1
|
Han Y, Dong Y, Jia B, Shi X, Zhao H, Li S, Wang H, Sun B, Yin L, Dai K. High-precision bioactive scaffold with dECM and extracellular vesicles targeting 4E-BP inhibition for cartilage injury repair. Mater Today Bio 2024; 27:101114. [PMID: 39211509 PMCID: PMC11360177 DOI: 10.1016/j.mtbio.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
The restoration of cartilage injuries remains a formidable challenge in orthopedics, chiefly attributed to the absence of vascularization and innervation in cartilage. Decellularized extracellular matrix (dECM) derived from cartilage, following antigenic removal through decellularization processes, has exhibited remarkable biocompatibility and bioactivity, rendering it a viable candidate for cartilage repair. Additionally, extracellular vesicles (EVs) generated from cartilage have demonstrated a synergistic effect when combined with dECM, potentially mitigating the inhibitory impact on protein synthesis by phosphorylating 4ebp, thereby promoting the synthesis of cartilage-related proteins such as collagen. In pursuit of this objective, we have innovated a novel bioink and repair scaffold characterized by exceptional biocompatibility, bioactivity, and biodegradability, establishing a tissue-specific microenvironment conducive to chondrogenesis. Within rat osteochondral defects, the biologically active scaffold successfully prompted the formation of transparent cartilage, featuring adequate mechanical strength, favorable elasticity, and dECM deposition indicative of cartilage. In summary, this study has effectively engineered a hydrogel bioink tailored for cartilage repair and devised a bioactive cartilage repair scaffold proficient in instigating cell differentiation and fostering cartilage repair.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yixin Dong
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Jia
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiangyu Shi
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongbo Zhao
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shushan Li
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haitao Wang
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Li Yin
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kerong Dai
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
2
|
Zhao D, Cheng Q, Geng H, Liu J, Zhang Y, Cui J, Liu C, Cheng L. Decoding Macrophage Subtypes to Engineer Modulating Hydrogels for the Alleviation of Intervertebral Disk Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304480. [PMID: 37939288 PMCID: PMC10767410 DOI: 10.1002/advs.202304480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Indexed: 11/10/2023]
Abstract
A major pathological basis for low back pain is intervertebral disk degeneration, which is primarily caused by the degeneration of nucleus pulposus cells due to imbalances in extracellular matrix (ECM) anabolism and catabolism. The phenotype of macrophages in the local immune microenvironment greatly influences the balance of ECM metabolism. Therefore, the control over the macrophage phenotype of the ECM is promising to repair intervertebral disk degeneration. Herein, the preparation of an injectable nanocomposite hydrogel is reported by embedding epigallocatechin-3-gallate-coated hydroxyapatite nanorods in O-carboxymethyl chitosan cross-linked with aldehyde hyaluronic acid that is capable of modulating the phenotype of macrophages. The bioactive components play a primary role in repairing the nucleus pulposus, where the hydroxyapatite nanorods can promote anabolism in the ECM through the nucleopulpogenic differentiation of mesenchymal stem cells. In addition, epigallocatechin-3-gallate can decrease catabolism in the ECM in nucleus pulposus by inducing M2 macrophage polarization, which exists in normal intervertebral disks and can alleviate degeneration. The nanocomposite hydrogel system shows promise for the minimally invasive and effective treatment of intervertebral disk degeneration by controlling anabolism and catabolism in the ECM and inhibiting the IL17 signaling pathway (M1-related pathway) in vitro and in vivo.
Collapse
Affiliation(s)
- Da‐Wang Zhao
- Department of OrthopedicsQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Qian Cheng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Jinbo Liu
- Department of OrthopedicsQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yuanqiang Zhang
- Department of OrthopedicsQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Chao Liu
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
- Department of Oral Surgery, Shanghai Key Laboratory of StomatologyNational Clinical Research Center of StomatologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Lei Cheng
- Department of OrthopedicsQilu Hospital of Shandong UniversityJinanShandong250012China
| |
Collapse
|
3
|
Yu D, Nie Q, Xue J, Luo R, Xie S, Chao S, Wang E, Xu L, Shan Y, Liu Z, Li Y, Li Z. Direct Mapping of Cytomechanical Homeostasis Destruction in Osteoarthritis Based on Silicon Nanopillar Array. Adv Healthc Mater 2023; 12:e2301126. [PMID: 37747342 DOI: 10.1002/adhm.202301126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Osteoarthritis (OA) is the most prevalent joint degenerative disease characterized by chronic joint inflammation. The pathogenesis of OA has not been fully elucidated yet. Cartilage erosion is the most significant pathological feature in OA, which is considered the result of cytomechanical homeostasis destruction. The cytomechanical homeostasis is maintained by the dynamic interaction between cells and the extracellular matrix, which can be reflected by cell traction force (CTF). It is critical to assess the CTF to provide a deeper understanding of the cytomechanical homeostasis destruction and progression in OA. In this study, a silicon nanopillar array (Si-NP) with high spatial resolution and aspect ratio is fabricated to investigate the CTF in response to OA. It is discovered that the CTF is degraded in OA, which is attributed to the F-actin reorganization induced by the activation of RhoA/ROCK signaling pathway. Si-NP also shows promising potential as a mechanopharmacological assessment platform for OA drug screening and evaluation.
Collapse
Affiliation(s)
- Dengjie Yu
- Department of Orthopedics, Xiangya hospital, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Qingbin Nie
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Shiwang Xie
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Shengyu Chao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Linlin Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhuo Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya hospital, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Lee SY, Hwang HJ, Song YJ, Lee D, Ku B, Sa JK, Lee DW. 3D cell subculturing pillar dish for pharmacogenetic analysis and high-throughput screening. Mater Today Bio 2023; 23:100793. [PMID: 37766900 PMCID: PMC10520358 DOI: 10.1016/j.mtbio.2023.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
A pillar dishe for subculture of 3D cultured cells on hydrogel spots (Matrigel and alginate) have been developed. Cells cultured in 3D in an extracellular matrix (ECM) can retain their intrinsic properties, but cells cultured in 2D lose their intrinsic properties as the cells stick to the bottom of the well. Previously, cells and ECM spots were dispensed on a conventional culture dish for 3D cultivation. However, as the spot shape and location depended on user handling, pillars were added to the dish to realize uniform spot shape and stable subculture, supporting 3D cell culture-based high-throughput screening (HTS). Matrigel and alginate were used as ECMs during 6-passage subculture. The growth rate of lung cancer cell (A549) was higher on Matrigel than on alginate. Cancer cell was subcultured in three dimensions in the proposed pillar dish and used for drug screening and differential gene expression analysis. Interestingly, stemness markers, which are unique characteristics of lung cancer cells inducing drug resistance, were upregulated in 3D-subcultured cells compared with those in 2D-subcultured cells. Additionally, the PI3K/Akt/mTOR, VEGFR1/2, and Wnt pathways, which are promising therapeutic targets for lung cancer, were activated, showing high drug sensitivity under 3D-HTS using the 3D-subcultured cells.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyun Ju Hwang
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - You Jin Song
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dayoung Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Jason K. Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
5
|
Jammes M, Contentin R, Audigié F, Cassé F, Galéra P. Effect of pro-inflammatory cytokine priming and storage temperature of the mesenchymal stromal cell (MSC) secretome on equine articular chondrocytes. Front Bioeng Biotechnol 2023; 11:1204737. [PMID: 37720315 PMCID: PMC10502223 DOI: 10.3389/fbioe.2023.1204737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Context: Osteoarthritis (OA) is an invalidating articular disease characterized by cartilage degradation and inflammatory events. In horses, OA is associated with up to 60% of lameness and leads to reduced animal welfare along with extensive economic losses; currently, there are no curative therapies to treat OA. The mesenchymal stromal cell (MSC) secretome exhibits anti-inflammatory properties, making it an attractive candidate for improving the management of OA. In this study, we determined the best storage conditions for conditioned media (CMs) and tested whether priming MSCs with cytokines can enhance the properties of the MSC secretome. Methods: First, properties of CMs collected from bone-marrow MSC cultures and stored at -80°C, -20°C, 4°C, 20°C or 37°C were assessed on 3D cultures of equine articular chondrocytes (eACs). Second, we primed MSCs with IL-1β, TNF-α or IFN-γ, and evaluated the MSC transcript levels of immunomodulatory effectors and growth factors. The primed CMs were also harvested for subsequent treatment of eACs, either cultured in monolayers or as 3D cell cultures. Finally, we evaluated the effect of CMs on the proliferation and the phenotype of eACs and the quality of the extracellular matrix of the neosynthesized cartilage. Results: CM storage at -80°C, -20°C, and 4°C improved collagen protein accumulation, cell proliferation and the downregulation of inflammation. The three cytokines chosen for the MSC priming influenced MSC immunomodulator gene expression, although each cytokine led to a different pattern of MSC immunomodulation. The cytokine-primed CM had no major effect on eAC proliferation, with IL-1β and TNF-α slightly increasing collagen (types IIB and I) accumulation in eAC 3D cultures (particularly with the CM derived from MSCs primed with IL-1β), and IFN-γ leading to a marked decrease. IL-1β-primed CMs resulted in increased eAC transcript levels of MMP1, MMP13 and HTRA1, whereas IFNγ-primed CMs decreased the levels of HTRA1 and MMP13. Conclusion: Although the three cytokines differentially affected the expression of immunomodulatory molecules, primed CMs induced a distinct effect on eACs according to the cytokine used for MSC priming. Different mechanisms seemed to be triggered by each priming cytokine, highlighting the need for further investigation. Nevertheless, this study demonstrates the potential of MSC-CMs for improving equine OA management.
Collapse
Affiliation(s)
- Manon Jammes
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | | | - Fabrice Audigié
- Unit Under Contract 957 Equine Biomechanics and Locomotor Disorders (USC 957 BPLC), Center of Imaging and Research on Locomotor Affections on Equines (CIRALE), French National Research Institute for Agriculture Food and Environment (INRAE), École Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | | | | |
Collapse
|
6
|
Yue M, Liu Y, Zhang P, Li Z, Zhou Y. Integrative Analysis Reveals the Diverse Effects of 3D Stiffness upon Stem Cell Fate. Int J Mol Sci 2023; 24:9311. [PMID: 37298263 PMCID: PMC10253631 DOI: 10.3390/ijms24119311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The origin of life and native tissue development are dependent on the heterogeneity of pluripotent stem cells. Bone marrow mesenchymal stem cells (BMMSCs) are located in a complicated niche with variable matrix stiffnesses, resulting in divergent stem cell fates. However, how stiffness drives stem cell fate remains unknown. For this study, we performed whole-gene transcriptomics and precise untargeted metabolomics sequencing to elucidate the complex interaction network of stem cell transcriptional and metabolic signals in extracellular matrices (ECMs) with different stiffnesses, and we propose a potential mechanism involved in stem cell fate decision. In a stiff (39~45 kPa) ECM, biosynthesis of aminoacyl-tRNA was up-regulated, and increased osteogenesis was also observed. In a soft (7~10 kPa) ECM, biosynthesis of unsaturated fatty acids and deposition of glycosaminoglycans were increased, accompanied by enhanced adipogenic/chondrogenic differentiation of BMMSCs. In addition, a panel of genes responding to the stiffness of the ECM were validated in vitro, mapping out the key signaling network that regulates stem cells' fate decisions. This finding of "stiffness-dependent manipulation of stem cell fate" provides a novel molecular biological basis for development of potential therapeutic targets within tissue engineering, from both a cellular metabolic and a biomechanical perspective.
Collapse
Affiliation(s)
- Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
7
|
Wang Z, Yang H, Xu X, Hu H, Bai Y, Hai J, Cheng L, Zhu R. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway. Bioact Mater 2023; 22:75-90. [PMID: 36203960 PMCID: PMC9520222 DOI: 10.1016/j.bioactmat.2022.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic low back pain and dyskinesia caused by intervertebral disc degeneration (IDD) are seriously aggravated and become more prevalent with age. Current clinical treatments do not restore the biological structure and inherent function of the disc. The emergence of tissue engineering and regenerative medicine has provided new insights into the treatment of IDD. We synthesized biocompatible layered double hydroxide (LDH) nanoparticles and optimized their ion elemental compositions to promote chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). The chondrogenic differentiation of LDH-treated MSCs was validated using Alcian blue staining, qPCR, and immunofluorescence analyses. LDH-pretreated hUC-MSCs were differentiated prior to transplantation into the degenerative site of a needle puncture IDD rat model. Repair and regeneration evaluated using X-ray, magnetic resonance imaging, and tissue immunostaining 4–12 weeks after transplantation showed recovery of the disc space height and integrated tissue structure. Transcriptome sequencing revealed significant regulatory roles of the extracellular matrix (ECM) and integrin receptors of focal adhesion signaling pathway in enhancing chondrogenic differentiation and thus prompting tissue regeneration. The construction of ion-specific LDH nanomaterials for in situ intervertebral disc regeneration through the focal adhesion signaling pathway provides theoretical basis for clinical transformation in IDD treatment. LDH nanoparticles with different elemental compositions are constructed to optimize the chondrogenic differentiation of hUC-MSCs. Optimized-LDH pretreated hUC-MSCs transplantation show recovery of disc space height and integrated tissue structure. ECM and focal adhesion signaling pathway play significant roles in LDH-promoted cell differentiation and tissue regeneration. Ion-specific optimizing LDH provides theoretical basis for clinical transformation on IDD treatment.
Collapse
|
8
|
Wang P, Meng X, Xue J, Fan C, Wang J. Genome-wide analysis for nanofiber induced global gene expression profile: A study in MC3T3-E1 cells by RNA-Seq. Colloids Surf B Biointerfaces 2023; 223:113143. [PMID: 36682297 DOI: 10.1016/j.colsurfb.2023.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Nanofibers are one of the attractive biomaterials that can provide unique environments to direct cell behaviors. However, how nanofiber structure affects the global gene expression of laden cells remains unclear. Herein, high-throughput mRNA sequencing (RNA-seq) is applied to analyze the transcriptome of the MC3T3-E1 cells (a model osteoblast cell line) cultured on electrospun nanofibers. The cell-adhesive poly(L-lactide) nanofibers and membranes are developed by the mussel-inspired coating of gelatin-dopamine conjugate under H2O2-mediated oxidation. The MC3T3-E1 cells cultured on nanofibers exhibit elongated morphology and increased proliferation compared with those on membranes. The differences in global gene expression profiles are determined by RNA-seq, in which 905 differentially expressed genes (DEGs) are identified. Significantly, the DEGs related to cytoskeleton, promotion of cell cycle progression, cell adhesion, and cell proliferation, are higher expressed in the cells on nanofibers, while the DEGs involved in cell-cycle arrest and osteoblast mineralization are up-regulated in the cells on membranes. This study elucidates the roles of nanofiber structure in affecting gene expression of laden cells at the whole transcriptome level, and it will lay the foundation for understanding nanofiber-guided cell behaviors.
Collapse
Affiliation(s)
- Peiyan Wang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China
| | - Xinyue Meng
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, PR China
| | - Changjiang Fan
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China.
| | - Jianxun Wang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China.
| |
Collapse
|
9
|
Sang S, Mao X, Cao Y, Liu Z, Shen Z, Li M, Jia W, Guo Z, Wang Z, Xiang C, Sun L. 3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8895-8913. [PMID: 36779653 DOI: 10.1021/acsami.2c19058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, inspired by the components of cartilage matrix, a photo-cross-linked extracellular matrix (ECM) bioink composed of modified proteins and polysaccharides was presented, including gelatin methacrylate, hyaluronic acid methacrylate, and chondroitin sulfate methacrylate. The systematic experiments were performed, including morphology, swelling, degradation, mechanical and rheological tests, printability analysis, biocompatibility and chondrogenic differentiation characterization, and RNA sequencing (RNA-seq). The results indicated that the photo-cross-linked ECM hydrogels possessed suitable degradation rate and excellent mechanical properties, and the three-dimensional (3D) bioprinted ECM scaffolds obtained favorable shape fidelity and improved the basic properties, biological properties, and chondrogenesis of synovium-derived MSCs (SMSCs). The strong stimulation of transforming growth factor-beta 1 (TGF-β1) enhanced the aggregation, proliferation, and differentiation of SMSCs, thereby enhancing chondrogenic ECM deposition. In vivo animal experiments and gait analysis further confirmed that the ECM scaffold combined with TGF-β1 could effectively promote cartilage regeneration and functional recovery of injured joints. To sum up, the photo-cross-linked ECM bioink for 3D printing of functional cartilage tissue may become an attractive strategy for cartilage regeneration.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xingjia Mao
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanyan Cao
- College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Wendan Jia
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Zijian Guo
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zehua Wang
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Chuan Xiang
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
10
|
Wang X, Zhang Y, Yang J. Transcriptome analysis reveals synergistic modulation of E-cadherin/N-cadherin in hMSC aggregates chondrogenesis. Genes Genomics 2023; 45:681-692. [PMID: 36595183 DOI: 10.1007/s13258-022-01362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND N-cadherin-mediated cell adhesion is a vital inductor for mesenchymal condensation in chondrogenesis. Recent studies have revealed the involvement of E-cadherin in enhancing the multipotency of mesenchymal stem cells (MSCs) and limb development; however, the signaling crosstalk of E/N-cadherin remains unclear. OBJECTIVE This study aimed to explore the synergistic modulation of E/N-cadherin in the chondrogenic differentiation of MSC aggregates. METHODS Human E/N-cadherin-functionalized (hE/N-cad-Fc) poly (lactic-co-glycolic acid) (PLGA) microparticles (hE/N-cad-PLGA) were incorporated into the human MSC (hMSC) aggregates to upregulate the expression of the corresponding endogenous cadherin. The chondrogenic differentiation of the hMSC aggregates was initiated by hE/N-cad-PLGA, controlling the release of transforming growth factor-β (TGF-β). A transcriptome analysis was used to assess differentially expressed genes (DEGs) modulated by hE/N-cad-Fc in hMSC aggregate chondrogenesis. Gene functions and signaling pathways were assessed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The associated biological pathways were assessed by a protein-protein interaction (PPI) network analysis, and the results were further confirmed by real-time quantitative PCR (qPCR) and western blotting. RESULTS A total of 1083 DEGs, comprising 111 upregulated and 972 downregulated genes, were discovered to be related to the enhanced chondrogenic differentiation modulated by hE/N-cad-Fc. The GO and KEGG functional enrichment analyses revealed that hE/N-cad-Fc synergistically regulated the p53-related survival signaling pathway. PPI analysis revealed that mitogen-activated protein kinases (MAPK) caspase regulation is a core aspect of the chondrogenic differentiation process, confirmed by western blotting. CONCLUSION To the best of our knowledge, our study is the first to reveal that the synergistic modulation of E/N-cadherin enhances the chondrogenic differentiation of hMSCs via the ERK1/2-p53 signaling axis.
Collapse
Affiliation(s)
- Xueping Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Zheng G, Xue C, Cao F, Hu M, Li M, Xie H, Yu W, Zhao D. Effect of the uronic acid composition of alginate in alginate/collagen hybrid hydrogel on chondrocyte behavior. Front Bioeng Biotechnol 2023; 11:1118975. [PMID: 36959903 PMCID: PMC10027720 DOI: 10.3389/fbioe.2023.1118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Chundong Xue
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Fang Cao
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Minghui Hu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Maoyuan Li
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Hui Xie
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiting Yu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| |
Collapse
|
12
|
Um SH, Seo Y, Seo H, Lee K, Park SH, Jeon JH, Lim JY, Ok MR, Kim YC, Kim H, Cheon CH, Han HS, Edwards JR, Kim SW, Jeon H. Biomimetic hydrogel blanket for conserving and recovering intrinsic cell properties. Biomater Res 2022; 26:78. [PMID: 36514131 PMCID: PMC9746181 DOI: 10.1186/s40824-022-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cells in the human body experience different growth environments and conditions, such as compressive pressure and oxygen concentrations, depending on the type and location of the tissue. Thus, a culture device that emulates the environment inside the body is required to study cells outside the body. METHODS A blanket-type cell culture device (Direct Contact Pressing: DCP) was fabricated with an alginate-based hydrogel. Changes in cell morphology due to DCP pressure were observed using a phase contrast microscope. The changes in the oxygen permeability and pressure according to the hydrogel concentration of DCP were analyzed. To compare the effects of DCP with normal or artificial hypoxic cultures, cells were divided based on the culture technique: normal culture, DCP culture device, and artificial hypoxic environment. Changes in phenotype, genes, and glycosaminoglycan amounts according to each environment were evaluated. Based on this, the mechanism of each culture environment on the intrinsic properties of conserving chondrocytes was suggested. RESULTS Chondrocytes live under pressure from the surrounding collagen tissue and experience a hypoxic environment because collagen inhibits oxygen permeability. By culturing the chondrocytes in a DCP environment, the capability of DCP to produce a low-oxygen and physical pressure environment was verified. When human primary chondrocytes, which require pressure and a low-oxygen environment during culture to maintain their innate properties, were cultured using the hydrogel blanket, the original shapes and properties of the chondrocytes were maintained. The intrinsic properties could be recovered even in aged cells that had lost their original cell properties. CONCLUSIONS A DCP culture method using a biomimetic hydrogel blanket provides cells with an adjustable physical pressure and a low-oxygen environment. Through this technique, we could maintain the original cellular phenotypes and intrinsic properties of human primary chondrocytes. The results of this study can be applied to other cells that require special pressure and oxygen concentration control to maintain their intrinsic properties. Additionally, this technique has the potential to be applied to the re-differentiation of cells that have lost their original properties.
Collapse
Affiliation(s)
- Seung-Hoon Um
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,grid.23856.3a0000 0004 1936 8390Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Laval University, G1V 0A6 Quebec City, Quebec, Canada
| | - Youngmin Seo
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,R&D Institute, OID Ltd, Seoul, 06286 Republic of Korea
| | - Hyunseon Seo
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,grid.264381.a0000 0001 2181 989XSchool of Medicine, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Kyungwoo Lee
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
| | - Sun Hwa Park
- grid.23856.3a0000 0004 1936 8390Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Laval University, G1V 0A6 Quebec City, Quebec, Canada
| | - Jung Ho Jeon
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea ,grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Yeon Lim
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myoung-Ryul Ok
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
| | - Yu-Chan Kim
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792 Republic of Korea
| | - Hyunjung Kim
- grid.256753.00000 0004 0470 5964Division of Nursing, Research Institute of Nursing Science, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Cheol-Hong Cheon
- grid.222754.40000 0001 0840 2678Department of Chemistry, Korea University, Seoul, 02841 Republic of Korea
| | - Hyung-Seop Han
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
| | - James R. Edwards
- grid.4991.50000 0004 1936 8948Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK
| | - Sung Won Kim
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea ,grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hojeong Jeon
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
13
|
Sheng R, Chen J, Wang H, Luo Y, Liu J, Chen Z, Mo Q, Chi J, Ling C, Tan X, Yao Q, Zhang W. Nanosilicate-Reinforced Silk Fibroin Hydrogel for Endogenous Regeneration of Both Cartilage and Subchondral Bone. Adv Healthc Mater 2022; 11:e2200602. [PMID: 35749970 DOI: 10.1002/adhm.202200602] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Osteochondral defects are characterized by injuries to both cartilage and subchondral bone, which is a result of trauma, inflammation, or inappropriate loading. Due to the unique biological properties of subchondral bone and cartilage, developing a tissue engineering scaffold that can promote dual-lineage regeneration of cartilage and bone simultaneously remains a great challenge. In this study, a microporous nanosilicate-reinforced enzymatically crosslinked silk fibroin (SF) hydrogel is fabricated by introducing montmorillonite (MMT) nanoparticles via intercalation chemistry. In vitro studies show that SF-MMT nanocomposite hydrogel has improved mechanical properties and hydrophilicity, as well as the bioactivities to promote the osteogenic differentiation of bone marrow mesenchymal stem cells and maintain chondrocyte phenotype compared with SF hydrogel. Global proteomic analysis verifies the dual-lineage bioactivities of SF-MMT nanocomposite hydrogel, which are probably regulated by multiple signaling pathways. Furthermore, it is observed that the biophysical interaction of cells and SF-MMT nanocomposite hydrogel is partially mediated by clathrin-mediated endocytosis and its downstream processes. In vivo, the SF-MMT nanocomposite hydrogel effectively promotes osteochondral regeneration as evidenced by macroscopic, micro-CT, and histological evaluation. In conclusion, a functionalized SF-MMT nanocomposite hydrogel is developed with dual-lineage bioactivity for osteochondral regeneration, indicating its potential in osteochondral tissue engineering.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yifan Luo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jiayu Chi
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xin Tan
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qingqiang Yao
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China.,Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
14
|
Yao H, Li T, Wu Z, Tao Q, Shi J, Liu L, Zhao Y. Superlarge living hyaline cartilage graft contributed by the scale-changed porous 3D culture system for joint defect repair. Biomed Mater 2022; 17. [PMID: 35973419 DOI: 10.1088/1748-605x/ac8a31] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022]
Abstract
It is known that an excellent hyaline cartilage phenotype, an internal microstructure with safe crosslinking and available size flexibility are the key factors of cartilage grafts that allow for clinical application. Living hyaline cartilage grafts (LhCGs) constructed by phase-transfer hydrogel (PTCC) systems were reported to have a hyaline phenotype and bionic microstructure. By employing chondrocytes to secrete matrix in the hydrogel and then removing the material to obtain material-free tissue in vitro, LhCG technology exhibited superior performance in cartilage repair. However, PTCC systems could only produce small-sized LhCGs because of medium delivery limitations, which hinders the clinical application of LhCGs. In this study, we prepared three different noncrosslinked gelatin microspheres with diameters from 200 μm to 500 μm, which replaced the original pore-forming agent. The new PTCC system with the mixed and gradient porous structure was used for the preparation of superlarge LhCGs with a continuous structure and hyaline phenotype. Compared to the original technique, the porous gradient structure promoted nutrient delivery and cartilage matrix secretion. The small size of the microporous structure promoted the rapid formation of matrix junctions. The experimental group with a mixed gradient increased cartilage matrix secretion significantly by more than 50% compared to the that of the control. The LhCG final area reached 7 cm2without obvious matrix stratification in the mixed gradient group. The design of the scale-changed porous PTCC system will make LhCGs more promising for clinical application.
Collapse
Affiliation(s)
- Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, 225009, CHINA
| | - Tianliang Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Lihua Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 7#-S106, Yangzhou, Jiangsu, China, P.R. China 225009, Yangzhou, Jiangsu, 225009, CHINA
| | - Yuchi Zhao
- Department of Osteoarthropathy, Yantaishan Hospital, No.91, Jiefang Road, Zhifu District, Yantai 264001, Shangdong, P.R.China, Yantai, Shandong, 264001, CHINA
| |
Collapse
|
15
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
16
|
Xue J, Yang W, Wang X, Wang P, Meng X, Yu T, Fan C. A transcriptome sequencing study on the effect of macro-pores in hydrogel scaffolds on global gene expression of laden human cartilage chondrocytes. Biomed Mater 2022; 17. [PMID: 35609582 DOI: 10.1088/1748-605x/ac7304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
The macro-porous hydrogel scaffolds can not only enhance the proliferation of laden chondrocytes but also favor the deposition of hyaline cartilaginous extracellular matrix, however, the underlying molecular mechanism is still unclear. Herein, the global gene expression of human cartilage chondrocytes (HCCs) encapsulated in traditional hydrogel (Gel) constructs and micro-cavitary gel (MCG) constructs are investigated by using high-throughput RNA sequencing (RNA-seq). The differentially expressed genes (DEGs) between the HCCs cultured in Gel and MCG constructs have been identified via bioinformatics analysis. Significantly, the DEGs that promote cell proliferation (e.g. POSTN, MKI67, KIF20A) or neo-cartilage formation (e.g. COL2, ASPN, COMP, FMOD, FN1), are more highly expressed in MCG constructs than in Gel constructs, while the expressions of the DEGs associated with chondrocyte hypertrophy (e.g. EGR1, IBSP) are upregulated in Gel constructs. The expression of representative DEGs is verified at both mRNA and protein levels. Besides, cellular viability and morphology as well as the enriched signaling pathway of DEGs are studied in detail. These results of this work may provide data for functional tissue engineering of cartilage.
Collapse
Affiliation(s)
- Junqiang Xue
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, People's Republic of China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xinping Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Peiyan Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| |
Collapse
|
17
|
Jia DD, Jiang H, Zhang YF, Zhang Y, Qian LL, Zhang YF. The regulatory function of piRNA/PIWI complex in cancer and other human diseases: The role of DNA methylation. Int J Biol Sci 2022; 18:3358-3373. [PMID: 35637965 PMCID: PMC9134905 DOI: 10.7150/ijbs.68221] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of short chain noncoding RNAs that are constituted by 26-30 nucleotides (nt) and can couple with PIWI protein family. piRNAs were initially described in germline cells and are believed to be critical regulators of the maintenance of reproductive line. Increasing evidence has extended our perspectives on the biological significance of piRNAs and indicated that they could still affect somatic gene expression through DNA methylation, chromatin modification and transposon silencing, etc. Many studies have revealed that the dysregulation of piRNAs might contribute to diverse diseases through epigenetic changes represented by DNA methylation and chromatin modification. In this review, we summarized piRNA/PIWI protein-mediated DNA methylation regulation mechanisms and methylation changes caused by piRNA/PIWI proteins in different diseases, especially cancers. Since DNA methylation and inhibitory chromatin marks represented by histone H3 lysine 9 (H3K9) methylation frequently cooperate to silence genomic regions, we also included methylation in chromatin modification within this discussion. Furthermore, we discussed the potential clinical applications of piRNAs as a new type promising biomarkers for cancer diagnosis, as well as the significance of piRNA/PIWI protein-associated methylation changes in treatment, providing disparate insights into the potential applications of them.
Collapse
Affiliation(s)
- Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Jiang
- Department of Radiation Oncology, Sun Yat - Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Li-Li Qian
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
18
|
Lin J, Wang L, Lin J, Liu Q. Dual Delivery of TGF-β3 and Ghrelin in Microsphere/Hydrogel Systems for Cartilage Regeneration. Molecules 2021; 26:5732. [PMID: 34641274 PMCID: PMC8510483 DOI: 10.3390/molecules26195732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 11/28/2022] Open
Abstract
Articular cartilage (AC) damage is quite common, but due to AC's poor self-healing ability, the damage can easily develop into osteoarthritis (OA). To solve this problem, we developed a microsphere/hydrogel system that provides two growth factors that promote cartilage repair: transforming growth factor-β3 (TGF-β3) to enhance cartilage tissue formation and ghrelin synergy TGF-β to significantly enhance the chondrogenic differentiation. The hydrogel and microspheres were characterized in vitro, and the biocompatibility of the system was verified. Double emulsion solvent extraction technology (w/o/w) is used to encapsulate TGF-β3 and ghrelin into microspheres, and these microspheres are encapsulated in a hydrogel to continuously release TGF-β3 and ghrelin. According to the chondrogenic differentiation ability of mesenchymal stem cells (MSCs) in vitro, the concentrations of the two growth factors were optimized to promote cartilage regeneration.
Collapse
Affiliation(s)
- Jianjing Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (J.L.); (J.L.)
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Li Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (J.L.); (J.L.)
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Qiang Liu
- Arthritis Clinical and Research Center, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (J.L.); (J.L.)
- Arthritis Institute, Peking University, Beijing 100044, China
| |
Collapse
|