1
|
Li XM, Shi ZZ, Tuoliken A, Gou W, Li CH, Wang LN. Highly plastic Zn-0.3Ca alloy for guided bone regeneration membrane: Breaking the trade-off between antibacterial ability and biocompatibility. Bioact Mater 2024; 42:550-572. [PMID: 39308544 PMCID: PMC11416609 DOI: 10.1016/j.bioactmat.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
A common problem for Zn alloys is the trade-off between antibacterial ability and biocompatibility. This paper proposes a strategy to solve this problem by increasing release ratio of Ca2+ ions, which is realized by significant refinement of CaZn13 particles through bottom circulating water-cooled casting (BCWC) and rolling. Compared with conventionally fabricated Zn-0.3Ca alloy, the BCWC-rolled alloy shows higher antibacterial abilities against E. coli and S. aureus, meanwhile much less toxicity to MC3T3-E1 cells. Additionally, plasticity, degradation uniformity, and ability to induce osteogenic differentiation in vitro of the alloy are improved. The elongation up to 49 %, which is the highest among Zn alloys with Ca, and is achieved since the sizes of CaZn13 particles and Zn grains are small and close. As a result, the long-standing problem of low formability of Zn alloys containing Ca has also been solved due to the elimination of large CaZn13 particles. The BCWC-rolled alloy is a promising candidate of making GBR membrane.
Collapse
Affiliation(s)
- Xiang-Min Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| | - Ayisulu Tuoliken
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Gou
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chang-Heng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
2
|
Zhang R, Brooker C, Whitehouse LLE, Thomson NH, Wood D, Tronci G. Mechanical and suture-holding properties of a UV-cured atelocollagen membrane with varied crosslinked architecture. Biomed Mater 2024; 19:065036. [PMID: 39419110 DOI: 10.1088/1748-605x/ad8828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The mechanical competence and suturing ability of collagen-based membranes are paramount in guided bone regeneration (GBR) therapy, to ensure damage-free implantation, fixation and space maintenancein vivo. However, contact with the biological medium can induce swelling of collagen molecules, yielding risks of membrane sinking into the bone defect, early loss of barrier function, and irreversibly compromised clinical outcomes. To address these challenges, this study investigates the effect of the crosslinked network architecture on both mechanical and suture-holding properties of a new atelocollagen (AC) membrane. UV-cured networks were obtained via either single functionalisation of AC with 4-vinylbenzyl chloride (4VBC) or sequential functionalisation of AC with both 4VBC and methacrylic anhydride. The wet-state compression modulus (Ec) and swelling ratio (SR) were significantly affected by the UV-cured network architecture, leading up to a three-fold reduction in SR and about two-fold increase inEcin the sequentially functionalised, compared to the single-functionalised, samples. Electron microscopy, dimensional analysis and compression testing revealed the direct impact of the ethanol series dehydration process on membrane microstructure, yielding densification of the freshly synthesised porous samples and a pore-free microstructure with increasedEc. Nanoindentation tests via spherical bead-probe atomic force microscopy (AFM) confirmed an approximately two-fold increase in median (interquartile range (IQR)) elastic modulus in the sequentially functionalised (EAFM= 40 (13) kPa), with respect to single-functionalised (EAFM= 15 (9) kPa), variants. Noteworthy, the single-functionalised, but not the sequentially functionalised, samples displayed higher suture retention strength (SRS = 28 ± 2-35 ± 10 N∙mm-1) in both the dry state and following 1 h in phosphate buffered saline (PBS), compared to Bio-Gide® (SRS: 6 ± 1-14 ± 2 N∙mm-1), while a significant decrease was measured after 24 h in PBS (SRS= 1 ± 1 N∙mm-1). These structure-property relationships confirm the key role played by the molecular architecture of covalently crosslinked collagen, aimed towards long-lasting resorbable membranes for predictable GBR therapy.
Collapse
Affiliation(s)
- Ruya Zhang
- School of Dentistry, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Charles Brooker
- School of Dentistry, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
- Clothworkers' Centre for Textile Materials Innovation for Healthcare (CCTMIH), School of Design, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Laura L E Whitehouse
- School of Dentistry, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Neil H Thomson
- School of Dentistry, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David Wood
- School of Dentistry, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Giuseppe Tronci
- School of Dentistry, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
- Clothworkers' Centre for Textile Materials Innovation for Healthcare (CCTMIH), School of Design, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
On SW, An HW, Lee SM, Choi YI, Woo J, Hong SO, Choi JY. Safety and efficacy of Mg-Dy membrane with poly-L-lactic acid coating for guided bone regeneration. Sci Rep 2024; 14:25522. [PMID: 39462023 PMCID: PMC11513034 DOI: 10.1038/s41598-024-77211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to evaluate safety and efficacy of a poly-L-lactic acid (PLLA)-coated magnesium (Mg)-Dysprosium (Dy) membrane in guided bone regeneration (GBR) using a rabbit calvarium model. The microstructure of the Mg-Dy membrane surface and thickness of the PLLA coating were examined. In vitro degradation and cytotoxicity test was conducted. The in vivo study used 24 white male rabbits with two 8 mm-diameter defects created on the calvaria; 12 defects were randomly assigned per group: (1) Negative control, (2) positive control, (3) uncoated Mg, and (4) PLLA-coated Mg group. Specimens were harvested at 4, 8, and 12 weeks postoperatively for radiological, histological, and histomorphometric analyses. The PLLA-coated Mg-Dy membrane showed a low degree of degradation, indicating that the coating exerted a protective effect. In the cytotoxicity test, no deformed or degenerated cells were observed. In the in vivo study, radiographic and histomorphometric analyses indicated favorable new bone formation and maintenance of the graft material for PLLA-coated Mg group. PLLA-coated Mg group, compared to the uncoated counterpart, restored the bony contour more completely, without inducing significant inflammatory response. Our results support the safety and efficacy of PLLA-coated Mg-Dy membranes for GBR both in vitro and in vivo.
Collapse
Affiliation(s)
- Sung-Woon On
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Hyun-Wook An
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Sang Min Lee
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Young In Choi
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Jaeman Woo
- Department of Dentistry, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Sung Ok Hong
- Department of Oral and Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Dental Hospital at Gangdong, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Oral and Maxillofacial surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Willbold E, Kalla K, Janning C, Bartsch I, Bobe K, Brauneis M, Haupt M, Reebmann M, Schwarze M, Remennik S, Shechtman D, Nellesen J, Tillmann W, Witte F. Dissolving magnesium hydroxide implants enhance mainly cancellous bone formation whereas degrading RS66 implants lead to prominent periosteal bone formation in rabbits. Acta Biomater 2024; 185:73-84. [PMID: 39053818 DOI: 10.1016/j.actbio.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Bone fractures often require internal fixation using plates or screws. Normally, these devices are made of permanent metals like titanium providing necessary strength and biocompatibility. However, they can also cause long-term complications and may require removal. An interesting alternative are biocompatible degradable devices, which provide sufficient initial strength and then degrade gradually. Among other materials, biodegradable magnesium alloys have been developed for craniofacial and orthopaedic applications. Previously, we tested implants made of magnesium hydroxide and RS66, a strong and ductile ZK60-based alloy, with respect to biocompatibility and degradation behaviour. Here, we compare the effects of dissolving magnesium hydroxide and RS66 cylinders on bone regeneration and bone growth in rabbit condyles using microtomographical and histological analysis. Both magnesium hydroxide and RS66 induced a considerable osteoblastic activity leading to distinct but different spatio-temporal patterns of cancellous and periosteal bone growth. Dissolving RS66 implants induced a prominent periosteal bone formation on the medial surface of the original condyle whereas dissolving magnesium hydroxide implants enhance mainly cancellous bone formation. Especially periosteal bone formation was completed after 6 and 8 weeks, respectively. The observed bone promoting functions are in line with previous reports of magnesium stimulating cancellous and periosteal bone growth and possible underlying signalling mechanisms are discussed. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium based implants are promising candidates for use in orthopedic and traumatic surgery. Although these implants are in the scientific focus for a long time, comparatively little is known about the interactions between degrading magnesium and the biological environment. In this work, we investigated the effects of two degrading cylindrical magnesium implants (MgOH2 and RS66) both on bone regeneration and on bone growth. Both MgOH2 and RS66 induce remarkable osteoblastic activities, however with different spatio-temporal patterns regarding cancellous and periosteal bone growth. We hypothesize that degradation products do not diffuse directionless away, but are transported by the restored blood flow in specific spatial patterns which is also dependent on the used surgical technique.
Collapse
Affiliation(s)
- Elmar Willbold
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany.
| | - Katharina Kalla
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Carla Janning
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Ivonne Bartsch
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Katharina Bobe
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Maria Brauneis
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Maike Haupt
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Mattias Reebmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Michael Schwarze
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Sergei Remennik
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dan Shechtman
- Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Jens Nellesen
- Institute of Materials Engineering, Technische Universität Dortmund, Leonhard-Euler-Straße 2, 44227 Dortmund, Germany
| | - Wolfgang Tillmann
- Institute of Materials Engineering, Technische Universität Dortmund, Leonhard-Euler-Straße 2, 44227 Dortmund, Germany
| | - Frank Witte
- Charité - Universitätsmedizin Berlin, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Straße 4-6, 14197, Berlin, Germany
| |
Collapse
|
5
|
Chen L, Han J, Guo C. Research status and prospects of biodegradable magnesium-based metal guided bone regeneration membranes. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:415-425. [PMID: 39049628 PMCID: PMC11338478 DOI: 10.7518/hxkq.2024.2024140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Biodegradable magnesium-based metal guided bone regeneration (GBR) membranes possess excellent mechanical properties, biodegradability, and osteopromotive capabilities, making them ideal implants for the treatment of maxillofacial bone defects. This review summarizes the current status and future research trends related to magnesium-based GBR membranes. First, the research history and application fields of magnesium-based metals are introduced, and the advantages of the use of magnesium-based materials for GBR membranes, including their mechanical properties, biocompatibility, osteopromotive performance, and underlying mechanisms are discussed. Finally, this review addresses the current limitations of magnesium-based GBR membranes and their applications and prospects in the field of dentistry. In conclusion, considerable advancements have been in fundamental and translational research on magnesium-based GBR membranes, which lays a crucial foundation for the treatment of maxillofacial bone defects.
Collapse
Affiliation(s)
- Liangwei Chen
- Dept. of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Jianmin Han
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Dept. of Key Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Chuanbin Guo
- Dept. of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
6
|
Ma C, An H, Kim YK, Kim SY, Jang YS, Lee MH. Polycaprolactone-MXene coating for controlling initial biodegradation of magnesium implant via near-infrared light. RSC Adv 2024; 14:19718-19725. [PMID: 38899034 PMCID: PMC11185355 DOI: 10.1039/d4ra00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanical strength of magnesium implants undergoes a rapid decline after implantation due to bioabsorption, which can lead to the risk of rupture. To ensure sustained mechanical strength and initiate bioabsorption selectively upon specific external stimuli until the bone regains sufficient support, we developed a biosafe near-infrared light (NIR)-sensitive polymer coating using polycaprolactone (PCL) and Ti3C2 (MXenes). The synthetic MXene powders were characterized using SEM, EDS, and XRD, and the amount of MXenes had a proliferation-promoting effect on MC3T3-E1, as observed through cell assays. The PCL-MXene coating was successfully prepared on the magnesium surface using the casting coating method, and it can protect the magnesium surface for up to 28 days by decreasing the corrosion ratio. However, the coating can be easily degraded after exposure to NIR light for 20 minutes to expose the magnesium substrate, especially in a liquid environment. Meanwhile, the magnesium implant with the PCL-MXene coating has no cytotoxicity toward MC3T3-E1. These findings can provide a new solution for the development of controlled degradation implants.
Collapse
Affiliation(s)
- Chen Ma
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University Jeon-Ju 54896 Republic of Korea
- School of Stomatology, Shandong First Medical University Jinan 250117 Shandong China
| | - Hao An
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University Jeon-Ju 54896 Republic of Korea
| | - Yu-Kyoung Kim
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University Jeon-Ju 54896 Republic of Korea
| | - Seo-Young Kim
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University Jeon-Ju 54896 Republic of Korea
| | - Yong-Seok Jang
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University Jeon-Ju 54896 Republic of Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University Jeon-Ju 54896 Republic of Korea
| |
Collapse
|
7
|
Shi Z, Yang F, Hu Y, Pang Q, Shi L, Du T, Cao Y, Song B, Yu X, Cao Z, Ye Z, Liu C, Yu R, Chen X, Zhu Y, Pang Q. An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration. Carbohydr Polym 2024; 327:121666. [PMID: 38171658 DOI: 10.1016/j.carbpol.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.
Collapse
Affiliation(s)
- Zewen Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China; Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lin Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuhao Cao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Baiyang Song
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xueqiang Yu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Zhaoxun Cao
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhewei Ye
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Liu
- Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315100, China
| | - Rongyao Yu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianjun Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Qingjiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Wu J, Shen Y, Wang P, Guo Z, Bai J, Wang X, Chen D, Lin X, Tang C. Self-Healing Micro Arc Oxidation and Dicalcium Phosphate Dihydrate Double-Passivated Coating on Magnesium Membrane for Enhanced Bone Integration Repair. ACS Biomater Sci Eng 2024; 10:1062-1076. [PMID: 38245905 DOI: 10.1021/acsbiomaterials.3c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Magnesium is a revolutionary biomaterial for orthopedic implants, owing to its eminent mechanical properties and biocompatibility. However, its uncontrolled degradation rate remains a severe challenge for its potential applications. In this study, we developed a self-healing micro arc oxidation (MAO) and dicalcium phosphate dihydrate (DCPD) double-passivated coating on a magnesium membrane (Mg-MAO/DCPD) and investigated its potential for bone-defect healing. The Mg-MAO/DCPD membrane possessed a feasible self-repairing ability and good cytocompatibility. In vitro degradation experiments showed that the Mg contents on the coating surface were 0.3, 3.8, 4.1, 6.1, and 7.9% when the degradation times were 0, 1, 2, 3, and 4 weeks, respectively, exhibiting available corrosion resistance. The slow and sustained release of Mg2+ during the degradation process activated extracellular matrix proteins for bone regeneration, accelerating osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The extract solutions of Mg-MAO/DCPD considerably promoted the activation of the Wnt and PI3K/AKT signaling pathways. Furthermore, the evaluation of the rat skull defect model manifested the outstanding bone-healing efficiency of the Mg-MAO/DCPD membrane. Taken together, the Mg-MAO/DCPD membrane demonstrates an optimized degradation rate and excellent bioactivity and is believed to have great application prospects in bone tissue engineering.
Collapse
Affiliation(s)
- Jin Wu
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Yue Shen
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Ping Wang
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Zixiang Guo
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 210029, Jiangsu Province, China
| | - Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 210029, Jiangsu Province, China
| | - Dongfang Chen
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 210029, Jiangsu Province, China
| | - Xuyang Lin
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Chunbo Tang
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
9
|
Elad A, Pul L, Rider P, Rogge S, Witte F, Tadić D, Mijiritsky E, Kačarević ŽP, Steigmann L. Resorbable magnesium metal membrane for sinus lift procedures: a case series. BMC Oral Health 2023; 23:1006. [PMID: 38097992 PMCID: PMC10722874 DOI: 10.1186/s12903-023-03695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The purpose of this case series was to demonstrate the use of a magnesium membrane for repairing the perforated membrane in both direct and indirect approaches, as well as its application in instances where there has been a tear of the Schneiderian membrane. CASE PRESENTATION The case series included four individual cases, each demonstrating the application of a magnesium membrane followed by bone augmentation using a mixture of xenograft and allograft material in the sinus cavity. In the first three cases, rupture of Schneiderian membrane occurred as a result of tooth extraction, positioning of the dental implant, or as a complication during the procedure. In the fourth case, Schneiderian membrane was perforated as a result of the need to aspirate a polyp in the maxillary sinus. In case one, 10 mm of newly formed bone is visible four months after graft placement. Other cases showed between 15 and 20 mm of newly formed alveolar bone. No residual magnesium membrane was seen on clinical inspection. The vertical and horizontal augmentations proved stable and the dental implants were placed in the previously grafted sites. CONCLUSION Within the limitations of this case series, postoperative clinical examination, and panoramic and CBCT images demonstrated that resorbable magnesium membrane is a viable material for sinus lift and Schneiderian membrane repair. The case series showed successful healing and formation of new alveolar bone with separation of the oral cavity and maxillary sinus in four patients.
Collapse
Affiliation(s)
| | - Luka Pul
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000, Osijek, Croatia
| | | | - Svenja Rogge
- Botiss Biomaterials GmbH, 15806, Zossen, Germany
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Aßmannshauser Straße, 4-6, 14197, Berlin, Germany
| | - Dražen Tadić
- Botiss Biomaterials GmbH, 15806, Zossen, Germany
| | - Eitan Mijiritsky
- Department of Head and Neck and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, The Sackler Faculty of Medicine, Tel-Aviv University, 6139001, Tel Aviv, Israel
| | - Željka Perić Kačarević
- Botiss Biomaterials GmbH, 15806, Zossen, Germany.
- Department of Anatomy, Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000, Osijek, Croatia.
| | - Larissa Steigmann
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Saha S, Costa RC, Silva MC, Fonseca-Santos JM, Chen L, Phakatkar AH, Bhatia H, Faverani LP, Barão VA, Shokuhfar T, Sukotjo C, Takoudis C. Collagen membrane functionalized with magnesium oxide via room-temperature atomic layer deposition promotes osteopromotive and antimicrobial properties. Bioact Mater 2023; 30:46-61. [PMID: 37521273 PMCID: PMC10382637 DOI: 10.1016/j.bioactmat.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Artificial bone grafting materials such as collagen are gaining interest due to the ease of production and implantation. However, collagen must be supplemented with additional coating materials for improved osteointegration. Here, we report room-temperature atomic layer deposition (ALD) of MgO, a novel method to coat collagen membranes with MgO. Characterization techniques such as X-ray photoelectron spectroscopy, Raman spectroscopy, and electron beam dispersion mapping confirm the chemical nature of the film. Scanning electron and atomic force microscopies show the surface topography and morphology of the collagen fibers were not altered during the ALD of MgO. Slow release of magnesium ions promotes bone growth, and we show the deposited MgO film leaches trace amounts of Mg when incubated in phosphate-buffered saline at 37 °C. The coated collagen membrane had a superhydrophilic surface immediately after the deposition of MgO. The film was not toxic to human cells and demonstrated antibacterial properties against bacterial biofilms. Furthermore, in vivo studies performed on calvaria rats showed MgO-coated membranes (200 and 500 ALD) elicit a higher inflammatory response, leading to an increase in angiogenesis and a greater bone formation, mainly for Col-MgO500, compared to uncoated collagen. Based on the characterization of the MgO film and in vitro and in vivo data, the MgO-coated collagen membranes are excellent candidates for guided bone regeneration.
Collapse
Affiliation(s)
- Soumya Saha
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Mirela Caroline Silva
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery and Implantology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - João Matheus Fonseca-Santos
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery and Implantology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Lin Chen
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois Chicago, Chicago, USA
| | - Abhijit H. Phakatkar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
| | - Harshdeep Bhatia
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, USA
| | - Leonardo P. Faverani
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery and Implantology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois Chicago College of Dentistry, Chicago, USA
| | - Christos Takoudis
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, USA
| |
Collapse
|
11
|
Palkovics D, Rider P, Rogge S, Kačarević ŽP, Windisch P. Possible Applications for a Biodegradable Magnesium Membrane in Alveolar Ridge Augmentation-Retrospective Case Report with Two Years of Follow-Up. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1698. [PMID: 37893416 PMCID: PMC10608771 DOI: 10.3390/medicina59101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: A rigid, resorbable magnesium membrane was recently developed, combining the advantages of resorbable and non-resorbable membranes. Our aim was to describe the application of this membrane for guided bone regeneration (GBR). Materials and Methods: This case report described the treatment and 3D evaluation of two cases utilizing a resorbable magnesium barrier membrane. In Case #1, GBR was performed with a bilayer tunnel flap. The magnesium barrier was placed fixed subperiosteally through remote vertical incisions. In Case #2, GBR was performed using a split-thickness flap design. Volumetric and linear hard tissue alterations were assessed by 3D cone-beam computed tomography subtraction analysis, as well as with conventional intraoral radiography. Results: Case #1 showed a volumetric hard tissue gain of 0.12 cm3, whereas Case #2 presented a 0.36 cm3 hard tissue gain. No marginal peri-implant hard tissue loss could be detected at the two-year follow-up. Conclusions: The application of conventional resorbable collagen membranes would be difficult in either of the cases presented. However, the rigid structure of the magnesium membrane allowed for the limitations of conventional resorbable membranes to be overcome.
Collapse
Affiliation(s)
- Daniel Palkovics
- Department of Periodontology, Semmelweis University, Szentkirályi Utca 47, 1088 Budapest, Hungary;
| | - Patrick Rider
- Botiss Medical AG, Ullsteinstraße 108, 12109 Berlin, Germany; (P.R.); (S.R.); (Ž.P.K.)
| | - Svenja Rogge
- Botiss Medical AG, Ullsteinstraße 108, 12109 Berlin, Germany; (P.R.); (S.R.); (Ž.P.K.)
| | - Željka Perić Kačarević
- Botiss Medical AG, Ullsteinstraße 108, 12109 Berlin, Germany; (P.R.); (S.R.); (Ž.P.K.)
- Department of Anatomy Histology and Embryology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University, Ul. Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Peter Windisch
- Department of Periodontology, Semmelweis University, Szentkirályi Utca 47, 1088 Budapest, Hungary;
| |
Collapse
|
12
|
Blašković M, Blašković D, Hangyasi DB, Peloza OC, Tomas M, Čandrlić M, Rider P, Mang B, Kačarević ŽP, Trajkovski B. Evaluation between Biodegradable Magnesium Metal GBR Membrane and Bovine Graft with or without Hyaluronate. MEMBRANES 2023; 13:691. [PMID: 37623752 PMCID: PMC10456676 DOI: 10.3390/membranes13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Bone substitutes and barrier membranes are widely used in dental regeneration procedures. New materials are constantly being developed to provide the most optimal surgical outcomes. One of these developments is the addition of hyaluronate (HA) to the bovine bone graft, which has beneficial wound healing and handling properties. However, an acidic environment that is potentially produced by the HA is known to increase the degradation of magnesium metal. The aim of this study was to evaluate the potential risk for the addition of HA to the bovine bone graft on the degradation rate and hence the efficacy of a new biodegradable magnesium metal GBR membrane. pH and conductivity measurements were made in vitro for samples placed in phosphate-buffered solutions. These in vitro tests showed that the combination of the bovine graft with HA resulted in an alkaline environment for the concentrations that were used. The combination was also tested in a clinical setting. The use of the magnesium metal membrane in combination with the tested grafting materials achieved successful treatment in these patients and no adverse effects were observed in vivo for regenerative treatments with or without HA. Magnesium based biodegradable GBR membranes can be safely used in combination with bovine graft with or without hyaluronate.
Collapse
Affiliation(s)
- Marko Blašković
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešimirova 40/42, 51000 Rijeka, Croatia;
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia;
| | - Dorotea Blašković
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia;
| | | | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
| | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia; (M.T.); (M.Č.)
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia; (M.T.); (M.Č.)
| | - Patrick Rider
- Botiss Biomaterials, Ullsteinstrasse 108, 12109 Berlin, Germany; (P.R.); (B.M.)
| | - Berit Mang
- Botiss Biomaterials, Ullsteinstrasse 108, 12109 Berlin, Germany; (P.R.); (B.M.)
| | - Željka Perić Kačarević
- Department of Anatomy, Embriology, Pathology and Pathohistology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | | |
Collapse
|
13
|
Yang J, Yuan K, Zhang T, Zhou S, Li W, Chen Z, Wang Y. Accelerated Bone Reconstruction by the Yoda1 Bilayer Membrane via Promotion of Osteointegration and Angiogenesis. Adv Healthc Mater 2023; 12:e2203105. [PMID: 36912184 DOI: 10.1002/adhm.202203105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Guided bone regeneration membranes are widely used to prevent fibroblast penetration and facilitate bone defect repair by osteoblasts. However, the current clinically available collagen membranes lack bone induction and angiogenic capacities, exhibiting limited bone regeneration. The mechanically sensitive channel, Piezo1, which is activated by Yoda1, has been reported to play crucial roles in osteogenesis and angiogenesis. Nevertheless, the application of Yoda1 alone is unsustainable to maintain this activity. Therefore, this study fabricates a Yoda1-loading bilayer membrane using electrospinning technology. Its inner layer in contact with the bone defect is composed of vertically aligned fibers, which regulate the proliferation and differentiation of cells, release Yoda1, and promote bone regeneration. Its outer layer in contact with the soft tissue is dense with oriented fibers by UV cross-linking, mainly preventing fibroblast infiltration and inhibiting the immune response. Furthermore, the loaded Yoda1 affects osteogenesis and angiogenesis via the Piezo1/RhoA/Rho-associated coiled-coil-containing protein kinase 1/Yes1-associated transcriptional regulator signaling pathway. The results reveal that the Yoda1 bilayer membrane is efficient and versatile in accelerating bone regeneration, suggesting its potential as a novel therapeutic agent for various clinical issues.
Collapse
Affiliation(s)
- Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Kaiting Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Tingting Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| |
Collapse
|
14
|
Blašković M, Butorac Prpić I, Blašković D, Rider P, Tomas M, Čandrlić S, Botond Hangyasi D, Čandrlić M, Perić Kačarević Ž. Guided Bone Regeneration Using a Novel Magnesium Membrane: A Literature Review and a Report of Two Cases in Humans. J Funct Biomater 2023; 14:307. [PMID: 37367271 DOI: 10.3390/jfb14060307] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Guided bone regeneration (GBR) is a common procedure used to rebuild dimensional changes in the alveolar ridge that occur after extraction. In GBR, membranes are used to separate the bone defect from the underlying soft tissue. To overcome the shortcomings of commonly used membranes in GBR, a new resorbable magnesium membrane has been developed. A literature search was performed via MEDLINE, Scopus, Web of Science and PubMed in February 2023 for research on magnesium barrier membranes. Of the 78 records reviewed, 16 studies met the inclusion criteria and were analyzed. In addition, this paper reports two cases where GBR was performed using a magnesium membrane and magnesium fixation system with immediate and delayed implant placement. No adverse reactions to the biomaterials were detected, and the membrane was completely resorbed after healing. The resorbable fixation screws used in both cases held the membranes in place during bone formation and were completely resorbed. Therefore, the pure magnesium membrane and magnesium fixation screws were found to be excellent biomaterials for GBR, which supports the findings of the literature review.
Collapse
Affiliation(s)
- Marko Blašković
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešimirova 40/42, 51 000 Rijeka, Croatia
- Dental Clinic Blašković, Linićeva ulica 16, 51 000 Rijeka, Croatia
| | - Ivana Butorac Prpić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | | | | | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | - Slavko Čandrlić
- Department of Interdisciplinary Areas, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | - David Botond Hangyasi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66, H-6720 Szeged, Hungary
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| | - Željka Perić Kačarević
- Botiss Biomaterials GmbH, 15806 Zossen, Germany
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia
| |
Collapse
|
15
|
Application of Biodegradable Magnesium Membrane Shield Technique for Immediate Dentoalveolar Bone Regeneration. Biomedicines 2023; 11:biomedicines11030744. [PMID: 36979728 PMCID: PMC10045016 DOI: 10.3390/biomedicines11030744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
For the first time, the clinical application of the first CE registered magnesium membrane is reported. Due to the material characteristics of magnesium metal, new treatment methodologies become possible. This has led to the development of a new technique: the magnesium membrane shield technique, used to rebuild the buccal or palatal walls of compromised extraction sockets. Four clinical cases are reported, demonstrating the handling options of this new technique for providing a successful regenerative outcome. Using the technique, immediate implant placement is possible with a provisional implant in the aesthetic zone. It can also be used for rebuilding both the buccal and palatal walls simultaneously. For instances where additional mechanical support is required, the membrane can be bent into a double layer, which additionally provides a rounder edge for interfacing with the soft tissue. In all reported clinical cases, there was a good bone tissue regeneration and soft tissue healing. In some instances, the new bone had formed a thick cortical bone visible in cone beam computed tomography (CBCT) radiographs of the regenerated sites, which is known to be remodeled in the post treatment period. Overall, the magnesium membrane shield technique is presented as an alternative treatment option for compromised extraction sockets.
Collapse
|
16
|
Zhu M, Duan B, Hou K, Mao L, Wang X. A comparative in vitro and in vivo study of porcine- and bovine-derived non-cross-linked collagen membranes. J Biomed Mater Res B Appl Biomater 2023; 111:568-578. [PMID: 36214252 DOI: 10.1002/jbm.b.35174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/21/2023]
Abstract
The porcine-derived non-cross-linked collagen membrane Bio-gide® (BG) and the bovine-derived non-cross-linked collagen membrane Heal-all® (HA) were compared to better understand their in vitro biophysical characteristics and in vivo degradation patterns as a reference for clinical applications. It was showed that the porosity, specific surface area, pore volume and pore diameter of BG were larger than those of HA (64.5 ± 5.2% vs. 48.6 ± 6.1%; 18.6 ± 2.8 m2 /g vs. 2.3 ± 0.6 m2 /g; 0.114 ± 0.002 cm3 /g vs. 0.003 ± 0.001 cm3 /g; 24.4 ± 3.5 nm vs. 7.3 ± 1.7 nm, respectively); the average swelling ratio of BG was higher than that of HA (412.6 ± 41.2% vs. 270.0 ± 2.7%); the tensile strength of both dry and wet HA was higher than those of BG (18.26 ± 3.27 MPa vs. 4.02 ± 1.35 MPa; 2.24 ± 0.21 MPa vs. 0.16 ± 0.02 MPa, respectively); 73% of HA remained after 72 h in collagenase solution, whereas only 8.2% of BG remained. A subcutaneous rat implantation model revealed that, at 3, 7, 14, 28, and 56 days postmembrane implantation, there were more total inflammatory cells, especially more M1 and M2 polarized macrophages and higher M2/M1 ratio in BG than in HA; in addition, the fibrous capsule around BG was also thicker than that around HA. Moreover, concentrations of dozens of cytokines including interleukin-2(IL-2), IL-7, IL-10 and so forth. in BG were higher than those in HA. It is suggested that BG and HA might be suitable for different clinical applications according to their different characteristics.
Collapse
Affiliation(s)
- Mengdi Zhu
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Beibei Duan
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Kegui Hou
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Lisha Mao
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Xuejiu Wang
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
17
|
A pH-Responsive Asymmetric Microfluidic/Chitosan Device for Drug Release in Infective Bone Defect Treatment. Int J Mol Sci 2023; 24:ijms24054616. [PMID: 36902046 PMCID: PMC10003349 DOI: 10.3390/ijms24054616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Bacterial infection is currently considered to be one of the major reasons that leads to the failure of guided bone regeneration (GBR) therapy. Under the normal condition, the pH is neutral, while the microenvironment will become acid at the sites of infection. Here, we present an asymmetric microfluidic/chitosan device that can achieve pH-responsive drug release to treat bacterial infection and promote osteoblast proliferation at the same time. On-demand release of minocycline relies on a pH-sensitive hydrogel actuator, which swells significantly when exposed to the acid pH of an infected region. The PDMAEMA hydrogel had pronounced pH-sensitive properties, and a large volume transition occurred at pH 5 and 6. Over 12 h, the device enabled minocycline solution flowrates of 0.51-1.63 µg/h and 0.44-1.13 µg/h at pH 5 and 6, respectively. The asymmetric microfluidic/chitosan device exhibited excellent capabilities for inhibiting Staphylococcus aureus and Streptococcus mutans growth within 24 h. It had no negative effect on proliferation and morphology of L929 fibroblasts and MC3T3-E1 osteoblasts, which indicates good cytocompatibility. Therefore, such a pH-responsive drug release asymmetric microfluidic/chitosan device could be a promising therapeutic approach in the treatment of infective bone defects.
Collapse
|
18
|
Fan L, Ren Y, Emmert S, Vučković I, Stojanovic S, Najman S, Schnettler R, Barbeck M, Schenke-Layland K, Xiong X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24043744. [PMID: 36835168 PMCID: PMC9963569 DOI: 10.3390/ijms24043744] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.
Collapse
Affiliation(s)
- Lu Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
| | - Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Ivica Vučković
- Department of Maxillofacial Surgery, Clinic for Dental Medicine, 18000 Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
- BerlinAnalytix GmbH, Ullsteinstraße 108, 12109 Berlin, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| |
Collapse
|
19
|
Degradable Pure Magnesium Used as a Barrier Film for Oral Bone Regeneration. J Funct Biomater 2022; 13:jfb13040298. [PMID: 36547558 PMCID: PMC9781112 DOI: 10.3390/jfb13040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The barrier membrane plays an extremely critical role in guided bone regeneration (GBR), which determines the success or failure of GBR technology. In order to obtain barrier membranes with high mechanical strength and degradability, some researchers have focused on degradable magnesium alloys. However, the degradation rate of pure Mg-based materials in body fluids is rather fast, thus posing an urgent problem to be solved in oral clinics. In this study, a novel micro-arc oxidation (MAO) surface-treated pure Mg membrane was prepared. Electrochemical tests, immersion experiments and in vivo experiments were carried out to investigate its potential use as a barrier membrane. The experimental results showed that the corrosion resistance of a pure Mg membrane treated by MAO is better than that of the uncoated pure Mg. The results of cell experiments showed no obvious cytotoxicity, which suggests the enhanced differentiation of osteoblasts. At the same time, the MAO-Mg membrane showed better biological activity than the pure Ti membrane in the early stage of implantation, exhibiting relatively good bone regeneration ability. Consequently, the MAO membrane has been proven to possess good application prospects for guided bone regeneration.
Collapse
|
20
|
Systems, Properties, Surface Modification and Applications of Biodegradable Magnesium-Based Alloys: A Review. MATERIALS 2022; 15:ma15145031. [PMID: 35888498 PMCID: PMC9316815 DOI: 10.3390/ma15145031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
In recent years, biodegradable magnesium (Mg) alloys have attracted the attention of many researchers due to their mechanical properties, excellent biocompatibility and unique biodegradability. Many Mg alloy implants have been successfully applied in clinical medicine, and they are considered to be promising biological materials. In this article, we review the latest research progress in biodegradable Mg alloys, including research on high-performance Mg alloys, bioactive coatings and actual or potential clinical applications of Mg alloys. Finally, we review the research and development direction of biodegradable Mg alloys. This article has a guiding significance for future development and application of high-performance biodegradable Mg alloys, promoting the future advancement of the magnesium alloy research field, especially in biomedicine.
Collapse
|
21
|
Biodegradation of a Magnesium Alloy Fixation Screw Used in a Guided Bone Regeneration Model in Beagle Dogs. MATERIALS 2022; 15:ma15124111. [PMID: 35744169 PMCID: PMC9229971 DOI: 10.3390/ma15124111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Nowadays, the most commonly used fixation systems are non-resorbable, but new resorbable magnesium alloy fixation screws have been introduced recently. Therefore, the aim of this study was to compare the magnesium fixation screw and the commonly used non-resorbable titanium screw in an animal model. Four 3-wall defect sites were covered with collagen membranes in the mandible of twenty beagle dogs (two sites on the left and two on the right). Each membrane was fixed with either four magnesium screws or four titanium screws. Post-operative follow-up revealed the expected observations such as transient inflammation and pain. Both groups showed a good healing response, with no differences between groups. Micro-CT analysis showed no significant difference between groups in terms of BV/TV or soft tissue volume. The void volume in the magnesium fixation screw group continued to decrease on average between the different timepoints, but not significantly. Furthermore, a gradual progression of the degradation process of the magnesium screws was observed in the same group. Magnesium screws and titanium screws showed equal performance in tissue regeneration according to GBR principles. An additional advantage of magnesium screws is their resorbable nature, which eliminates the need for a second surgical step to remove the screws.
Collapse
|
22
|
Rider P, Kačarević ŽP, Elad A, Rothamel D, Sauer G, Bornert F, Windisch P, Hangyási D, Molnar B, Hesse B, Witte F. Analysis of a Pure Magnesium Membrane Degradation Process and Its Functionality When Used in a Guided Bone Regeneration Model in Beagle Dogs. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3106. [PMID: 35591440 PMCID: PMC9099583 DOI: 10.3390/ma15093106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/21/2023]
Abstract
For the surgical technique of guided bone regeneration (GBR), the choice of available barrier membranes has until recently not included an option that is mechanically strong, durable, synthetic and resorbable. The most commonly used resorbable membranes are made from collagen, which are restricted in their mechanical strength. The purpose of this study is to evaluate the degradation and regeneration potential of a magnesium membrane compared to a collagen membrane. In eighteen beagle dogs, experimental bone defects were filled with bovine xenograft and covered with either a magnesium membrane or collagen membrane. The health status of the animals was regularly monitored and recorded. Following sacrifice, the hemimandibles were prepared for micro-CT (μ-CT) analysis. Complications during healing were observed in both groups, but ultimately, the regenerative outcome was similar between groups. The μ-CT parameters showed comparable results in both groups in terms of new bone formation at all four time points. In addition, the μ-CT analysis showed that the greatest degradation of the magnesium membranes occurred between 1 and 8 weeks and continued until week 16. The proportion of new bone within the defect site was similar for both treatment groups, indicating the potential for the magnesium membrane to be used as a viable alternative to collagen membranes. Overall, the new magnesium membrane is a functional and safe membrane for the treatment of defects according to the principles of GBR.
Collapse
Affiliation(s)
- Patrick Rider
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité—Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197 Berlin, Germany; (P.R.); (Ž.P.K.)
- Botiss Biomaterials AG, Ullsteinstrasse 108, 12109 Berlin, Germany;
| | - Željka Perić Kačarević
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité—Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197 Berlin, Germany; (P.R.); (Ž.P.K.)
- Botiss Biomaterials AG, Ullsteinstrasse 108, 12109 Berlin, Germany;
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| | - Akiva Elad
- Botiss Biomaterials AG, Ullsteinstrasse 108, 12109 Berlin, Germany;
| | - Daniel Rothamel
- CMF Surgery, Johannes BLA Hospital, 41239 Mönchengladbach, Germany; (D.R.); (G.S.)
| | - Gerrit Sauer
- CMF Surgery, Johannes BLA Hospital, 41239 Mönchengladbach, Germany; (D.R.); (G.S.)
| | - Fabien Bornert
- Faculté de Chirurgie Dentaire de Strasbourg, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France;
| | - Peter Windisch
- Department of Periodontology, Semmelweis University, 1769 Budapest, Hungary; (P.W.); (D.H.); (B.M.)
| | - Dávid Hangyási
- Department of Periodontology, Semmelweis University, 1769 Budapest, Hungary; (P.W.); (D.H.); (B.M.)
| | - Balint Molnar
- Department of Periodontology, Semmelweis University, 1769 Budapest, Hungary; (P.W.); (D.H.); (B.M.)
| | - Bernhard Hesse
- Xploraytion GmbH, Bismarkstrasse 11, 10625 Berlin, Germany;
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité—Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197 Berlin, Germany; (P.R.); (Ž.P.K.)
| |
Collapse
|