functional recovery and pain relief. Given its potent adhesive and self-healing properties, this laminar dressing is convenient for the treatment of damaged nerve fibers by automatically wrapping around them to form a size-matched tube-like structure, avoiding the cumbersome implantation process. Our in vitro studies showed that ECH-Exos could facilitate the attachment and migration of Schwann cells. Meanwhile, Exos in this system could modulate M2 macrophage polarization via the NF-κB pathway, thereby attenuating inflammatory pain in diabetic PNI. Additionally, ECH-Exos enhanced myelinated axonal regeneration via the MEK/ERK pathway in vitro and in vivo, consequently ameliorating muscle denervation atrophy and further promoting functional restoration. Our findings suggest that the ECH-Exos system has huge prospects for nerve regeneration, functional restoration and pain relief in patients with diabetic PNI.
Collapse
Affiliation(s)
- Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shenghui Su
- Department of Orthopaedics, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, 352100, China
| | - Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yixiu Zhong
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zilin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiqiang Yu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author. Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author.
| | - Fangguo Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Corresponding author.
| |
Collapse
|
30
|
Fu Y, Jing Z, Chen T, Xu X, Wang X, Ren M, Wu Y, Wu T, Li Y, Zhang H, Ji P, Yang S. Nanotube patterning reduces macrophage inflammatory response via nuclear mechanotransduction. J Nanobiotechnology 2023; 21:229. [PMID: 37468894 DOI: 10.1186/s12951-023-01912-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 07/21/2023] Open
Abstract
The inflammatory immune environment surrounding titanium bone implants determines the formation of osseointegration, and nanopatterning on implant surfaces modulates the immune microenvironment in the implant region. Among many related mechanisms, the mechanism by which nanopatterning controls macrophage inflammatory response still needs to be elucidated. In this paper, we found that inhibition of the nuclear envelope protein lamin A/C by titania nanotubes (TNTs) reduced the macrophage inflammatory response. Knockdown of lamin A/C reduced macrophage inflammatory marker expression, while overexpression of lamin A/C significantly elevated inflammatory marker expression. We further found that suppression of lamin A/C by TNTs limited actin polymerization, thereby reducing the nuclear translocation of the actin-dependent transcriptional cofactor MRTF-A, which subsequently reduced the inflammatory response. In addition, emerin, which is a key link between lamin A/C and actin, was delocalized from the nucleus in response to mechanical stimulation by TNTs, resulting in reduced actin organization. Under inflammatory conditions, TNTs exerted favourable osteoimmunomodulatory effects on the osteogenic differentiation of mouse bone marrow-derived stem cells (mBMSCs) in vitro and osseointegration in vivo. This study shows and confirms for the first time that lamin A/C-mediated nuclear mechanotransduction controls macrophage inflammatory response, and this study provides a theoretical basis for the future design of immunomodulatory nanomorphologies on the surface of metallic bone implants.
Collapse
Affiliation(s)
- Yiru Fu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Xinxin Xu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Xu Wang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Yanqiu Wu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Tianli Wu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
31
|
Cui JT, Wang XY, Mu XD, Huang M, Wang YD, Luo Q, He HX. Bone marrow stromal cell-derived exosome combinate with fibrin on tantalum coating titanium implant accelerates osseointegration. Front Bioeng Biotechnol 2023; 11:1198545. [PMID: 37496851 PMCID: PMC10367419 DOI: 10.3389/fbioe.2023.1198545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
This study aims to present a sustainably releasing system of exosomes-fibrin combinate loaded on tantalum-coating titanium implants. We hope to investigate potential effects of the system on osseointegration between tantalum coating titanium implants and its surrounding bone tissue. Exosomes derived from rabbit bone marrow stromal cells (rBMSCs) and fibrin were deposited onto the micro-nanostructure tantalum coating surface (Ta + exo + FI) and compared to control groups, including tantalum coating (Ta), tantalum coating loaded exosomes (Ta + exo) and tantalum coating loaded fibrin (Ta + FI). The optimal concentration of loading exosomes, exosomes uptake capacity by BMSCs, and the effect of controlled-release by fibrin were assessed by laser scanning confocal microscope (LCSM) and microplate reader. The optimal concentration of exosomes was 1 μg/μL. Adhesion, proliferation, and osteogenic differentiation ability of BMSCs on different materials were assessed in vitro. Finally, osseointegrative capacity of Ta, Ta + exo, Ta + FI, Ta + exo + FI implants in rabbit tibia were respectively evaluated with histology and bone-implant contact ratio (BIC%). It was demonstrated that exosome sustained-release system with fibrin loading on the tantalum coating was successfully established. Fibrin contribute to exosomes release extension from 2d to 6d. Furthermore, Ta + exo + FI significantly promoted adhesion, proliferation, and osteogenic differentiation of BMSCs. In vivo, the implants in Ta + exo + FI group displayed the highest osseointegrative capability than those in other groups. It is concluded that this exosome delivery system on the implants may be an effective way for tantalum coating titanium implants to promote osseointegration between implant and its surrounding bone tissue.
Collapse
Affiliation(s)
- Jian-Tong Cui
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Shannxi Provincial Crops Hospital of Chinese People’s Armed Police Forces, Xian, China
| | - Xin-Yuan Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xiao-Dan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Meng Huang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya-Di Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qiang Luo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hui-Xia He
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Wang J, Li X, Wang S, Cui J, Ren X, Su J. Bone-Targeted Exosomes: Strategies and Applications. Adv Healthc Mater 2023; 12:e2203361. [PMID: 36881547 DOI: 10.1002/adhm.202203361] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 03/08/2023]
Abstract
As the global population ages, bone-related diseases have increasingly become a major social problem threatening human health. Exosomes, as natural cell products, have been used to treat bone-related diseases due to their superior biocompatibility, biological barrier penetration, and therapeutic effects. Moreover, the modified exosomes exhibit strong bone-targeting capabilities that may improve efficacy and avoid systemic side effects, demonstrating promising translational potential. However, a review of bone-targeted exosomes is still lacking. Thus, the recently developed exosomes for bone-targeting applications in this review are focused. The biogenesis and bone-targeting regulatory functions of exosomes, the constructive strategies of modified exosomes to improve bone-targeting, and their therapeutic effects for bone-related diseases are introduced. By summarizing developments and challenges in bone-targeted exosomes, It is striven to shed light on the selection of exosome constructive strategies for different bone diseases and highlight their translational potential for future clinical orthopedics.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaoqun Li
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jin Cui
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
33
|
Wang Y, Ren L, Bai H, Jin Q, Zhang L. Exosome-Autophagy Crosstalk in Enveloped Virus Infection. Int J Mol Sci 2023; 24:10618. [PMID: 37445802 DOI: 10.3390/ijms241310618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Exosomes, which are extracellular vesicles (EVs) predominantly present in bodily fluids, participate in various physiological processes. Autophagy, an intracellular degradation mechanism, eliminates proteins and damaged organelles by forming double-membrane autophagosomes. These autophagosomes subsequently merge with lysosomes for target degradation. The interaction between autophagy and endosomal/exosomal pathways can occur at different stages, exerting significant influences on normal physiology and human diseases. The interplay between exosomes and the autophagy pathway is intricate. Exosomes exhibit a cytoprotective role by inducing intracellular autophagy, while autophagy modulates the biogenesis and degradation of exosomes. Research indicates that exosomes and autophagy contribute to the infection process of numerous enveloped viruses. Enveloped viruses, comprising viral nucleic acid, proteins, or virions, can be encapsulated within exosomes and transferred between cells via exosomal transport. Consequently, exosomes play a crucial role in the infection of certain viral diseases. This review presents recent findings on the interplay between exosomes and autophagy, as well as their implications in the infection of enveloped viruses, thereby offering valuable insights into the pathogenesis and vaccine research of enveloped virus infection.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haocheng Bai
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Qing Jin
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| | - Liying Zhang
- Key Lab for Zoonoses Research, College of Animal Sciences, Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
34
|
Fan S, Sun X, Su C, Xue Y, Song X, Deng R. Macrophages-bone marrow mesenchymal stem cells crosstalk in bone healing. Front Cell Dev Biol 2023; 11:1193765. [PMID: 37427382 PMCID: PMC10327485 DOI: 10.3389/fcell.2023.1193765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Bone healing is associated with many orthopedic conditions, including fractures and osteonecrosis, arthritis, metabolic bone disease, tumors and periprosthetic particle-associated osteolysis. How to effectively promote bone healing has become a keen topic for researchers. The role of macrophages and bone marrow mesenchymal stem cells (BMSCs) in bone healing has gradually come to light with the development of the concept of osteoimmunity. Their interaction regulates the balance between inflammation and regeneration, and when the inflammatory response is over-excited, attenuated, or disturbed, it results in the failure of bone healing. Therefore, an in-depth understanding of the function of macrophages and bone marrow mesenchymal stem cells in bone regeneration and the relationship between the two could provide new directions to promote bone healing. This paper reviews the role of macrophages and bone marrow mesenchymal stem cells in bone healing and the mechanism and significance of their interaction. Several new therapeutic ideas for regulating the inflammatory response in bone healing by targeting macrophages and bone marrow mesenchymal stem cells crosstalk are also discussed.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chuanchao Su
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiwen Xue
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiao Song
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Runzhi Deng
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
He Y, Liang L, Luo C, Zhang ZY, Huang J. Strategies for in situ tissue engineering of vascularized bone regeneration (Review). Biomed Rep 2023; 18:42. [PMID: 37325184 PMCID: PMC10265129 DOI: 10.3892/br.2023.1625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 06/17/2023] Open
Abstract
Numerous physiological processes occur following bone fracture, including inflammatory cell recruitment, vascularization, and callus formation and remodeling. In particular circumstances, such as critical bone defects or osteonecrosis, the regenerative microenvironment is compromised, rendering endogenous stem/progenitor cells incapable of fully manifesting their reparative potential. Consequently, external interventions, such as grafting or augmentation, are frequently necessary. In situ bone tissue engineering (iBTE) employs cell-free scaffolds that possess microenvironmental cues, which, upon implantation, redirect the behavior of endogenous stem/progenitor cells towards a pro-regenerative inflammatory response and reestablish angiogenesis-osteogenesis coupling. This process ultimately results in vascularized bone regeneration (VBR). In this context, a comprehensive review of the current techniques and modalities in VBR-targeted iBTE technology is provided.
Collapse
Affiliation(s)
- Yijun He
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Lin Liang
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Cheng Luo
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Jiongfeng Huang
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| |
Collapse
|
36
|
Lu Y, Mai Z, Cui L, Zhao X. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration. Stem Cell Res Ther 2023; 14:55. [PMID: 36978165 PMCID: PMC10053084 DOI: 10.1186/s13287-023-03275-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mesenchymal stem cell-based therapy has become an effective therapeutic approach for bone regeneration. However, there are still limitations in successful clinical translation. Recently, the secretome of mesenchymal stem cells, especially exosome, plays a critical role in promoting bone repair and regeneration. Exosomes are nanosized, lipid bilayer-enclosed structures carrying proteins, lipids, RNAs, metabolites, growth factors, and cytokines and have attracted great attention for their potential application in bone regenerative medicine. In addition, preconditioning of parental cells and exosome engineering can enhance the regenerative potential of exosomes for treating bone defects. Moreover, with recent advancements in various biomaterials to enhance the therapeutic functions of exosomes, biomaterial-assisted exosomes have become a promising strategy for bone regeneration. This review discusses different insights regarding the roles of exosomes in bone regeneration and summarizes the applications of engineering exosomes and biomaterial-assisted exosomes as safe and versatile bone regeneration agent delivery platforms. The current hurdles of transitioning exosomes from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, 510280, Guangzhou, China.
| |
Collapse
|
37
|
Liu S, Liu W, Yang Q, Yang S, Yang Y, Fan L, Zhang Y, Qi B, Shi Z, Wei X, Zhu L, Li T. Non-Coding-RNA-Activated Core/Chitosan Shell Nanounits Coated with Polyetheretherketone for Promoting Bone Regeneration and Osseointegration via Osteoimmunology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12653-12668. [PMID: 36868875 DOI: 10.1021/acsami.2c19186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bone implant outcome and bone regeneration properties can be improved by the immunomodulation of exosomes (Exos) derived from bone marrow mesenchymal stem cells (BMSCs), which contain cytokines, signaling lipids, and regulatory miRNAs. Analysis of miRNAs in BMSCs-derived exosomes showed that miR-21a-5p exhibited the highest expression and was associated with the NF-κB pathway. Hence, we developed an implant with miR-21a-5p functionality to promote bone incorporation by immunoregulation. Mediated by the potent interaction between tannic acid (TA) and biomacromolecules, the tannic acid modified mesoporous bioactive glass nanoparticles coated with miR-21a-5p (miR-21a-5p@T-MBGNs) were reversibly attached to TA-modified polyetheretherketone (T-PEEK). Cocultured cells could phagocytose miR-21a-5p@T-MBGNs slowly released from miR-21a-5p@T-MBGNs loaded T-PEEK (miMT-PEEK). Moreover, miMT-PEEK boosted macrophage M2 polarization via the NF-κB pathway to increase BMSCs osteogenic differentiation. In vivo testing of miMT-PEEK in the rat air-pouch model and rat femoral drilling model indicated effective macrophage M2 polarization, new bone formation, and excellent osseointegration. Overall, the osteoimmunomodulation of the miR-21a-5p@T-MBGNs-functionalized implant promoted osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yili Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Tao Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
38
|
Wang T, Liu K, Wang J, Xiang G, Hu X, Bai H, Lei W, Tao TH, Feng Y. Spatiotemporal Regulation of Injectable Heterogeneous Silk Gel Scaffolds for Accelerating Guided Vertebral Repair. Adv Healthc Mater 2023; 12:e2202210. [PMID: 36465008 DOI: 10.1002/adhm.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Osteoporotic vertebral fracture is jeopardizing the health of the aged population around the world, while the hypoxia microenvironment and oxidative damage of bone defect make it difficult to perform effective tissue regeneration. The balance of oxidative stress and the coupling of vessel and bone ingrowth are critical for bone regeneration. In this study, an injectable heterogeneous silk gel scaffold which can spatiotemporally and sustainedly release bone mesenchymal stem cell-derived small extracellular vesicles, HIF-1α pathway activator, and inhibitor is developed for bone repair and vertebral reinforcement. The initial enhancement of HIF-1α upregulates the expression of VEGF to promote angiogenesis, and the balance of reactive oxygen species level is regulated to effectively eliminate oxidative damage and abnormal microenvironment. The subsequent inhibition of HIF-1α avoids the overexpression of VEGF and vascular overgrowth. Meanwhile, complex macroporous structures and suitable mechanical support can be obtained within the silk gel scaffolds, which will promote in situ bone regeneration. These findings provide a new clinical translation strategy for osteoporotic vertebral augmentation on basis of hypoxia microenvironment improvement.
Collapse
Affiliation(s)
- Tianji Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Geng Xiang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaofan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
39
|
Casajuana Ester M, Day RM. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023; 15:pharmaceutics15020663. [PMID: 36839984 PMCID: PMC9961751 DOI: 10.3390/pharmaceutics15020663] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as promising biomarkers, cell-free therapeutic agents, and drug delivery carriers. Despite their great clinical potential, poor yield and unscalable production of EVs remain significant challenges. When using 3D culture methods, such as scaffolds and bioreactors, large numbers of cells can be expanded and the cell environment can be manipulated to control the cell phenotype. This has been employed to successfully increase the production of EVs as well as to enhance their therapeutic effects. The physiological relevance of 3D cultures, such as spheroids, has also provided a strategy for understanding the role of EVs in the pathogenesis of several diseases and to evaluate their role as tools to deliver drugs. Additionally, 3D culture methods can encapsulate EVs to achieve more sustained therapeutic effects as well as prevent premature clearance of EVs to enable more localised delivery and concentrated exosome dosage. This review highlights the opportunities and drawbacks of different 3D culture methods and their use in EV research.
Collapse
|
40
|
Ren S, Lin Y, Liu W, Yang L, Zhao M. MSC-Exos: Important active factor of bone regeneration. Front Bioeng Biotechnol 2023; 11:1136453. [PMID: 36814713 PMCID: PMC9939647 DOI: 10.3389/fbioe.2023.1136453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Bone defect and repair is a common but difficult problem in restorative and reconstructive surgery. Bone tissue defects of different sizes caused by different reasons bring functional limitations and cosmetic deformities to patients. Mesenchymal stem cells (MSC), a major hotspot in the field of regeneration in recent years, have been widely used in various studies on bone tissue regeneration. Numerous studies have shown that the bone regenerative effects of MSC can be achieved through exosome-delivered messages. Although its osteogenic mechanism is still unclear, it is clear that MSC-Exos can directly or indirectly support the action of bone regeneration. It can act directly on various cells associated with osteogenesis, or by carrying substances that affect cellular activators or the local internal environment in target cells, or it can achieve activation of the osteogenic framework by binding to materials. Therefore, this review aims to summarize the types and content of effective contents of MSC-Exos in bone regeneration, as well as recent advances in the currently commonly used methods to enable the binding of MSC-Exos to the framework and to conclude that MSC-Exos is effective in promoting osteogenesis.
Collapse
Affiliation(s)
- Sihang Ren
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China,NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Wenyue Liu
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| |
Collapse
|
41
|
Immune microenvironment: novel perspectives on bone regeneration disorder in osteoradionecrosis of the jaws. Cell Tissue Res 2023; 392:413-430. [PMID: 36737519 DOI: 10.1007/s00441-023-03743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Osteoradionecrosis of the jaws (ORNJ) is a severe complication that occurs after radiotherapy of head and neck malignancies. Clinically, conservative treatments and surgeries for ORNJ exhibited certain therapeutic effects, whereas the regenerative disorder of the post-radiation jaw remains a pending problem to be solved. In recent years, the recognition of the role of the immune microenvironment has led to a shift from an osteoblasts (OBs) or bone marrow mesenchymal stromal cells (BMSCs)-centered view of bone regeneration to the concept of a complicated microecosystem that supports bone regeneration. Current advances in osteoimmunology have uncovered novel targets within the immune microenvironment to help improve various regeneration therapies, notably therapies potentiating the interaction between BMSCs and immune cells. However, these researches lack a thorough understanding of the immune microenvironment and the interaction network of immune cells in the course of bone regeneration, especially for the post-operative defect of ORNJ. This review summarized the composition of the immune microenvironment during bone regeneration, how the immune microenvironment interacts with the skeletal system, and discussed existing and potential strategies aimed at targeting cellular and molecular immune microenvironment components.
Collapse
|
42
|
Zhou G, Wang F, Lin G, Tang B, Li X, Ding X, Wang W, Zhang J, Shi Y. Novel coatings for the continuous repair of human bone defects. Colloids Surf B Biointerfaces 2023; 222:113127. [PMID: 36610365 DOI: 10.1016/j.colsurfb.2023.113127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Bone defects are the second most common tissue grafts after blood. However, bone grafts face several problems, such as bone scaffolds, which have low bioactivity and are prone to corrosion. Much of the current research on bone scaffolds is focused on the mechanical aspects such as structure and strength. Surface modification of the bone scaffold is carried out in terms of the mechanical structure or structural design of the bone scaffold with reference to a bionic structure. However, with the development of mechanical designs, materials science, and medicine, many studies have reported that promoting bone growth by modifying the structure of the scaffold or coating is not possible. Therefore, the application of a bioactive coating to the surface of the bone scaffold is particularly important to generate a synergistic effect between the structure and active coating. In this article, we present several perspectives to improve the bioactivity of bone scaffolds, including corrosion resistance, loading of bioactive coatings or drugs on bone scaffolds, improved adhesion to the surface of the bone scaffolds, immune response modulation, and drawing on bionic structures during manufacturing.
Collapse
Affiliation(s)
- Guangzhen Zhou
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinbing Ding
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Wenguang Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
43
|
Liu F, Sun T, An Y, Ming L, Li Y, Zhou Z, Shang F. The potential therapeutic role of extracellular vesicles in critical-size bone defects: Spring of cell-free regenerative medicine is coming. Front Bioeng Biotechnol 2023; 11:1050916. [PMID: 36733961 PMCID: PMC9887316 DOI: 10.3389/fbioe.2023.1050916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
In recent years, the incidence of critical-size bone defects has significantly increased. Critical-size bone defects seriously affect patients' motor functions and quality of life and increase the need for additional clinical treatments. Bone tissue engineering (BTE) has made great progress in repairing critical-size bone defects. As one of the main components of bone tissue engineering, stem cell-based therapy is considered a potential effective strategy to regenerate bone tissues. However, there are some disadvantages including phenotypic changes, immune rejection, potential tumorigenicity, low homing efficiency and cell survival rate that restrict its wider clinical applications. Evidence has shown that the positive biological effects of stem cells on tissue repair are largely mediated through paracrine action by nanostructured extracellular vesicles (EVs), which may overcome the limitations of traditional stem cell-based treatments. In addition to stem cell-derived extracellular vesicles, the potential therapeutic roles of nonstem cell-derived extracellular vesicles in critical-size bone defect repair have also attracted attention from scholars in recent years. Currently, the development of extracellular vesicles-mediated cell-free regenerative medicine is still in the preliminary stage, and the specific mechanisms remain elusive. Herein, the authors first review the research progress and possible mechanisms of extracellular vesicles combined with bone tissue engineering scaffolds to promote bone regeneration via bioactive molecules. Engineering modified extracellular vesicles is an emerging component of bone tissue engineering and its main progression and clinical applications will be discussed. Finally, future perspectives and challenges of developing extracellular vesicle-based regenerative medicine will be given. This review may provide a theoretical basis for the future development of extracellular vesicle-based biomedicine and provide clinical references for promoting the repair of critical-size bone defects.
Collapse
Affiliation(s)
- Fen Liu
- Department of Periodontology, Shenzhen Stomatological Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying An
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture and Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Leiguo Ming
- Department of Research and Development, Shaanxi Zhonghong Institute of Regenerative Medicine, Xi’an, Shaanxi, China
| | - Yinghui Li
- Department of Orthodontics, Stomatological Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, Tibet, China,*Correspondence: Fengqing Shang, ; Zhifei Zhou,
| | - Fengqing Shang
- Department of Stomatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China,*Correspondence: Fengqing Shang, ; Zhifei Zhou,
| |
Collapse
|
44
|
Xin H, Shi Q, Ning X, Chen Y, Jia X, Zhang Z, Zhu S, Li Y, Liu F, Kong L. Biomimetic Mineralized Fiber Bundle-Inspired Scaffolding Surface on Polyetheretherketone Implants Promotes Osseointegration. Macromol Biosci 2023; 23:e2200436. [PMID: 36617598 DOI: 10.1002/mabi.202200436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/11/2022] [Indexed: 01/10/2023]
Abstract
The stress shielding effect caused by traditional metal implants is circumvented by using polyetheretherketone (PEEK), due to its excellent mechanical properties; however, the biologically inert nature of PEEK limits its application. Endowing PEEK with biological activity to promote osseointegration would increase its applicability for bone replacement implants. A biomimetic study is performed, inspired by mineralized collagen fiber bundles that contact bone marrow mesenchymal stem cells (BMMSCs) on the native trabecular bone surface. The PEEK surface (P) is first sulfonated with sulfuric acid to form a porous network structure (sP). The surface is then encapsulated with amorphous hydroxyapatite (HA) by magnetron sputtering to form a biomimetic scaffold that resembles mineralized collagen fiber bundles (sPHA). Amorphous HA simulates the composition of osteogenic regions in vivo and exhibits strong biological activity. In vitro results show that more favorable cell adhesion and osteogenic differentiation can be attained with the novelsurface of sPHA than with SP. The results of in vivo experiments show that sPHA exhibits osteoinductive and osteoconductive activity and facilitates bone formation and osseointegration. Therefore, the surface modification strategy can significantly improve the biological activity of PEEK, facilitate effective osseointegration, and inspire further bionic modification of other inert polymers similar to PEEK.
Collapse
Affiliation(s)
- He Xin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianwen Shi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yicheng Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuelian Jia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Zhouyang Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Simin Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Yunpeng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
45
|
Fu M, Li J, Liu M, Yang C, Wang Q, Wang H, Chen B, Fu Q, Sun G. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction. Int J Nanomedicine 2023; 18:1875-1895. [PMID: 37051313 PMCID: PMC10084881 DOI: 10.2147/ijn.s399487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Background Immune responses and osteogenesis differentiation induced by implants are crucial for bone tissue regeneration. Consideration of only one of those properties is not sufficient. To investigate the synergistic actions, we designed alginate/graphene oxide/sericin/nanohydroxyapatite (Alg/GO/Ser/nHAP) nanocomposite hydrogels with both osteoimmunomodulatory and osteoinductive activities. This study aimed to explore the effect of hydrogel with osteoimmunomodulatory properties on promoting osteogenesis of bone marrow stem cells (BMSCs). Methods Alg/GO/Ser/nHAP nanocomposite hydrogel was fabricated and was characterized by SEM, FTIR, XRD, stress-strain, rheology, swelling and degradation. After the impact of sericin on M2 macrophage polarization was identified, the BMSCs viability and adhesion were evaluated by CCK8 assay, live/dead staining, cytoskeleton staining. The cell osteogenic differentiation was observed by ALP/ARS staining, immunofluorescence staining, RT-PCR, and Western blotting, respectively. Rat cranial defect model was used to assess osteoimmunomodulatory effects of scaffolds in vivo by micro‑computed tomographic, histological, and immunohistochemical analyses after 8 weeks of healing. Results In vitro experiments revealed that the hydrogel presented desirable mechanical strength, stability, porosity, and biocompatibility. Significantly, sericin and nHAP appeared to exert synergistic effects on bone regeneration. Sericin was observed to inhibit the immune response by inducing macrophage M2-type polarization to create a positive osteoimmune microenvironment, contributing to improving osseointegration at the bone-implant interface to promote osteogenesis. However, the osteogenic differentiation in rat BMSCs was further enhanced by combining nHAP and sericin in the nanocomposite hydrogel. Eventually, the hydrogel was implanted into the rat cranial defect model, assisting in the reduction of local inflammation and efficient bone regeneration. Conclusion The nanocomposite hydrogel stimulated bone formation by the synergistic effects of immunomodulation of macrophage polarization by sericin and direct osteogenic induction by nHAP, demonstrating that such a scaffold that modulates the osteoimmune microenvironment to promote osteogenesis is a promising approach for the development of bone tissue engineering implants in the future.
Collapse
Affiliation(s)
- Mei Fu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jun Li
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qidong Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hongrui Wang
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, People’s Republic of China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qingge Fu
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, People’s Republic of China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Correspondence: Guixin Sun; Qingge Fu, Email ;
| |
Collapse
|
46
|
Wang J, Wang J, Wang Y, Ma R, Zhang S, Zheng J, Xue W, Ding X. Bone Marrow Mesenchymal Stem Cells-Derived miR-21-5p Protects Grafted Islets Against Apoptosis by Targeting PDCD4. Stem Cells 2022; 41:169-183. [PMID: 36512434 PMCID: PMC9982070 DOI: 10.1093/stmcls/sxac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The apoptosis of grafted islets is an urgent problem due to the high rate of islet loss soon after transplantation. MicroRNA-21-5p (miR-21-5p) is an essential mediator of bone marrow mesenchymal stem cells-derived exosomes (BMSCs-Exo) during anti-apoptosis, but its effect and the underlying molecular mechanism in islet transplantation remain partially understood. Here, we found that miR-21-5p could be delivered to islet cells via BMSCs-Exo. Subsequently, we demonstrated that miR-21-5p overexpression reduced apoptosis in islets and INS-1 cells, whereas miR-21-5p inhibition enhanced apoptosis. A mechanistic analysis involving RNA sequencing and bioinformatic analysis was performed to determine the interaction between miR-21-5p and its target gene programmed cell death 4 (PDCD4), which was further verified by a dual luciferase assay. In vivo, the grafted islets overexpressing miR-21-5p showed a higher survival rate, better insulin secretion function, and a lower apoptosis rate. In conclusion, these results demonstrated that miR‑21‑5p from BMSCs-Exo protects against the apoptosis of grafted islets by inhibiting PDCD4 expression. Hence, miR-21-5p can be used as a cell-free therapeutic agent to minimize β-cell apoptosis at the early stage of islet transplantation.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Ruiyang Ma
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Shucong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Wujun Xue
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Xiaoming Ding
- Corresponding author: Xiaoming Ding, Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China. Tel: +8613991238632; E-mail:
| |
Collapse
|
47
|
Zhang X, Liu X, Zhu K, Zhang X, Li N, Sun T, Fan S, Dai L, Zhang J. CD5L-associated gene analyses highlight the dysregulations, prognostic effects, immune associations, and drug-sensitivity predicative potentials of LCAT and CDC20 in hepatocellular carcinoma. Cancer Cell Int 2022; 22:393. [PMID: 36494696 PMCID: PMC9733014 DOI: 10.1186/s12935-022-02820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The dysregulation of CD5L has been reported in hepatocellular carcinoma (HCC). However, its functions in HCC were controversial. In this study, we aimed to identify CD5L-associated pathways and markers and explore their values in HCC diagnosis, prognosis and treatment. METHODS HCC datasets with gene expression profiles and clinical data in TCGA and ICGC were downloaded. The immune/stroma cell infiltrations were estimated with xCell. CD5L-associated pathways and CD5L-associated genes (CD5L-AGs) were identified with gene expression comparisons and gene set enrichment analysis (GSEA). Cox regression, Kaplan-Meier survival analysis, and least absolute shrinkage and selection operator (LASSO) regression analysis were performed. The correlations of the key genes with immune/stroma infiltrations, immunoregulators, and anti-cancer drug sensitivities in HCC were investigated. At protein level, the key genes dysregulations, their correlations and prognostic values were validated in clinical proteomic tumor analysis consortium (CPTAC) database. Serum CD5L and LCAT activity in 50 HCC and 30 normal samples were evaluated and compared. The correlations of serum LCAT activity with alpha-fetoprotein (AFP), albumin (ALB) and high-density lipoprotein (HDL) in HCC were also investigated. RESULTS Through systemic analyses, 14 CD5L-associated biological pathways, 256 CD5L-AGs and 28 CD5L-associated prognostic and diagnostic genes (CD5L-APDGs) were identified. A risk model consisting of LCAT and CDC20 was constructed for HCC overall survival (OS), which could discriminate HCC OS status effectively in both the training and the validation sets. CD5L, LCAT and CDC20 were shown to be significantly correlated with immune/stroma cell infiltrations, immunoregulators and 31 anti-cancer drug sensitivities in HCC. At protein level, the dysregulations of CD5L, LCAT and CDC20 were confirmed. LCAT and CDC20 were shown to be significantly correlated with proliferation marker MKI67. In serum, no significance of CD5L was shown. However, the lower activity of LCAT in HCC serum was obvious, as well as its significant positive correlations ALB and HDL concentrations. CONCLUSIONS CD5L, LCAT and CDC20 were dysregulated in HCC both at mRNA and protein levels. The LCAT-CDC20 signature might be new predicator for HCC OS. The associations of the three genes with HCC microenvironment and anti-cancer drug sensitivities would provide new clues for HCC immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Xiaoli Liu
- grid.414011.10000 0004 1808 090XLaboratory Department, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Keke Zhu
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Xue Zhang
- grid.207374.50000 0001 2189 3846Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Tao Sun
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Shasha Fan
- grid.477407.70000 0004 1806 9292Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, China ,grid.411427.50000 0001 0089 3695Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Liping Dai
- grid.207374.50000 0001 2189 3846Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinzhong Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
48
|
Wang P, Wang X. Mimicking the native bone regenerative microenvironment for in situ repair of large physiological and pathological bone defects. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
49
|
Wang W, Liang X, Zheng K, Ge G, Chen X, Xu Y, Bai J, Pan G, Geng D. Horizon of exosome-mediated bone tissue regeneration: The all-rounder role in biomaterial engineering. Mater Today Bio 2022; 16:100355. [PMID: 35875196 PMCID: PMC9304878 DOI: 10.1016/j.mtbio.2022.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Bone injury repair has always been a tricky problem in clinic, the recent emergence of bone tissue engineering provides a new direction for the repair of bone injury. However, some bone tissue processes fail to achieve satisfactory results mainly due to insufficient vascularization or cellular immune rejection. Exosomes with the ability of vesicle-mediated intercellular signal transmission have gained worldwide attention and can achieve cell-free therapy. Exosomes are small vesicles that are secreted by cells, which contain genetic material, lipids, proteins and other substances. It has been found to play the function of material exchange between cells. It is widely used in bone tissue engineering to achieve cell-free therapy because it not only does not produce some immune rejection like cells, but also can play a cell-like function. Exosomes from different sources can bind to scaffolds in various ways and affect osteoblast, angioblast, and macrophage polarization in vivo to promote bone regeneration. This article reviews the recent research progress of exosome-loaded tissue engineering, focusing on the mechanism of exosomes from different sources and the application of exosome-loaded scaffolds in promoting bone regeneration. Finally, the existing deficiencies and challenges, future development directions and prospects are summarized.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xiaolong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Kai Zheng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| |
Collapse
|
50
|
Ren J, Yu R, Xue J, Tang Y, Su S, Liao C, Guo Q, Guo W, Zheng J. How Do Extracellular Vesicles Play a Key Role in the Maintenance of Bone Homeostasis and Regeneration? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:5375-5389. [PMID: 36419718 PMCID: PMC9677931 DOI: 10.2147/ijn.s377598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2023] Open
Abstract
The maintenance of bone homeostasis includes both bone resorption by osteoclasts and bone formation by osteoblasts. These two processes are in dynamic balance to maintain a constant amount of bone for accomplishing its critical functions in daily life. Multiple cell type communications are involved in these two complex and continuous processes. In recent decades, an increasing number of studies have shown that osteogenic and osteoclastic extracellular vesicles play crucial roles in regulating bone homeostasis through paracrine, autosecretory and endocrine signaling. Elucidating the functional roles of extracellular vesicles in the maintenance of bone homeostasis may contribute to the design of new strategies for bone regeneration. Hence, we review the recent understandings of the classification, production process, extraction methods, structure, contents, functions and applications of extracellular vesicles in bone homeostasis. We highlight the contents of various bone-derived extracellular vesicles and their interactions with different cells in the bone microenvironment during bone homeostasis. We also summarize the recent advances in EV-loaded biomaterial scaffolds for bone regeneration and repair.
Collapse
Affiliation(s)
- Junxian Ren
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Jingyan Xue
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Sihui Su
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People’s Republic of China
| | - Weimin Guo
- Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| |
Collapse
|