1
|
Lei XX, Liu ML, Lu CF, Han LL, Jia JZ, Li Z, Xu N, Li JF, Fu XJ, Jin YB, Tong RK, Yu YL, Luo GX, Chen Y. A self-hygroscopic, rapidly self-gelling polysaccharide-based sponge with robust wet adhesion for non-compressible hemorrhage control and infected wounds healing. Bioact Mater 2025; 46:311-330. [PMID: 39811462 PMCID: PMC11732608 DOI: 10.1016/j.bioactmat.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL). Upon application to the wound site, the sponge can rapidly absorb interfacial fluids and undergo a phase transition from sponge to gel. The transformed gel facilitates robust tissue adhesion and achieves synergistic hemostasis by enriching coagulation factors within the sponge phase and providing a barrier effect in the gel phase. The in vitro and in vivo studies revealed that the optimized OHN@ε-pL3 sponge possesses self-gelling capability, tissue adhesion, enhanced coagulation ability, and exhibits excellent biocompatibility and antibacterial efficacy. In hemostasis, OHN@ε-pL3 sponges exhibited reduced blood loss and decreased hemostatic time compared to commercial hemostatic agents, as demonstrated in rat liver, femoral vein, and tail truncation bleeding models. Furthermore, the OHN@ε-pL3 sponge exhibited superior performance in accelerating wound closure and healing of S. aureus-infected wounds. Collectively, OHN@ε-pL sponges represent a promising candidate for medical dressings, specifically for managing uncontrollable non-compressible hemorrhage and traumatic infections.
Collapse
Affiliation(s)
- Xiong-Xin Lei
- Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China
| | - Meng-Long Liu
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Chao-Feng Lu
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Li-Li Han
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Jie-Zhi Jia
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Zheng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Na Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jiang-Feng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Xuan-Jian Fu
- Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China
| | - Ya-Bin Jin
- Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ri-Kuan Tong
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Yun-Long Yu
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Gao-Xing Luo
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Yang Chen
- Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China
| |
Collapse
|
2
|
Wang Y, Zhang N, Zhang J, Yao R, He J, Wu F. Reinforced enzyme mineralized chitosan hydrogels with superior mechanical and osteogenic properties. Carbohydr Polym 2025; 349:123032. [PMID: 39638528 DOI: 10.1016/j.carbpol.2024.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
As a natural cationic polymer material, the application of chitosan hydrogel for bone tissue engineering has been greatly limited due to its poor mechanical strength. Enzymatic mineralization has drawn increased attention to effectively improve the mechanical properties of hydrogels. In this study, carboxymethyl chitosan (CMCS) hydrogels cross-linked with different concentrations of genipin (2.5 %, 5 % and 10 %) were prepared and further mineralized through enzyme-induced biomimetic mineralization. The mechanical properties of the CMCS hydrogels were significantly increased as a result of mineralization, showing improvement of 1200-1500 % on storage moduli, and even exhibiting certain tensile behavior with the elongation rate of 30-35 %, likely due to the uniform formation and small size of mineralized products. Interestingly, the cationicity of chitosan also exerted an important modulation effect and the mineralization behavior and mechanical properties of mineralized hydrogels. In addition, the enzymatic mineralized hydrogels showed enhanced biocompatibility and osteogenic differentiation in-vitro, likely due to its superior mechanical properties and the introduction of calcium phosphate biominerals. In vivo experiments further suggest excellent bone-forming activity for the enzymatic mineralized hydrogels. Overall, tuning cationicity and enzymatic mineralization provide an effective approach for the preparation of chitosan hydrogels with superior mechanical and biological properties for bone tissue engineering application.
Collapse
Affiliation(s)
- Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Ruijuan Yao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
3
|
Chen J, Cheng Z, Wang J, Ding H, Wang K, Deng P, Xu L, Huang J. Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation. J Biomed Mater Res B Appl Biomater 2025; 113:e35492. [PMID: 39804787 DOI: 10.1002/jbm.b.35492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 01/16/2025]
Abstract
In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities. However, the limited porosity of conventional MPC hinders the nutrient supply, gas diffusion, and cell infiltration, thereby compromising its osteogenic efficacy. This research focused on the fabrication of a highly porous MPC (CaCO3/CA-MPC) by incorporating citric acid (CA) and calcium carbonate (CaCO3) as foaming agents. The resulting material demonstrated enhanced physicochemical properties, bioactivity, and antimicrobial effects. When compared with conventional MPC, human periodontal ligament stem cells (hPDLSCs) showed improved osteogenic differentiation when cultured with CaCO3/CA-MPC. The inclusion of foaming agents significantly enhanced the antimicrobial efficacy of MPC against both Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The results of in vivo anti-infection experiments in rats revealed that 3%CaCO3/CA-MPC displayed superior bactericidal activity compared with Bio-Oss and control groups (p < 0.05), thereby enhancing the anti-infective outcomes post-bone grafting and stimulating osteogenesis in the infected bone defect region. The study demonstrated that MPC containing 3%CaCO3/CA exhibited excellent antimicrobial and osteogenic properties both in vitro and in vivo, suggesting its potential as a promising candidate as bone graft material for dental implant surgeries.
Collapse
Affiliation(s)
- Jie Chen
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ziqing Cheng
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jiawen Wang
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Huifen Ding
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Kai Wang
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ping Deng
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ling Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jiao Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| |
Collapse
|
4
|
He P, Zhao Y, Wang B, Liu G, Zhang L, Li M, Xu B, Cai W, Chu C, Cong Y. A biodegradable magnesium phosphate cement incorporating chitosan and rhBMP-2 designed for bone defect repair. J Orthop Translat 2024; 49:167-180. [PMID: 39483125 PMCID: PMC11525125 DOI: 10.1016/j.jot.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024] Open
Abstract
Background The repair of bone defects has always been a significant challenge in clinical medicine. To address this challenge, doctors often utilize autologous bone grafts, allogeneic bone grafts and artificial bone substitutes. However, the former two methods may result in additional trauma and complications, while allogeneic bone grafts carry the risks of immune rejection and disease transmission. Magnesium phosphate cement (MPC), as a artificial bone substitutes, has been a potential biomaterial for repairing bone defects, but its clinical application is limited by insufficient mechanical strength and poor osteoinductive activity. Methods In this study, the cement liquid phase base on rhBMP-2 and chitosan solution into MPC were obtained and investigated. After mixing with a cement liquid, the structural and phase composition, morphology, chemical structure, setting time, compressive strength, degradation behavior, solubility, and cellular responses and bone regeneration in response to CHI-rhBMP2 MPC were investigated in vitro and in vivo. Results After the chemical component modification, CHI-rhBMP2 MPC possessed controllable degradation rate, moderate setting time, appropriate cuing temperature, good injectability, and improved initial strength. In vitro tests showed that the CHIrhBMP2 MPC could promote cell proliferation and adhesion, as well as that contribute to osteoblast differentiation and mineralization. In addition, cement materials were implanted into the rabbit femoral condyles for in vivo osseointegration evaluation. The results displayed that more new bone grew around CHI-rhBMP2 MPC, verifying improved osseointegration capacity. Transcriptome analysis revealed that focal adhesion, Forkhead box O(FoxO) signaling pathway and P13K/AKT signaling pathway were may involved in CHI-rhBMP2 MPC induced new bone formation. Conclusion This work provides a new strategy for the rational design of potential bone repair candidate materials.
Collapse
Affiliation(s)
- Peng He
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Bin Wang
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Guoyin Liu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Lei Zhang
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Bin Xu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| |
Collapse
|
5
|
Friedmann A, Jung R, Bilhan H, Ghawi-Begovic HA, Kauffmann F, Diehl D. Reconstructive surgical therapy of peri-implant defects with ribose cross-linked collagen matrix and crosslinked hyaluronic acid - a prospective case series. Clin Oral Investig 2024; 28:536. [PMID: 39302523 PMCID: PMC11415415 DOI: 10.1007/s00784-024-05942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE To investigate the efficacy of ribose-crosslinked collagen (RCLC) matrices functionalized by crosslinked hyaluronic acid (xHya) for reconstructive treatment of class I and III (b-c) peri-implantitis lesions in a transmucosal healing mode. MATERIALS AND METHODS Thirteen patients presenting with 15 implants were included in this prospective case series. Upon flap reflection, the implants were thoroughly decontaminated employing glycine powder air polishing and adjunctive sodium hypochlorite. For defect augmentation, xHyA was administered to the bony defect walls, exposed implant surfaces, and the RCLC matrix before defect grafting. The full-thickness flap was readapted and sutured around the implant neck for transmucosal healing. Baseline and respective values at the 12 months post-op evaluation were recorded for the clinical parameters peri-implant probing depth (PPD), buccal soft tissue dehiscence (BSTD) and bleeding on probing (BoP). Furthermore, two independent investigators analyzed radiographic changes in the defect area. The mean changes for all variables were analyzed with a paired t-test. RESULTS The initial mean PPD was 7.2 ± 1.9 mm, and BoP was present in 63% of sites. After 12 months, PPD at the latest visit was 3.2 ± 0.66 mm, which amounted to a respective 3.9 ± 1.85 mm reduction, while the BoP frequency dropped to 10% at all sites. Radiographic bone fill was accomplished for 62.8% of the former defect area, accompanied by a mean MBL gain of 1.02 mm around the treated implants (all p < 0.001). CONCLUSIONS Within the limits of this case series, we conclude that the proposed treatment sequence substantially improved peri-implant defects and offered a simplified but predictive technique. CLINICAL RELEVANCE Reconstructive treatment approaches for peri-implantitis are effective but remain non-superior to open flap debridement. Further research on novel biomaterial combinations that may improve reconstructive treatment outcomes are warranted. Ribose-crosslinked collagen matrices biofunctionalized by hyaluronic acid used in this study yield improved clinical and radiographic peri-implant conditions after 12 months.
Collapse
Affiliation(s)
- Anton Friedmann
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Rico Jung
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Hakan Bilhan
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Hanan Al Ghawi-Begovic
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Frederic Kauffmann
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Daniel Diehl
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany.
| |
Collapse
|
6
|
Zhao L, Wang B, Feng S, Wu H. Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:49. [PMID: 39136848 PMCID: PMC11322508 DOI: 10.1007/s10856-024-06818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
It's imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, Hedysarum polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.
Collapse
Affiliation(s)
- Lianggong Zhao
- Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Bo Wang
- Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Huifang Wu
- Shanghai i-Reader Biotech Co., Ltd, Shanghai, 201114, P. R. China.
| |
Collapse
|
7
|
Liu X, Pei J, Zhao D, Yan Y. A novel strategy for calcium magnesium phosphate/carboxymethyl chitosan composite bone cements with enhanced physicochemical properties, excellent cytocompatibility and osteogenic differentiation. Biomed Mater 2024; 19:055014. [PMID: 38955344 DOI: 10.1088/1748-605x/ad5e2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Artificial bone substitutes for bone repair and reconstruction still face enormous challenges. Previous studies have shown that calcium magnesium phosphate cements (CMPCs) possess an excellent bioactive surface, but its clinical application is restricted due to short setting time. This study aimed to develop new CMPC/carboxymethyl chitosan (CMCS) comg of mixed powders of active MgO, calcined MgO and calcium dihydrogen phosphate monohydrate. With this novel strategy, it can adjust the setting time and improve the compressive strength. The results confirmed that CMPC/CMCS composite bone cements were successfully developed with a controllable setting time (18-70 min) and high compressive strength (87 MPa). In addition, the composite bone cements could gradually degrade in PBS with weight loss up to 32% at 28 d. They also promoted the proliferation of pre-osteoblasts, and induced osteogenic differentiation. The findings indicate that CMPC/CMCS composite bone cements hold great promise as a new type of bone repair material in further and in-depth studies.
Collapse
Affiliation(s)
- Xuesha Liu
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong 637009 Sichuan, People's Republic of China
| | - Juan Pei
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong 637009 Sichuan, People's Republic of China
| | - Dechuan Zhao
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong 637009 Sichuan, People's Republic of China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu 610064 Sichuan, People's Republic of China
| |
Collapse
|
8
|
Mi L, Li F, Xu D, Liu J, Li J, Zhong L, Liu Y, Bai N. Performance of 3D printed porous polyetheretherketone composite scaffolds combined with nano-hydroxyapatite/carbon fiber in bone tissue engineering: a biological evaluation. Front Bioeng Biotechnol 2024; 12:1343294. [PMID: 38333080 PMCID: PMC10850574 DOI: 10.3389/fbioe.2024.1343294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Polyetheretherketone (PEEK) has been one of the most promising materials in bone tissue engineering in recent years, with characteristics such as biosafety, corrosion resistance, and wear resistance. However, the weak bioactivity of PEEK leads to its poor integration with bone tissues, restricting its application in biomedical fields. This research effectively fabricated composite porous scaffolds using a combination of PEEK, nano-hydroxyapatite (nHA), and carbon fiber (CF) by the process of fused deposition molding (FDM). The experimental study aimed to assess the impact of varying concentrations of nHA and CF on the biological performance of scaffolds. The incorporation of 10% CF has been shown to enhance the overall mechanical characteristics of composite PEEK scaffolds, including increased tensile strength and improved mechanical strength. Additionally, the addition of 20% nHA resulted in a significant increase in the surface roughness of the scaffolds. The high hydrophilicity of the PEEK composite scaffolds facilitated the in vitro inoculation of MC3T3-E1 cells. The findings of the study demonstrated that the inclusion of 20% nHA and 10% CF in the scaffolds resulted in improved cell attachment and proliferation compared to other scaffolds. This suggests that the incorporation of 20% nHA and 10% CF positively influenced the properties of the scaffolds, potentially facilitating bone regeneration. In vitro biocompatibility experiments showed that PEEK composite scaffolds have good biosafety. The investigation on osteoblast differentiation revealed that the intensity of calcium nodule staining intensified, along with an increase in the expression of osteoblast transcription factors and alkaline phosphatase activities. These findings suggest that scaffolds containing 20% nHA and 10% CF have favorable properties for bone induction. Hence, the integration of porous PEEK composite scaffolds with nHA and CF presents a promising avenue for the restoration of bone defects using materials in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Lian Mi
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Feng Li
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Dian Xu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jian Liu
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jian Li
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Dental Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Na Bai
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Wenxiu L, Guojiang H, Liying Q, Wenli D, Baoqin H, Liming J, Yan Y. Fabrication of bioactive glass/phosphorylated chitosan composite scaffold and its effects on MC3T3-E1 cells. Biomed Mater 2024; 19:025002. [PMID: 38181446 DOI: 10.1088/1748-605x/ad1bb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
This study aimed to synthesize bioactive glass (BG) and phosphorylated chitosan (PCS), and fabricate a BG/PCS composite scaffold. The physical properties (mechanical strength, swelling degree, and degradation rate) of the BG/PCS scaffold were tested. Thein vitromineralization properties of composite scaffolds in simulated body fluid were investigated. MC3T3-E1 cell responses with the BG/PCS scaffold were investigated using live/dead cell staining, actin staining, alkaline phosphatase (ALP) activity, and Alizarin red staining. Our results showed that the scaffold had an inner porous structure, good swelling properties, and good degradation rate. After immersion in SBF, the scaffolds demonstrated high properties in inducing mineralization. Leaching solutions of the composite scaffolds exhibited good cytocompatibility. MC3T3-E1 cells adhered, spread, and proliferated on the scaffold. The BG/PCS composite scaffold showed osteo-inductive activity by increasing ALP activity and calcium deposition. Our results indicated that the BG/PCS scaffold had potential applications as a bone-defect repair biomaterial.
Collapse
Affiliation(s)
- Liu Wenxiu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Han Guojiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qin Liying
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dong Wenli
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Han Baoqin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jin Liming
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Yang Yan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
10
|
Yuan R, Zhou S, Xiong X, Yang D, Lin D, Li T, He B, Wei G, Qu S. Enhanced mechanic properties of calcium phosphate cements via mussel-inspired adhesive as bone substitute: Highlights of their interactions. Biomed Mater Eng 2024; 35:13-26. [PMID: 37599515 DOI: 10.3233/bme-230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Inspired by natural bones, many organic components were added to Calcium Phosphate Cements (CPCs) to improve their mechanical strength. However, the strength of these composite CPCs is limited by the low strength of organic components itself and the weak interaction between organic components and CPCs. OBJECTIVE Firstly, a composite CPC containing mussel-inspired adhesive, Poly-(Dopamine Methacrylamide-co-2-methoxy Ethylacrylate) (pDM) was developed. Secondly, the interactions between pDM and CPC and their effect on mechanical properties were investigated. METHODS The interactions between pDM and CPC were performed by Nuclear Magnetic Resonance, Laser Raman, X-ray Photoelectron Spectroscopy, Fourier Transform-Infrared Spectroscopy and X-ray Diffraction Analysis. RESULTS The toughness and compressive strength of pDM-CPC scaffold were both significantly enhanced, because of the enhanced interface binding strength among CPC and pDM due to their interaction and the improved mechanical strength of pDM owing to its self-oxidation cross-linking. The toughness of pDM-CPC scaffolds increased with the increased contents of pDM, while pDM-CPC scaffold containing 35 wt.% pDM had the highest compressive strength of all, which the latter was more than five times compared to that of CPC. CONCLUSION The mechanically strong pDM-CPC scaffolds has potential application in bone regeneration as well as in craniofacial and orthopedic repair.
Collapse
Affiliation(s)
- Rupan Yuan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Sijie Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiong Xiong
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu, China
| | - Dan Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Donghu Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Taiyi Li
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu, China
| | - Bin He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Guihua Wei
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu, China
| | - Shuxin Qu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
11
|
Christie B, Musri N, Djustiana N, Takarini V, Tuygunov N, Zakaria M, Cahyanto A. Advances and challenges in regenerative dentistry: A systematic review of calcium phosphate and silicate-based materials on human dental pulp stem cells. Mater Today Bio 2023; 23:100815. [PMID: 37779917 PMCID: PMC10539671 DOI: 10.1016/j.mtbio.2023.100815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Conventional dentistry faces limitations in preserving tooth health due to the finite lifespan of restorative materials. Regenerative dentistry, utilizing stem cells and bioactive materials, offers a promising approach for regenerating dental tissues. Human dental pulp stem cells (hDPSCs) and bioactive materials like calcium phosphate (CaP) and silicate-based materials have shown potential for dental tissue regeneration. This systematic review aims to investigate the effects of CaP and silicate-based materials on hDPSCs through in vitro studies published since 2015. Following the PRISMA guidelines, a comprehensive search strategy was implemented in PubMed MedLine, Cochrane, and ScienceDirect databases. Eligibility criteria were established using the PICOS scheme. Data extraction and risk of bias (RoB) assessment were conducted, with the included studies assessed for bias using the Office of Health and Translation (OHAT) RoB tool. The research has been registered at OSF Registries. Ten in vitro studies met the eligibility criteria out of 1088 initial studies. Methodological heterogeneity and the use of self-synthesized biomaterials with limited generalizability were observed in the included study. The findings highlight the positive effect of CaP and silicate-based materials on hDPSCs viability, adhesion, migration, proliferation, and differentiation. While the overall RoB assessment indicated satisfactory credibility of the reviewed studies, the limited number of studies and methodological heterogeneity pose challenges for quantitative research. In conclusion, this systematic review provides valuable insights into the effects of CaP and silicate-based materials on hDPSCs. Further research is awaited to enhance our understanding and optimize regenerative dental treatments using bioactive materials and hDPSCs, which promise to improve patient outcomes.
Collapse
Affiliation(s)
- B. Christie
- Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Musri
- Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Djustiana
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - V. Takarini
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Tuygunov
- Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - M.N. Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - A. Cahyanto
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor, 45363, Indonesia
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
12
|
Chen L, Zhang S, Zhang B, Liang Q, Luo D, Yu X, Yao B, Zhao K, Yang Z, Tang Y, Wu Z. Study on the poly(methyl methacrylate-acrylic acid)/calcium phosphate cement composite bound by chelation with enhanced water absorption and biomechanical properties. J Mech Behav Biomed Mater 2023; 147:106149. [PMID: 37782989 DOI: 10.1016/j.jmbbm.2023.106149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Polymethylmethacrylate (PMMA) bone cement has been widely used as a critical material for fixing prostheses and filling bone defects. The shrinkage of PMMA bone cement was addressed by the additives, however, the uneven integral water absorption and expansion performance as well as the deteriorated mechanical properties of the modified bone cement after immersion in phosphate buffered saline (PBS) and simulation body fluid (SBF) affected the long-term stability after implantation. Calcium phosphate cement (CPC) is a biomaterial with promising applications in orthopedics, whose hydration reaction provides an important driving force for the transfer of water. Besides, the mechanical properties of CPC can be enhanced with the curing process. In this study, CPC was utilized to modify the poly(methyl methacrylate-acrylic acid) [P(MMA-AA)] bone cement. The results demonstrated the successful construction of interconnected CPC water delivery networks in the P(MMA-AA)/CPC composite, the water absorption ratio and expansion ratio of the composite were up to 131.18 ± 9.14% and 168.19 ± 5.44%, respectively. Meanwhile, the transformation of CPC water delivery networks into rigid mechanical support networks as well as the chelation interaction between organic-inorganic enhanced the mechanical properties of the composite after immersion, the compressive strength after immersion reached 62.97 ± 0.97 MPa, which was 27.65% higher than that before immersion. The degradation ratio of the composite was up to 13.76 ± 0.23% after 9 days of immersion, which was 16.4% higher than that of CPC. Furthermore, composites exhibited superior biocompatibility as the release of Ca2+. Therefore, P(MMA-AA)/CPC composite serves as a promising medical filling material for clinical use.
Collapse
Affiliation(s)
- Lei Chen
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Shitong Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Bo Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Qian Liang
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Dong Luo
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Xiaojiao Yu
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Binghua Yao
- School of Science, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Kang Zhao
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Zhao Yang
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Yufei Tang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Zixiang Wu
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
13
|
Shukla P, Sinha R, Anand S, Srivastava P, Mishra A. Tapping on the Potential of Hyaluronic Acid: from Production to Application. Appl Biochem Biotechnol 2023; 195:7132-7157. [PMID: 36961510 DOI: 10.1007/s12010-023-04461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
The manufacture, purification, and applications of hyaluronic acid (HA) are discussed in this article. Concerning the growing need for affordable, high-quality HA, it is essential to consider diverse production techniques using renewable resources that pose little risk of cross-contamination. Many microorganisms can now be used to produce HA without limiting the availability of raw materials and in an environmentally friendly manner. The production of HA has been associated with Streptococci A and C, explicitly S. zooepidemicus and S. equi. Different fermentation techniques, including the continuous, batch, fed-batch, and repeated batch culture, have been explored to increase the formation of HA, particularly from S. zooepidemicus. The topic of current interest also involves a complex broth rich in metabolites and residual substrates, intensifying downstream processes to achieve high recovery rates and purity. Although there are already established methods for commercial HA production, the anticipated growth in trade and the diversification of application opportunities necessitate the development of new procedures to produce HA with escalated productivity, specified molecular weights, and purity. In this report, we have enacted the advancement of HA technical research by analyzing bacterial biomanufacturing elements, upstream and downstream methodologies, and commercial-scale HA scenarios.
Collapse
Affiliation(s)
- Priya Shukla
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Shubhankar Anand
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
14
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
15
|
Lukina Y, Safronova T, Smolentsev D, Toshev O. Calcium Phosphate Cements as Carriers of Functional Substances for the Treatment of Bone Tissue. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4017. [PMID: 37297151 PMCID: PMC10254876 DOI: 10.3390/ma16114017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Interest in calcium phosphate cements as materials for the restoration and treatment of bone tissue defects is still high. Despite commercialization and use in the clinic, the calcium phosphate cements have great potential for development. Existing approaches to the production of calcium phosphate cements as drugs are analyzed. A description of the pathogenesis of the main diseases of bone tissue (trauma, osteomyelitis, osteoporosis and tumor) and effective common treatment strategies are presented in the review. An analysis of the modern understanding of the complex action of the cement matrix and the additives and drugs distributed in it in relation to the successful treatment of bone defects is given. The mechanisms of biological action of functional substances determine the effectiveness of use in certain clinical cases. An important direction of using calcium phosphate cements as a carrier of functional substances is the volumetric incorporation of anti-inflammatory, antitumor, antiresorptive and osteogenic functional substances. The main functionalization requirement for carrier materials is prolonged elution. Various release factors related to the matrix, functional substances and elution conditions are considered in the work. It is shown that cements are a complex system. Changing one of the many initial parameters in a wide range changes the final characteristics of the matrix and, accordingly, the kinetics. The main approaches to the effective functionalization of calcium phosphate cements are considered in the review.
Collapse
Affiliation(s)
- Yulia Lukina
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
- Faculty of Digital Technologies and Chemical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Tatiana Safronova
- Department of Chemistry, Lomonosov Moscow State University, Building 3, Leninskie Gory 1, 119991 Moscow, Russia;
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| | - Dmitriiy Smolentsev
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
| | - Otabek Toshev
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| |
Collapse
|
16
|
Li S, Zhang L, Liu C, Kim J, Su K, Chen T, Zhao L, Lu X, Zhang H, Cui Y, Cui X, Yuan F, Pan H. Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement to repair critical bone defects. Bioact Mater 2023; 23:101-117. [DOI: 10.1016/j.bioactmat.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
|
17
|
Jabbari F, Babaeipour V, Saharkhiz S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int J Biol Macromol 2023; 240:124484. [PMID: 37068534 DOI: 10.1016/j.ijbiomac.2023.124484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Hyaluronic acid (HA), an anionic and nonsulfated glycosaminoglycan, is the main structural component of various tissues and plays an important role in various biological processes. Given the promising properties of HA, such as high cellular compatibility, moisture retention, antiaging, proper interaction with cells, and CD44 targeting, HA can be widely used extensively in drug delivery, tissue engineering, wound healing, and cancer therapy. HA can obtain from animal tissues and microbial fermentation, but its applications depend on its molecular weight. Microbial fermentation is a common method for HA production on an industrial scale and S. zooepidemicus is the most frequently used strain in HA production. Culture conditions including pH, temperature, agitation rate, aeration speed, shear stress, dissolved oxygen, and bioreactor type significantly affect HA biosynthesis properties. In this review all the HA production methods and purification techniques to improve its physicochemical and biological properties for various biomedical applications are discussed in details. In addition, we showed that how HA molecular weight can significantly affect its properties and applications.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran.
| | - Saeed Saharkhiz
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
18
|
Ding J, Zhao J, Wang L, Chen X, Jiang D, Qin M, Zhu Z, Wang D, Jia W. Regulated contribution of local and systemic immunity to new bone regeneration by modulating B/Sr concentration of bioactive borosilicate glass. Mater Today Bio 2023; 19:100585. [PMID: 36896413 PMCID: PMC9988577 DOI: 10.1016/j.mtbio.2023.100585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The local immune response induced by bioactive borosilicate glass (BG) plays a vital role in bone regeneration, but its effect in the systemic immune response of distal tissues, such as spleen, remains unknown. In this study, the network structures and the relative theoretical structural descriptors (Fnet) of the novel BG composition containing boron (B) and strontium (Sr) were calculated and stimulated by molecular dynamics (MD) simulation, and the linear relationships of Fnet and B and Sr releasing rate in pure water and simulate body fluid were built. Next, the synergistic effects of the released B and Sr on promoting osteogenic differentiation, angiogenesis, and macrophage polarization were analyzed in vitro and convinced in rats skull models in vivo. Results show that the optimal synergistic effects of B and Sr both in vitro and in vivo released from 1393B2Sr8 BG increased vessel regeneration, modulated M2 macrophages polarization and promoted new-bone formation. Interestingly, the 1393B2Sr8 BG was found to mobilize monocytes from the spleen to the defects and subsequently modulate them into M2 macrophages. Then, these modulated cells cycled from the bone defects back to the spleen. To analyze the necessity of spleen-derived immune cells in bone regeneration, two contrasting rat models (with/without spleen) of skull defects were furtherly established. As results, rats without spleen had fewer M2 macrophages surrounding skull defects and the bone tissues recovered more slowly, indicating the beneficial effects on bone regeneration of circulating monocytes and polarized macrophages provided by spleen. The present study provides a new approach and strategy in optimizing complex composition of novel BG and sheds light on the importance of spleen through modulating systemic immune response to contribute to local bone regeneration.
Collapse
Affiliation(s)
- Jingxin Ding
- School of Materials and Engineering, Tongji University, Shanghai, 201804, China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lingtian Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaochen Chen
- School of Materials and Engineering, Tongji University, Shanghai, 201804, China
| | - Dajun Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Muyan Qin
- School of Materials and Engineering, Tongji University, Shanghai, 201804, China
| | - Ziyang Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Deping Wang
- School of Materials and Engineering, Tongji University, Shanghai, 201804, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
19
|
Wang J, Cheng Z, Chen D, Li G, Chen J, Wang K, Xu L, Huang J. An injectable porous bioactive magnesium phosphate bone-cement foamed with calcium carbonate and citric acid for periodontal bone regeneration. J Mech Behav Biomed Mater 2023; 142:105805. [PMID: 37087954 DOI: 10.1016/j.jmbbm.2023.105805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
Abstract
Magnesium phosphate cement (MPC) has been evaluated as a novel bone substitute owing to its favorable biocompatibility, plasticity, and osteogenic potential. However, the low porosity of MPC prevents growth factors and osteoblasts from fully growing into the material, thereby limiting its clinical use. In this study, different concentrations (0-5%) of calcium carbonate and citric acid (CA) were used as foaming agents to prepare porous MPC. The MPC containing 3% CaCO3/CA exhibited the best physicochemical properties, including greater porosity, improved injectability, extended setting time, and decreased hydration temperature. The proliferation and adhesion of cells on 3%CaCO3/CA-MPC were higher than those on MPC alone. To explore its osteogenesis in vivo, 3% CaCO3/CA-MPC and Bio-Oss® bone powder were implanted into periodontal bone defects in rats for 4 weeks and 12 weeks, respectively. Micro-CT and histological analysis demonstrated the improved bone regeneration of 3%CaCO3/CA-MPC compared to the blank group (P < 0.05); it had slightly lower bone regeneration than the Bio-Oss® group but no statistical difference. The results indicated that porous MPC foamed with calcium carbonate and CA improved its physicochemical properties and enhanced its biocompatibility, making it a promising material for bone regeneration.
Collapse
|
20
|
Shojaei S, Shahgholi M, Karimipour A. The effects of atomic percentage and size of Zinc nanoparticles, and atomic porosity on thermal and mechanical properties of reinforced calcium phosphate cement by molecular dynamics simulation. J Mech Behav Biomed Mater 2023; 141:105785. [PMID: 36958069 DOI: 10.1016/j.jmbbm.2023.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
This study used the molecular dynamics (MD) simulation method to assess the effects of different percentages of NPs, sizes, and percentages of porosity on reinforced cement thermal behavior (TB) and mechanical behavior (MB) of samples. The temperature and kinetic energy (KE) converged to 300 K and 35.42 eV after 10 ns, which indicated the thermodynamic equilibrium and the atomic stability in the structures. Increasing the NPs percentage from 1% to 3% increased the maximum temperature from 1364 to 1405 K. By further increasing it to 5%, it was reduced to 1361 K. As the radius of Zn NPs increased to 16 Å, the ultimate strength (US) and Young's Modulus (YM) increased from 1.07 to 0.19 MPa to 1.2 and 0.22 MPa. The increase in the NPs' radius to 16 Å caused an increase in the maximum temperature from 1405 to 1455 K, maintaining atomic stability. As the porosity increased from 1% to 5%, the US and YM reduced from 0.91 to 0.17 MPa to 0.81 and 0.15 MPa. As the porosity increased from 1% to 5%, the maximum temperature was reduced from 1400 K to 1384 K. According to the results, Zn NPs' percentage and size effectively improved the MB of the final cement.
Collapse
Affiliation(s)
- Shakour Shojaei
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohamad Shahgholi
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Arash Karimipour
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
21
|
Cai P, Lu S, Yu J, Xiao L, Wang J, Liang H, Huang L, Han G, Bian M, Zhang S, Zhang J, Liu C, Jiang L, Li Y. Injectable nanofiber-reinforced bone cement with controlled biodegradability for minimally-invasive bone regeneration. Bioact Mater 2023; 21:267-283. [PMID: 36157242 PMCID: PMC9477970 DOI: 10.1016/j.bioactmat.2022.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Injectable materials show their special merits in regeneration of damaged/degenerated bones in minimally-invasive approach. Injectable calcium phosphate bone cement (CPC) has attracted broad attention for its bioactivity, as compared to non-degradable polymethyl methacrylate cement. However, its brittleness, poor anti-washout property and uncontrollable biodegradability are the main challenges to limit its further clinical application mainly because of its stone-like dense structure and fragile inorganic-salt weakness. Herein, we developed a kind of injectable CPC bone cement with porous structure and improved robustness by incorporating poly(lactide-co-glycolic acid) (PLGA) nanofiber into CPC, with carboxymethyl cellulose (CMC) to offer good injectability as well as anti-wash-out capacity. Furthermore, the introduction of PLGA and CMC also enabled a formation of initial porous structure in the cements, where PLGA nanofiber endowed the cement with a dynamically controllable biodegradability which provided room for cell movement and bone ingrowth. Interestingly, the reinforced biodegradable cement afforded a sustainable provision of Ca2+ bioactive components, together with its porous structure, to improve synergistically new bone formation and osteo-integration in vivo by using a rat model of femur condyle defect. Further study on regenerative mechanisms indicated that the good minimally-invasive bone regeneration may come from the synergistic enhanced osteogenic effect of calcium ion enrichment and the improved revascularization capacity contributed from the porosity as well as the lactic acid released from PLGA nanofiber. These results indicate the injectable bone cement with high strength, anti-washout property and controllable biodegradability is a promising candidate for bone regeneration in a minimally-invasive approach. Poly (lactide-co-glycolide) nanofiber incorporation reinforces the brittle CPC bone cement. The introduction of carboxymethyl cellulose offers good injectability and anti-washout resistance. PLGA nanofiber controllable biodegradability dynamically creates potential pores for bone formation and ingrowth. The cement continuously releases Ca2+ and lactic acid to improve bone regeneration and revascularization efficacy.
Collapse
|
22
|
Pillai A, Chakka J, Heshmathi N, Zhang Y, Alkadi F, Maniruzzaman M. Multifunctional Three-Dimensional Printed Copper Loaded Calcium Phosphate Scaffolds for Bone Regeneration. Pharmaceuticals (Basel) 2023; 16:ph16030352. [PMID: 36986452 PMCID: PMC10052742 DOI: 10.3390/ph16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Bone regeneration using inorganic nanoparticles is a robust and safe approach. In this paper, copper nanoparticles (Cu NPs) loaded with calcium phosphate scaffolds were studied for their bone regeneration potential in vitro. The pneumatic extrusion method of 3D printing was employed to prepare calcium phosphate cement (CPC) and copper loaded CPC scaffolds with varying wt% of copper nanoparticles. A new aliphatic compound Kollisolv MCT 70 was used to ensure the uniform mixing of copper nanoparticles with CPC matrix. The printed scaffolds were studied for physico-chemical characterization for surface morphology, pore size, wettability, XRD, and FTIR. The copper ion release was studied in phosphate buffer saline at pH 7.4. The in vitro cell culture studies for the scaffolds were performed using human mesenchymal stem cells (hMSCs). The cell proliferation study in CPC-Cu scaffolds showed significant cell growth compared to CPC. The CPC-Cu scaffolds showed improved alkaline phosphatase activity and angiogenic potential compared to CPC. The CPC-Cu scaffolds showed significant concentration dependent antibacterial activity in Staphylococcus aureus. Overall, the CPC scaffolds loaded with 1 wt% Cu NPs showed improved activity compared to other CPC-Cu and CPC scaffolds. The results showed that copper has improved the osteogenic, angiogenic and antibacterial properties of CPC scaffolds, facilitating better bone regeneration in vitro.
Collapse
|
23
|
Yu L, Gao T, Li W, Yang J, Liu Y, Zhao Y, He P, Li X, Guo W, Fan Z, Dai H. Carboxymethyl chitosan-alginate enhances bone repair effects of magnesium phosphate bone cement by activating the FAK-Wnt pathway. Bioact Mater 2023; 20:598-609. [PMID: 35846837 PMCID: PMC9256840 DOI: 10.1016/j.bioactmat.2022.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
There is a continuing need for artificial bone substitutes for bone repair and reconstruction, Magnesium phosphate bone cement (MPC) has exceptional degradable properties and exhibits promising biocompatibility. However, its mechanical strength needs improved and its low osteo-inductive potential limits its therapeutic application in bone regeneration. We functionally modified MPC by using a polymeric carboxymethyl chitosan-sodium alginate (CMCS/SA) gel network. This had the advantages of: improved compressive strength, ease of handling, and an optimized interface for bioactive bone in-growth. The new composites with 2% CMCS/SA showed the most favorable physicochemical properties, including mechanical strength, wash-out resistance, setting time, injectable time and heat release. Biologically, the composite promoted the attachment and proliferation of osteoblast cells. It was also found to induce osteogenic differentiation in vitro, as verified by expression of osteogenic markers. In terms of molecular mechanisms, data showed that new bone cement activated the Wnt pathway through inhibition of the phosphorylation of β-catenin, which is dependent on focal adhesion kinase. Through micro-computed tomography and histological analysis, we found that the MPC-CMCS/SA scaffolds, compared with MPC alone, showed increased bone regeneration in a rat calvarial defect model. Overall, our study suggested that the novel composite had potential to help repair critical bone defects in clinical practice. CMCS/SA improves the mechanical strength of MPC while minimizing tissue damage. The MPC-CMCS/SA composite is easily manipulable for clinical application. MPC-CMCS/SA has good biocompatibility, and is easier for cell adhesion and proliferation. The MPC-CMCS/SA composite enhances osteogenic differentiation in vitro through the integrin-FAK-Wnt axis. The MPC-CMCS/SA composite enhances critical bone defect repair in vivo.
Collapse
|
24
|
Application and translation of nano calcium phosphates in biomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
25
|
Zhang H, Cui Y, Zhuo X, Kim J, Li H, Li S, Yang H, Su K, Liu C, Tian P, Li X, Li L, Wang D, Zhao L, Wang J, Cui X, Li B, Pan H. Biological Fixation of Bioactive Bone Cement in Vertebroplasty: The First Clinical Investigation of Borosilicate Glass (BSG) Reinforced PMMA Bone Cement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51711-51727. [PMID: 36354323 DOI: 10.1021/acsami.2c15250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PMMA bone cement has been clinically used for decades in vertebroplasty due to its high mechanical strength and satisfactory injectability. However, the interface between bone and PMMA is fragile and more prone to refracture in situ because PMMA lacks a proper biological response from the host bone with minimal bone integration and dense fibrous tissue formation. Here, we modified PMMA by incoporating borosilicate glass (BSG) with a dual glass network of [BO3] and [SiO4], which spontaneously modulates immunity and osteogenesis. In particular, the BSG modified PMMA bone cement (abbreviated as BSG/PMMA cement) provided an alkaline microenvironment that spontaneously balanced the activities between osteoclasts and osteoblasts. Furthermore, the trace elements released from the BSGs enhanced the osteogenesis to strengthen the interface between the host bone and the implant. This study shows the first clinical case after implantation of BSG/PMMA for three months using the dual-energy CT, which found apatite nucleation around PMMA instead of fibrous tissues, indicating the biological interface was formed. Therefore, BSG/PMMA is promising as a biomaterial in vertebroplasty, overcoming the drawback of PMMA by improving the biological response from the host bone.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yinglin Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xianglong Zhuo
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Jua Kim
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Honglong Li
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Shuaijie Li
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hongsheng Yang
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Kun Su
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Tian
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Limin Zhao
- Shenzhen Longhua District Central Hospital/The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen 518110, China
| | - Jianyun Wang
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bing Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
26
|
Paladini F, Pollini M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6952. [PMID: 36234293 PMCID: PMC9572978 DOI: 10.3390/ma15196952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
27
|
Wei Y, Chen M, Li M, Wang D, Cai K, Luo Z, Hu Y. Aptamer/Hydroxyapatite-Functionalized Titanium Substrate Promotes Implant Osseointegration via Recruiting Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42915-42930. [PMID: 36107718 DOI: 10.1021/acsami.2c10809] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endowing bone regeneration materials with both stem cell recruitment and osteoinduction properties is a key factor in promoting osseointegration of titanium (Ti) implants. In this study, Apt19s-grafted oxidized hyaluronic acid (OHA) was deposited onto a protein-mediated biomineralization hydroxyapatite (HAp) coating of Ti. HAp was achieved by the treatment of lysozyme and tris(2-carboxyethyl) phosphonate mixture and then soaked in calcium ion (Ca2+) solution to obtain functional Ti substrate (Ti/HAp/OHA-Apt). In vitro studies confirmed that Ti/HAp/OHA-Apt could effectively maintain the sustained release of Apt19s from Ti for 7 days. The released Apt19s significantly enhanced the migration of bone marrow mesenchymal stem cells (MSCs), which was reflected by the experiment of transwell assay, wound healing, and zymogram detection. Compared with pure Ti, Ti/HAp/OHA-Apt was able to adjust the adsorption of functional proteins at the Ti-based interface to expose their active sites, which significantly increased the expression of adhesion-associated proteins (vinculin and tensin) in MSCs to promote their adhesion on Ti-based interface. In vitro cell experiments of alkaline phosphatase activity staining, mineralization detection, and expression of osteogenesis-related genes showed that Ti/HAp/OHA-Apt significantly enhanced the osteogenic differentiation ability of MSCs, which may be highly related to the porous structure of hydroxyapatite on Ti interface. In vivo test of Micro-CT, H&E staining, and histochemical staining further confirmed that Ti/HAp/OHA-Apt was able to promote MSC recruitment at the peri-implant interface to form new bone. This work provides a new approach to develop functional Ti-based materials for bone defect repair.
Collapse
Affiliation(s)
- Yujia Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Dong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
28
|
The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration. Carbohydr Polym 2022; 291:119550. [DOI: 10.1016/j.carbpol.2022.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
|
29
|
Meng W, Liu Y, Zhu Z, Liu S, Shen Y, Liu S. Injectable Hyaluronic Acid/Human Umbilical Cord Mesenchymal Stem Cells/Bone Morphogenetic Protein-2 Promotes the Repair of Radial Bone Defects in Rabbits. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Bone defects are common in orthopedics and can be caused by congenital diseases, trauma, infection, tumors and other reasons. The treatment of large-scale bone defects is a clinical problem faced by orthopedists. The development of tissue engineering technology is
expected to solve this problem. Objective: To explore the effect of injectable hyaluronic acid/hUCMSC/BMP-2 on the healing of rabbit radial bone defects. Methods: X-ray examination and tissue specimens were examined to macroscopically observe bone defect healing; tetracycline
fluorescence and vonKossa staining were performed to observe the formation of new bone, and H&E staining was performed to examine cartilage and trabecular bone formation. Results: The injectable hyaluronic acid/hUCMSC/BMP-2 could significantly promote the early repair of bone defects
and accelerate the process of bone formation. Conclusion: The direct injection of hyaluronic acid/hUCMSC/BMP-2 into afresh bone defect site has a significant beneficial effect on early repair of the bone defect.
Collapse
Affiliation(s)
- Weidong Meng
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| | - Yanjun Liu
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| | - Zhehui Zhu
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| | - Shenghang Liu
- Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Yong Shen
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| | - Shizhang Liu
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, China
| |
Collapse
|
30
|
El-Fiqi A, Kim JH, Kim HW. Highly bioactive bone cement microspheres based on α-tricalcium phosphate microparticles/mesoporous bioactive glass nanoparticles: Formulation, physico-chemical characterization and in vivo bone regeneration. Colloids Surf B Biointerfaces 2022; 217:112650. [PMID: 35763895 DOI: 10.1016/j.colsurfb.2022.112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Calcium phosphate cement (CPC) is a self-setting, biocompatible and osteoconductive bone cement, however its use as a bone substitute is still limited owing to its low bioactivity (i.e. its slow in vivo resorption and slow new bone formation rate) which is a challenging issue to be addressed. Herein, we report for the first time highly bioactive bone cement microspheres formulated from a cement paste containing α-tricalcium phosphate microparticles (α-TCP) and mesoporous calcium silicate bioactive glass nanoparticles (mesoporous BGn) using a water-in-oil emulsion method. Indeed, bioactive microspheres possess high potential as bone defect fillers for bone regeneration. The α-TCP microparticles were prepared by a solid state synthesis at 1400 ºC while mesoporous BGn were synthesized by template-assissted ultrasound-mediated sol-gel method. The particle size distribution of as-prepared cement microspheres was in the range of 200 - 450 µm with a sphericity index in the range of 0.92 - 0.94. The surface morphology of α-TCP microspheres revealed α-TCP micoparticles with smooth surfaces whereas α-TCP/BGn microspheres unveiled nano-roughened α-TCP microparticles. The as-prepared α-TCP/BGn cement microspheres exhibited larger specific surface area ca 18.6 m2/g, sustained release of soluble silicate (SiO44-) ions (118 ppm within a week) and high protein adsorption capacity (252 mg/g). Notably, the α-TCP/BGn cement microspheres showed excellent in vitro surface bioactivity via formation of massive amounts of bone-like hydroxyapatite spherules and aggregates on their surfaces after soaking in simulated body fluid. Importantly, the in vivo implantation of as-prepared α-TCP/BGn cement microspheres in rat calvarial critical size bone defects for 6 weeks unveiled high in vivo bioactivity in terms of substantial new bone ingrowth and significant new bone formation within the bone defect as evidenced by histological analyses, X-ray radiography and micro-computed tomography evaluations.
Collapse
Affiliation(s)
- Ahmed El-Fiqi
- Glass Research Department, National Research Centre, Cairo 12622, Egypt.
| | - Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
31
|
Zhang R, Lin M, Wang C, Li Y, Li Y, Zou Q. Bioinspired fabrication of EDC-crosslinked gelatin/nanohydroxyapatite injectable microspheres for bone repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2082423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Rui Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Mingyue Lin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Chenxin Wang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yufan Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Ding H, Xu P, Yu X, Hu M, Wan C, Lei N, Luo Y, Yu X. The Construction of a Self-assembled Coating with Chitosan-Grafted Reduced Graphene Oxide on Porous Calcium Polyphosphate Scaffolds for Bone Tissue Engineering. Biomed Mater 2022; 17. [PMID: 35545061 DOI: 10.1088/1748-605x/ac6eab] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Bone regeneration in large bone defects remains one of the major challenges in orthopedic surgery. Calcium polyphosphate (CPP) scaffolds possess excellent biocompatibility and exhibits good bone ingrowth. However, the present CPP scaffolds lack enough osteoinductive activity to facilitate bone regeneration at bone defects that exceed the critical size threshold. To endow CPP scaffolds with improved osteoinductive activity for better bone regeneration, in this study, a self-assembled coating with chitosan-grafted reduced graphene oxide (CS-rGO) sheets was successfully constructed onto the surface of CPP scaffolds through strong electrostatic interaction and hydrogen bonds. Our results showed that the obtained CPP/CS-rGO composite scaffolds exhibited highly improved biomineralization and considerable antibacterial activity. More importantly, CPP/CS-rGO composite scaffolds could drive osteogenic differentiation of BMSCs and significantly up-regulate the expression of osteogenesis-related proteins in vitro. Meanwhile, the CS-rGO coating could inhibit aseptic loosening and improve interfacial osseointegration through stimulating BMSCs to secrete more OPG and lesser RANKL. Overall, the CS-rGO coating adjusts CPP scaffolds' biological environment interface and endows CPP scaffolds with more bioactivity.
Collapse
Affiliation(s)
- Hongmei Ding
- Sichuan University College of Polymer Science and Engineering, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Peng Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, Chengdu, 621000, CHINA
| | - Xiaoshuang Yu
- Sichuan University College of Polymer Science and Engineering, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Mengyue Hu
- Sichuan University College of Polymer Science and Engineering, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Chang Wan
- Sichuan University College of Polymer Science and Engineering, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Ningning Lei
- Sichuan University College of Polymer Science and Engineering, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Yihao Luo
- Sichuan University College of Polymer Science and Engineering, Chengdu, Chengdu, Sichuan, 610065, CHINA
| | - Xixun Yu
- Sichuan University College of Polymer Science and Engineering, Chengdu, Chengdu, Sichuan, 610065, CHINA
| |
Collapse
|
33
|
Zhang X, Wang C, Wu J, Zheng B, Chen S, Ma M, Shi Y, He H, Wang X. An on-demand and on-site shape-designable mineralized hydrogel with calcium supply and inflammatory warning properties for cranial repair applications. J Mater Chem B 2022; 10:3541-3549. [PMID: 35420114 DOI: 10.1039/d2tb00456a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although more than 2.2 million cranial repair surgical operations are performed every year, orthopedic doctors still dream of excellent artificial repair materials with suitable strength, on-site and on-demand fast-shaping properties, and bone induction properties. However, fast-shaping and high-strength properties seem to contradict each other, and even mineralized hydrogels, which already have excellent strength and bone induction properties, are not ideal candidates, since they lack the plasticity needed for complex craniofacial surface use during the essential mechanism of the process of the cleavage of inorganic ions, nucleation, and growth. Here, we report a novel mineralized hydrogel based on dispersing mineral ions prior to use and then inducing inorganic formation by decreasing the temperature, which endows the hydrogels with the characteristics of precise customization at an appropriate degree of mineralization and simultaneously achieves suitable mechanical properties and sufficient calcium supply for bone regeneration. Additionally, the calcium ion content in the water of the matrix will change with the temperature, and, thus, the conductivity of the mineralized hydrogels will change accordingly. This implements the ability to warn of inflammation in a timely fashion in the form of a temperature sensor. Therefore, this temperature-responsive hydrogel effectively achieves the aim of versatile material design.
Collapse
Affiliation(s)
- Xin Zhang
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| | - Cheng Wang
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| | - Jiangjie Wu
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| | - Ben Zheng
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| | - Si Chen
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| | - Meng Ma
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| | - Yanqin Shi
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| | - Huiwen He
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| | - Xu Wang
- College of Materials Science& Engineering, Zhejiang University of Technology, Zhejiang, China.
| |
Collapse
|
34
|
Eldeeb AE, Salah S, Mabrouk M, Amer MS, Elkasabgy NA. Dual-Drug Delivery via Zein In Situ Forming Implants Augmented with Titanium-Doped Bioactive Glass for Bone Regeneration: Preparation, In Vitro Characterization, and In Vivo Evaluation. Pharmaceutics 2022; 14:274. [PMID: 35214007 PMCID: PMC8876030 DOI: 10.3390/pharmaceutics14020274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
In situ forming implants (IFIs) are non-surgical approach using biodegradable polymers to treat bone fractures. The study aimed at preparing dual-drug-loaded IFIs to deliver pitavastatin (osteogenic drug) and tedizolid (antibiotic) using zein as the implant matrix via solvent-induced phase inversion method. At first, several investigations were done on pitavastatin-loaded zein IFIs, where three concentrations of zein were used (10, 20, and 30% w/v). IFIs were evaluated for their solidification time, rheological properties, injectability, and in vitro release. IFIs containing bioactive glass nanoparticles were prepared by the addition of non-doped bioactive glass nanoparticles (BGT0; 1, 3, 5, and 10% w/v) or titanium-doped bioactive glass nanoparticles (BGT5; 1% w/v) to the selected concentration of zein (30% w/v) and then evaluated. The optimized dual-medicated implant (D-ZIFI 1) containing pitavastatin, tedizolid, sodium hyaluronate (3% w/v), and BGT5 (1% w/v) was prepared and compared to IFI lacking both sodium hyaluronate and BGT5 (D-ZIFI 2). D-ZIFI 1 and 2 sustained the release profiles of both drugs for 28 days. SEM images proved the interconnected porous structure of D-ZIFI 1 due to sodium hyaluronate. In vivo studies on surgically induced bone defects in Sprague-Dawley rats signified the proper accelerated bone healing ability of D-ZIFI 1 over D-ZIFI 2. Results presented D-ZIFI 1 as a promising, effective, non-surgical approach for bone healing.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (S.S.); (N.A.E.)
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (S.S.); (N.A.E.)
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza 12622, Egypt;
| | - Mohammed S. Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt;
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (S.S.); (N.A.E.)
| |
Collapse
|
35
|
A Review on the Enhancement of Calcium Phosphate Cement with Biological Materials in Bone Defect Healing. Polymers (Basel) 2021; 13:polym13183075. [PMID: 34577976 PMCID: PMC8472520 DOI: 10.3390/polym13183075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.
Collapse
|
36
|
Sikkema R, Keohan B, Zhitomirsky I. Hyaluronic-Acid-Based Organic-Inorganic Composites for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4982. [PMID: 34501070 PMCID: PMC8434239 DOI: 10.3390/ma14174982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Applications of natural hyaluronic acid (HYH) for the fabrication of organic-inorganic composites for biomedical applications are described. Such composites combine unique functional properties of HYH with functional properties of hydroxyapatite, various bioceramics, bioglass, biocements, metal nanoparticles, and quantum dots. Functional properties of advanced composite gels, scaffold materials, cements, particles, films, and coatings are described. Benefiting from the synergy of properties of HYH and inorganic components, advanced composites provide a platform for the development of new drug delivery materials. Many advanced properties of composites are attributed to the ability of HYH to promote biomineralization. Properties of HYH are a key factor for the development of colloidal and electrochemical methods for the fabrication of films and protective coatings for surface modification of biomedical implants and the development of advanced biosensors. Overcoming limitations of traditional materials, HYH is used as a biocompatible capping, dispersing, and structure-directing agent for the synthesis of functional inorganic materials and composites. Gel-forming properties of HYH enable a facile and straightforward approach to the fabrication of antimicrobial materials in different forms. Of particular interest are applications of HYH for the fabrication of biosensors. This review summarizes manufacturing strategies and mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
Affiliation(s)
| | | | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S4L7, Canada; (R.S.); (B.K.)
| |
Collapse
|
37
|
Ruffini A, Sandri M, Dapporto M, Campodoni E, Tampieri A, Sprio S. Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability. Biomedicines 2021; 9:916. [PMID: 34440120 PMCID: PMC8389705 DOI: 10.3390/biomedicines9080916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Material science is a relevant discipline in support of regenerative medicine. Indeed, tissue regeneration requires the use of scaffolds able to guide and sustain the natural cell metabolism towards tissue regrowth. This need is particularly important in musculoskeletal regeneration, such as in the case of diseased bone or osteocartilaginous regions for which calcium phosphate-based scaffolds are considered as the golden solution. However, various technological barriers related to conventional ceramic processing have thus far hampered the achievement of biomimetic and bioactive scaffolds as effective solutions for still unmet clinical needs in orthopaedics. Driven by such highly impacting socioeconomic needs, new nature-inspired approaches promise to make a technological leap forward in the development of advanced biomaterials. The present review illustrates ion-doped apatites as biomimetic materials whose bioactivity resides in their unstable chemical composition and nanocrystallinity, both of which are, however, destroyed by the classical sintering treatment. In the following, recent nature-inspired methods preventing the use of high-temperature treatments, based on (i) chemically hardening bioceramics, (ii) biomineralisation process, and (iii) biomorphic transformations, are illustrated. These methods can generate products with advanced biofunctional properties, particularly biomorphic transformations represent an emerging approach that could pave the way to a technological leap forward in medicine and also in various other application fields.
Collapse
Affiliation(s)
| | | | | | | | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (M.S.); (M.D.); (E.C.)
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (M.S.); (M.D.); (E.C.)
| |
Collapse
|
38
|
Morilla C, Perdomo E, Hernández AK, Regalado R, Almirall A, Fuentes G, Campos Mora Y, Schomann T, Chan A, Cruz LJ. Effect of the Addition of Alginate and/or Tetracycline on Brushite Cement Properties. Molecules 2021; 26:molecules26113272. [PMID: 34071673 PMCID: PMC8199332 DOI: 10.3390/molecules26113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022] Open
Abstract
Calcium phosphate cements have the advantage that they can be prepared as a paste that sets in a few minutes and can be easily adapted to the shape of the bone defect, which facilitates its clinical application. In this research, six formulations of brushite (dicalcium phosphate dihydrated) cement were obtained and the effect of the addition of sodium alginate was analyzed, such as its capacity as a tetracycline release system. The samples that contain sodium alginate set in 4 or 5 min and showed a high percentage of injectability (93%). The cements exhibit compression resistance values between 1.6 and 2.6 MPa. The drug was released in a range between 12.6 and 13.2% after 7 days. The antimicrobial activity of all the cements containing antibiotics was proven. All samples reached values of cell viability above 70 percent. We also observed that the addition of the sodium alginate and tetracycline improved the cell viability.
Collapse
Affiliation(s)
- Claudia Morilla
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Elianis Perdomo
- Faculty of Automatic and Biomedical Engineering, Technological University of Havana, La Habana 11300, Cuba;
| | - Ana Karla Hernández
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
| | - Ramcy Regalado
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
| | - Amisel Almirall
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
| | - Gastón Fuentes
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
- Correspondence: or
| | - Yaima Campos Mora
- Biomaterials Center, University of Havana, La Habana 10400, Cuba; (C.M.); (A.K.H.); (R.R.); (A.A.); (Y.C.M.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.S.); (L.J.C.)
| |
Collapse
|