1
|
Xiong Y, Lu X, Ma X, Cao J, Pan J, Li C, Zheng Y. Preparation of fibre-reinforced PLA-collagen@PLA-PCL@PCL-gelatin three-layer vascular graft by EDC/NHS cross-linking and its performance study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2343-2362. [PMID: 39037965 DOI: 10.1080/09205063.2024.2380567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024]
Abstract
In this study, a three-layer small diameter artificial vascular graft with a structure similar to that of natural blood vessels was first constructed by triple-step electrospinning technology, in which polylactic acid (PLA) and collagen (COL) were used for the inner layer, polylactic acid and polycaprolactone (PCL) was used for the middle layer and polycaprolactone and gelatin was used for the outer layer. The properties of the artificial vascular graft were adjusted by the EDC/NHS cross-linking agent through the reaction between the collagen or gelatine and EDC/NHS. The mechanical and hydrophilic properties of the cross-linked artificial vessels were substantially enhanced, with a maximum stress of 9.56 MPa in the axial direction and 9.31 MPa in the radial direction for the P/C (4:1) vascular graft, which exceeded that of many textile-based and natural vascular grafts. The increased hydrophilicity of the inner layer of the vessel before crosslinking was due to the addition of COL, and the inner layer of the artificial vessel after crosslinking had a substantial increase in hydrophilicity due to the production of a more hydrophilic urea derivative. The increased hydrophilicity led to easier cell adhesion to the inner layer of the artificial vessel, especially for the P/C (2:1) vascular graft, where the cell proliferation rate and adhesion were high due to COL incorporation and cross-linking. The three-layer vascular grafts studied did not lead to haemolysis. Therefore, the EDC/NHS cross-linked three-layer vascular graft had good mechanical properties, hydrophilicity, anticoagulation and could enhance cell adhesion and proliferation.
Collapse
Affiliation(s)
- Yue Xiong
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xingjian Lu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xiaoman Ma
- Zhejiang Accupath Smart Mfg Grp Co Ltd, Jiaxing, P.R. China
| | - Jun Cao
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Jiaqi Pan
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Chaorong Li
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yingying Zheng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
2
|
Tangdilintin F, Achmad AA, Stephanie, Sulistiawati S, Enggi CK, Wahyudin E, Rahman L, Nainu F, Manggau MA, Permana AD. Development of Transdermal Formulation Integrating Polymer-Based Solid Microneedles and Thermoresponsive Gel Fucoidan for Antiaging: Proof of Concept Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18451-18465. [PMID: 39169662 DOI: 10.1021/acs.langmuir.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Skin can be damaged by intense and prolonged exposure to ultraviolet (UV) radiation. Photoaging and acute damage from sun exposure result in collagen degradation and enzymatic activity decline in the skin. Fucoidan (FUC) exhibits potential antiaging properties, including collagen synthesis promotion and enzyme activity inhibition. However, FUC's limited ability to penetrate the skin layers due to its large molecular weight makes it a challenge for topical application. In this study, we successfully developed a new approach by integrating thermoresponsive gel (TRG) containing FUC with solid microneedles (SMNs) as a delivery system. TRG is formulated using a combination of Pluronic F127 (PF127) and Pluronic F68 (PF68) polymers, while SMNs are made from a mixture of poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) polymers with a variety of cross-linkers. Based on the results of ex vivo testing, it was shown that more than 80% of FUC can be delivered using the optimized formula. Furthermore, the results of the in vitro blood hemolytic test showed that TRG-FUC-SMNs were relatively biocompatible. In vivo antiaging activity tests using a rat model exposed to UV for 14 days showed that histological assessment, skin elasticity measurement, wrinkle evaluation, and skin moisture content had no significant differences (p < 0.05) compared to the positive control group. In contrast, a significant difference (p < 0.05) was observed when comparing the TRG-FUC-SMNs group with the group that received only TRG-FUC without pretreatment and negative controls. These findings suggest that FUC has potential to be delivered using the TRG system in combination with SMNs to harness its antiaging properties.
Collapse
Affiliation(s)
| | | | - Stephanie
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Elly Wahyudin
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
3
|
Ji M, Zhan F, Qiu X, Liu H, Liu X, Bu P, Zhou B, Serda M, Feng Q. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024; 10:4771-4790. [PMID: 38982708 PMCID: PMC11322915 DOI: 10.1021/acsbiomaterials.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Ming Ji
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Fangbiao Zhan
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xingan Qiu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hong Liu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xuezhe Liu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Pengzhen Bu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bikun Zhou
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maciej Serda
- Institute
of Chemistry, University of Silesia in Katowice, Katowice 40-006, Poland
| | - Qian Feng
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Wu X, Deng J, Jian W, Yang Y, Shao H, Zhou X, Xiao Y, Ma J, Zhou Y, Wang R, Li H. A bioinspired switchable adhesive patch with adhesion and suction mechanisms for laparoscopic surgeries. Mater Today Bio 2024; 27:101142. [PMID: 39070096 PMCID: PMC11283087 DOI: 10.1016/j.mtbio.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Medical adhesives play an important role in clinical medicine because of their flexibility and convenient operation. However, they are still limited to laparoscopic surgeries, which have demonstrated urgent demand for liver retraction with minimal damage to the human body. Here, inspired by the suction cup structure of octopus, an adhesive patch with excellent mechanical properties, robust and switchable adhesiveness, and biocompatibility is proposed. The adhesive patch is combined by the attachment body mainly made of poly(acrylic acid) grafted with N-hydroxysuccinimide ester, crosslinked biodegradable gelatin methacrylate and biodegradable biopolymer gelatin to mimic the adhesive sucker rim, and the temperature-sensitive telescopic layer of microgel-crosslinked poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) to shrink and form internal cavity with reduced pressure. Through mechanical tests, adhesion evaluation, and biocompatibility analysis, the bioinspired adhesive patch has demonstrated its capacity not only in adhesion to tissues but also in potential treatment for medical applications, especially laparoscopic technology. The bioinspired adhesive patch can break through the limitations of traditional retraction methods, and become an ideal candidate for liver retraction in laparoscopic surgery and related clinical medicine.
Collapse
Affiliation(s)
- Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
- Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Wei Jian
- School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, 315211, PR China
| | - Yanyu Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
- Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Hanjie Shao
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Xinhua Zhou
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Ying Xiao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Jingyun Ma
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Yang Zhou
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Hong Li
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| |
Collapse
|
5
|
Chansoria P, Chaudhari A, Etter EL, Bonacquisti EE, Heavey MK, Le J, Maruthamuthu MK, Kussatz CC, Blackwell J, Jasiewicz NE, Sellers RS, Maile R, Wallet SM, Egan TM, Nguyen J. Instantly adhesive and ultra-elastic patches for dynamic organ and wound repair. Nat Commun 2024; 15:4720. [PMID: 38830847 PMCID: PMC11148085 DOI: 10.1038/s41467-024-48980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.
Collapse
Affiliation(s)
- Parth Chansoria
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ameya Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emma L Etter
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiayan Le
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John Blackwell
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rani S Sellers
- Pathology and Laboratory Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shannon M Wallet
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas M Egan
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Zhuang ZM, Wang Y, Feng ZX, Lin XY, Wang ZC, Zhong XC, Guo K, Zhong YF, Fang QQ, Wu XJ, Chen J, Tan WQ. Targeting Diverse Wounds and Scars: Recent Innovative Bio-design of Microneedle Patch for Comprehensive Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306565. [PMID: 38037685 DOI: 10.1002/smll.202306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Indexed: 12/02/2023]
Abstract
Wounds and the subsequent formation of scars constitute a unified and complex phased process. Effective treatment is crucial; however, the diverse therapeutic approaches for different wounds and scars, as well as varying treatment needs at different stages, present significant challenges in selecting appropriate interventions. Microneedle patch (MNP), as a novel minimally invasive transdermal drug delivery system, has the potential for integrated and programmed treatment of various diseases and has shown promising applications in different types of wounds and scars. In this comprehensive review, the latest applications and biotechnological innovations of MNPs in these fields are thoroughly explored, summarizing their powerful abilities to accelerate healing, inhibit scar formation, and manage related symptoms. Moreover, potential applications in various scenarios are discussed. Additionally, the side effects, manufacturing processes, and material selection to explore the clinical translational potential are investigated. This groundwork can provide a theoretical basis and serve as a catalyst for future innovations in the pursuit of favorable therapeutic options for skin tissue regeneration.
Collapse
Affiliation(s)
- Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Jin Wu
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jian Chen
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| |
Collapse
|
7
|
Wan W, Feng Y, Tan J, Zeng H, Jalaludeen RK, Zeng X, Zheng B, Song J, Zhang X, Chen S, Pan J. Carbonized Cellulose Aerogel Derived from Waste Pomelo Peel for Rapid Hemostasis of Trauma-Induced Bleeding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307409. [PMID: 38477567 PMCID: PMC11109610 DOI: 10.1002/advs.202307409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/05/2024] [Indexed: 03/14/2024]
Abstract
Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.
Collapse
Affiliation(s)
- Wenbing Wan
- The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Yang Feng
- The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Jiang Tan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang ProvinceZhejiang Engineering Research Center for Hospital Emergency and Process DigitizationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Huiping Zeng
- The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Rafeek Khan Jalaludeen
- The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Xiaoxi Zeng
- Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduChina
| | - Bin Zheng
- Wenzhou Safety (Emergency) Institute of Tianjin UniversityWenzhouChina
| | - Jingchun Song
- Department of Critical Care MedicineNo. 908th Hospital of PLA Logistic Support ForceNanchang330002China
| | - Xiyue Zhang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Macau University of Science and TechnologyTaipaMacau999078China
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Jingye Pan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang ProvinceZhejiang Engineering Research Center for Hospital Emergency and Process DigitizationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
8
|
Freundlich E, Shimony N, Gross A, Mizrahi B. Bioadhesive microneedle patches for tissue sealing. Bioeng Transl Med 2024; 9:e10578. [PMID: 38818121 PMCID: PMC11135150 DOI: 10.1002/btm2.10578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 06/01/2024] Open
Abstract
Sealing of soft tissues prevents leakage of gas and liquid, closes wounds, and promotes healing and is, therefore, of great significance in the clinical and medical fields. Although various formulations have been developed for reliable sealing of soft tissue, tradeoffs between adhesive properties, degradation profile, and tissue toxicity limit their clinical use. Hydrogel-based adhesives, for example, are highly biocompatible but adhere very weakly to the tissue and degrade quickly, while oxidized cellulose patches are poorly absorbed and may cause healing complications postoperatively. Here, we present a novel strategy for tissue sealing based on bioadhesive microneedle patches that can spontaneously adhere to tissue surface through electrostatic interactions and swell within it. A series of microneedle patches made of pullulan, chitosan, Carbopol, poly (lactic-co-glycolic acid), and a Carbopol/chitosan combination were fabricated and characterized for their use in tissue sealing. The effect of microneedle composition on the fabrication process, physical and mechanical properties, in vitro cytotoxicity, and in vivo biocompatibility were examined. The needle structure enables microneedles to strongly fix onto various tissues via physical interlocking, while their adhesive properties improve staying time and sealing capabilities. The microneedle patch comprising Carbopol needles and chitosan as a second pedestal layer presented the best results in terms of sealing and adhesion, a consequence of the needle's swelling and adhesion features combined with the supportive chitosan base layer. Finally, single Carbopol/chitosan patches stopped intense liver bleeding in a rat model significantly quicker and with less blood loss compared with commercial oxidized cellulose patches. These microneedles can be considered a promising cost-effective platform for adhering and sealing tissues as they can be applied quickly and painlessly, and require less trained medical staff and equipment.
Collapse
Affiliation(s)
- Eden Freundlich
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Neta Shimony
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Adi Gross
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
9
|
Lee S, Yoo J, Bae G, Thangam R, Heo J, Park JY, Choi H, Kim C, An J, Kim J, Mun KR, Shin S, Zhang K, Zhao P, Kim Y, Kang N, Han SB, Kim D, Yoon J, Kang M, Kim J, Yang L, Karamikamkar S, Kim J, Zhu Y, Najafabadi AH, Song G, Kim DH, Lee KB, Oh SJ, Jung HD, Song HC, Jang WY, Bian L, Chu Z, Yoon J, Kim JS, Zhang YS, Kim Y, Jang HS, Kim S, Kang H. Photonic control of ligand nanospacing in self-assembly regulates stem cell fate. Bioact Mater 2024; 34:164-180. [PMID: 38343773 PMCID: PMC10859239 DOI: 10.1016/j.bioactmat.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 10/28/2024] Open
Abstract
Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.
Collapse
Affiliation(s)
- Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jounghyun Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Kwang Rok Mun
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungyong Shin
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwon Yoon
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Misun Kang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jihwan Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering and Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Seong Jang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Yang X, Wang X, Gao X, Guo X, Hou S, Shi J, Lv Q. What else should hemostatic materials do beyond hemostasis: A review. Mater Today Bio 2024; 25:101008. [PMID: 38495915 PMCID: PMC10940931 DOI: 10.1016/j.mtbio.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Massive blood loss due to injury is the leading cause of prehospital deaths in disasters and emergencies. Hemostatic materials are used to realize rapid hemostasis and protect patients from death. Researchers have designed and developed a variety of hemostatic materials. However, in addition to their hemostatic effect, hemostatic materials must be endowed with additional functions to meet the practical application requirements in different scenarios. Here, strategies for modifications of hemostatic materials for use in different application scenarios are listed: effective positioning at the site of deep and narrow wounds to stop bleeding, resistance to high blood pressure and wound movement to maintain wound formation, rapid and easy removal from the wound without affecting further treatment after hemostasis is completed, and continued function when retained in the wound as a dressing (such as antibacterial, antiadhesion, tissue repair, etc.). The problems encountered in the practical use of hemostatic materials and the strategies and progress of researchers will be further discussed in this review. We hope to provide valuable references for the design of more comprehensive and practical hemostatic materials.
Collapse
Affiliation(s)
- Xinran Yang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Xiudan Wang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Xing Gao
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Hospital, Tianjin 300072, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Shike Hou
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Jie Shi
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Qi Lv
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| |
Collapse
|
11
|
Che QT, Seo JW, Charoensri K, Nguyen MH, Park HJ, Bae H. 4D-printed microneedles from dual-sensitive chitosan for non-transdermal drug delivery. Int J Biol Macromol 2024; 261:129638. [PMID: 38266841 DOI: 10.1016/j.ijbiomac.2024.129638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Microneedles are a promising micro-scale drug delivery platform that has been under development for over two decades. While 3D printing technology has been applied to fabricate these systems, the challenge of achieving needle sharpness remains. In this study, we present an innovative approach for microneedle fabrication using digital light processing (DLP) 3D printing and smart chitosan biomaterial. For the first time, we used hydroxybutyl methacrylated chitosan (HBCMA), which possesses dual temperature- and photo-sensitive properties, to create microneedles. The DLP approach enabled a quick generation of HBCMA-based microneedles with a high resolution. The microneedles exhibited 4D properties with a change in needle dimensions upon exposure to temperature, which enhances resolution, sharpens needles, and improves mechanical strength. We demonstrated the ability of these microneedles to load, deliver, sustained release small molecular drugs and penetrate soft tissue. Overall, the HBCMA-based microneedles show promising potential in non-dermal drug delivery applications.
Collapse
Affiliation(s)
- Quang Tuan Che
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Wook Seo
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul, 05029, Republic of Korea
| | - Korakot Charoensri
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minh Hiep Nguyen
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat 670000, Viet Nam
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul, 05029, Republic of Korea; Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
12
|
Ko MJ, Min S, Hong H, Yoo W, Joo J, Zhang YS, Kang H, Kim DH. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact Mater 2024; 32:66-97. [PMID: 37822917 PMCID: PMC10562133 DOI: 10.1016/j.bioactmat.2023.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis offers a novel method for overcoming therapeutic resistance of cancers to conventional cancer treatment regimens. Its effective use as a cancer therapy requires a precisely targeted approach, which can be facilitated by using nanoparticles and nanomedicine, and their use to enhance ferroptosis is indeed a growing area of research. While a few review papers have been published on iron-dependent mechanism and inducers of ferroptosis cancer therapy that partly covers ferroptosis nanoparticles, there is a need for a comprehensive review focusing on the design of magnetic nanoparticles that can typically supply iron ions to promote ferroptosis and simultaneously enable targeted ferroptosis cancer nanomedicine. Furthermore, magnetic nanoparticles can locally induce ferroptosis and combinational ferroptosis with diagnostic magnetic resonance imaging (MRI). The use of remotely controllable magnetic nanocarriers can offer highly effective localized image-guided ferroptosis cancer nanomedicine. Here, recent developments in magnetically manipulable nanocarriers for ferroptosis cancer nanomedicine with medical imaging are summarized. This review also highlights the advantages of current state-of-the-art image-guided ferroptosis cancer nanomedicine. Finally, image guided combinational ferroptosis cancer therapy with conventional apoptosis-based therapy that enables synergistic tumor therapy is discussed for clinical translations.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
13
|
Zehtabi F, Gangrade A, Tseng K, Haghniaz R, Abasgholizadeh R, Montazerian H, Khorsandi D, Bahari J, Ahari A, Mohaghegh N, Kouchehbaghi NH, Mandal K, Mecwan M, Rashad A, de Barros NR, Byun Y, Ermis M, Kim HJ, Khademhosseini A. Injectable Shear-Thinning Hydrogels with Sclerosing and Matrix Metalloproteinase Modulatory Properties for the Treatment of Vascular Malformations. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2305880. [PMID: 38558868 PMCID: PMC10977963 DOI: 10.1002/adfm.202305880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 04/04/2024]
Abstract
Sac embolization of abdominal aortic aneurysms (AAAs) remains clinically limited by endoleak recurrences. These recurrences are correlated with recanalization due to the presence of endothelial lining and matrix metalloproteinases (MMPs)-mediated aneurysm progression. This study incorporated doxycycline (DOX), a well-known sclerosant and MMPs inhibitor, into a shear-thinning biomaterial (STB)-based vascular embolizing hydrogel. The addition of DOX was expected to improve embolizing efficacy while preventing endoleaks by inhibiting MMP activity and promoting endothelial removal. The results showed that STBs containing 4.5% w/w silicate nanoplatelet and 0.3% w/v of DOX were injectable and had a 2-fold increase in storage modulus compared to those without DOX. STB-DOX hydrogels also reduced clotting time by 33% compared to untreated blood. The burst release of DOX from the hydrogels showed sclerosing effects after 6 h in an ex vivo pig aorta model. Sustained release of DOX from hydrogels on endothelial cells showed MMP inhibition (ca. an order of magnitude larger than control groups) after 7 days. The hydrogels successfully occluded a patient-derived abdominal aneurysm model at physiological blood pressures and flow rates. The sclerosing and MMP inhibition characteristics in the engineered multifunctional STB-DOX hydrogels may provide promising opportunities for the efficient embolization of aneurysms in blood vessels.
Collapse
Affiliation(s)
- Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reza Abasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | | | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
- Vellore Institute of Technology (VIT), Vellore, India, 632014
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
14
|
Haghniaz R, Montazerian H, Rabbani A, Baidya A, Usui B, Zhu Y, Tavafoghi M, Wahid F, Kim H, Sheikhi A, Khademhosseini A. Injectable, Antibacterial, and Hemostatic Tissue Sealant Hydrogels. Adv Healthc Mater 2023; 12:e2301551. [PMID: 37300448 PMCID: PMC10710521 DOI: 10.1002/adhm.202301551] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Hemorrhage and bacterial infections are major hurdles in the management of life-threatening surgical wounds. Most bioadhesives for wound closure lack sufficient hemostatic and antibacterial properties. Furthermore, they suffer from weak sealing efficacy, particularly for stretchable organs, such as the lung and bladder. Accordingly, there is an unmet need for mechanically robust hemostatic sealants with simultaneous antibacterial effects. Here, an injectable, photocrosslinkable, and stretchable hydrogel sealant based on gelatin methacryloyl (GelMA), supplemented with antibacterial zinc ferrite (ZF) nanoparticles and hemostatic silicate nanoplatelets (SNs) for rapid blood coagulation is nanoengineered. The hydrogel reduces the in vitro viability of Staphylococcus aureus by more than 90%. The addition of SNs (2% w/v) and ZF nanoparticles (1.5 mg mL-1 ) to GelMA (20% w/v) improves the burst pressure of perforated ex vivo porcine lungs by more than 40%. Such enhancement translated to ≈250% improvement in the tissue sealing capability compared with a commercial hemostatic sealant, Evicel. Furthermore, the hydrogels reduce bleeding by ≈50% in rat bleeding models. The nanoengineered hydrogel may open new translational opportunities for the effective sealing of complex wounds that require mechanical flexibility, infection management, and hemostasis.
Collapse
Affiliation(s)
- Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
- Department of BioengineeringUniversity of California, Los Angeles410 Westwood PlazaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of California, Los Angeles570 Westwood PlazaLos AngelesCA90095USA
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
- Department of BioengineeringUniversity of California, Los Angeles410 Westwood PlazaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of California, Los Angeles570 Westwood PlazaLos AngelesCA90095USA
| | - Atiya Rabbani
- Department of BioengineeringUniversity of California, Los Angeles410 Westwood PlazaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of California, Los Angeles570 Westwood PlazaLos AngelesCA90095USA
- Akhtar Saeed Medical CollegeBahria Golf City46000Pakistan
| | - Avijit Baidya
- Department of Chemical and Biomolecular EngineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of ChemistryFaculty of Engineering and TechnologySRM Institute of Science and TechnologyKattankulathurTamil Nadu603203India
| | - Brent Usui
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
- Franklin W. Olin College of Engineering1000 Olin WayNeedhamMA02492USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
| | - Maryam Tavafoghi
- Department of BioengineeringUniversity of California, Los Angeles410 Westwood PlazaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of California, Los Angeles570 Westwood PlazaLos AngelesCA90095USA
| | - Fazli Wahid
- Department of Biomedical SciencesPak‐Austria FachhochschuleInstitute of Applied Sciences and TechnologyHaripur22620Pakistan
| | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
| |
Collapse
|
15
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Shriky B, Babenko M, Whiteside BR. Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges. Gels 2023; 9:806. [PMID: 37888379 PMCID: PMC10606778 DOI: 10.3390/gels9100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Polymeric hydrogels are a complex class of materials with one common feature-the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption-regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.
Collapse
Affiliation(s)
- Bana Shriky
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| | | | - Ben R. Whiteside
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
17
|
Cao X, Lin X, Li N, Zhao X, Zhou M, Zhao Y. Animal tissue-derived biomaterials for promoting wound healing. MATERIALS HORIZONS 2023; 10:3237-3256. [PMID: 37278612 DOI: 10.1039/d3mh00411b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The skin serves as the primary barrier between the human body and external environment, and is therefore susceptible to damage from various factors. In response to this challenge, animal tissue-derived biomaterials have emerged as promising candidates for wound healing due to their abundant sources, low side-effect profiles, exceptional bioactivity, biocompatibility, and unique extracellular matrix (ECM) mimicry. The evolution of modern engineering technology and therapies has allowed these animal tissue-derived biomaterials to be transformed into various forms and modified to possess the necessary properties for wound repair. This review provides an overview of the wound healing process and the factors that influence it. We then describe the extraction methods, important properties, and recent practical applications of various animal tissue-derived biomaterials. Our focus then shifts to the critical properties of these biomaterials in skin wound healing and their latest research developments. Finally, we critically examine the limitations and future prospects of biomaterials generated from animal tissues in this field.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xiang Lin
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Ning Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
18
|
Haghniaz R, Gangrade A, Montazerian H, Zarei F, Ermis M, Li Z, Du Y, Khosravi S, de Barros NR, Mandal K, Rashad A, Zehtabi F, Li J, Dokmeci MR, Kim H, Khademhosseini A, Zhu Y. An All-In-One Transient Theranostic Platform for Intelligent Management of Hemorrhage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301406. [PMID: 37271889 PMCID: PMC10460878 DOI: 10.1002/advs.202301406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/24/2023] [Indexed: 06/06/2023]
Abstract
Developing theranostic devices to detect bleeding and effectively control hemorrhage in the prehospital setting is an unmet medical need. Herein, an all-in-one theranostic platform is presented, which is constructed by sandwiching silk fibroin (SF) between two silver nanowire (AgNW) based conductive electrodes to non-enzymatically diagnose local bleeding and stop the hemorrhage at the wound site. Taking advantage of the hemostatic property of natural SF, the device is composed of a shape-memory SF sponge, facilitating blood clotting, with ≈82% reduction in hemostatic time in vitro as compared with untreated blood. Furthermore, this sandwiched platform serves as a capacitive sensor that can detect bleeding and differentiate between blood and other body fluids (i.e., serum and water) via capacitance change. In addition, the AgNW electrode endows anti-infection efficiency against Escherichia coli and Staphylococcus aureus. Also, the device shows excellent biocompatibility and gradually biodegrades in vivo with no major local or systemic inflammatory responses. More importantly, the theranostic platform presents considerable hemostatic efficacy comparable with a commercial hemostat, Dengen, in rat liver bleeding models. The theranostic platform provides an unexplored strategy for the intelligent management of hemorrhage, with the potential to significantly improve patients' well-being through the integration of diagnostic and therapeutic capabilities.
Collapse
Affiliation(s)
| | - Ankit Gangrade
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Hossein Montazerian
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Fahimeh Zarei
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Zijie Li
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
- Mork Family Department of Chemical Engineering & Materials ScienceViterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCA90007USA
| | - Yuxuan Du
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
- Mork Family Department of Chemical Engineering & Materials ScienceViterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCA90007USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
- Electrical and Computer Engineering DepartmentUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Jinghang Li
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| |
Collapse
|
19
|
Montazerian H, Hassani Najafabadi A, Davoodi E, Seyedmahmoud R, Haghniaz R, Baidya A, Gao W, Annabi N, Khademhosseini A, Weiss PS. Poly-Catecholic Functionalization of Biomolecules for Rapid Gelation, Robust Injectable Bioadhesion, and Near-Infrared Responsiveness. Adv Healthc Mater 2023; 12:e2203404. [PMID: 36843210 DOI: 10.1002/adhm.202203404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 02/28/2023]
Abstract
Mussel-inspired catechol-functionalization of degradable natural biomaterials has garnered significant interest as an approach to achieve bioadhesion for sutureless wound closure. However, conjugation capacity in standard coupling reactions, such as carbodiimide chemistry, is limited by low yield and lack of abundant conjugation sites. Here, a simple oxidative polymerization step before conjugation of catechol-carrying molecules (i.e., 3,4-dihydroxy-l-phenylalanine, l-DOPA) as a potential approach to amplify catechol function in bioadhesion of natural gelatin biomaterials is proposed. Solutions of gelatin modified with poly(l-DOPA) moieties (GelDOPA) are characterized by faster physical gelation and increased viscosity, providing better wound control on double-curved tissue surfaces compared to those of l-DOPA-conjugated gelatin. Physical hydrogels treated topically with low concentrations of NaIO4 solutions are crosslinked on-demand via through-thickness diffusion. Poly(l-DOPA) conjugates enhance crosslinking density compared to l-DOPA conjugated gelatin, resulting in lower swelling and enhanced cohesion in physiological conditions. Together with cohesion, more robust bioadhesion at body temperature is achieved by poly(l-DOPA) conjugates, exceeding those of commercial sealants. Further, poly(l-DOPA) motifs introduced photothermal responsiveness via near-infrared (NIR) irradiation for controlled drug release and potential applications in photothermal therapy. The above functionalities, along with antibacterial activity, render the proposed approach an effective biomaterial design strategy for wound closure applications.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | | | - Elham Davoodi
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|
21
|
Long L, Ji D, Hu C, Yang L, Tang S, Wang Y. Microneedles for in situ tissue regeneration. Mater Today Bio 2023; 19:100579. [PMID: 36880084 PMCID: PMC9984687 DOI: 10.1016/j.mtbio.2023.100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Tissue injury is a common clinical problem, which may cause great burden on patients' life. It is important to develop functional scaffolds to promote tissue repair and regeneration. Due to their unique composition and structure, microneedles have attracted extensive attention in various tissues regeneration, including skin wound, corneal injury, myocardial infarction, endometrial injury, and spinal cord injury et al. Microneedles with micro-needle structure can effectively penetrate the barriers of necrotic tissue or biofilm, therefore improving the bioavailability of drugs. The use of microneedles to deliver bioactive molecules, mesenchymal stem cells, and growth factors in situ allows for targeted tissue and better spatial distribution. At the same time, microneedles can also provide mechanical support or directional traction for tissue, thus accelerating tissue repair. This review summarized the research progress of microneedles for in situ tissue regeneration over the past decade. At the same time, the shortcomings of existing researches, future research direction and clinical application prospect were also discussed.
Collapse
Affiliation(s)
- Linyu Long
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, 410009, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
22
|
Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL, Cornejo-Bravo JM. Hybrid Systems of Nanofibers and Polymeric Nanoparticles for Biological Application and Delivery Systems. MICROMACHINES 2023; 14:208. [PMID: 36677269 PMCID: PMC9864385 DOI: 10.3390/mi14010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Nanomedicine is a new discipline resulting from the combination of nanotechnology and biomedicine. Nanomedicine has contributed to the development of new and improved treatments, diagnoses, and therapies. In this field, nanoparticles have notable importance due to their unique properties and characteristics, which are useful in different applications, including tissue engineering, biomarkers, and drug delivery systems. Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. The combination of nanoparticles with nanofibers creates hybrid systems that acquire properties that differ from their components' characteristics. By utilizing nanoparticles and nanofibers composed of dissimilar polymers, the two synergize to improve the overall performance of electrospinning mats and nanoparticles. This review summarizes the hybrid systems of polymeric nanoparticles and polymeric nanofibers, critically analyzing how the combination improves the properties of the materials and contributes to the reduction of some disadvantages found in nanometric devices and systems.
Collapse
Affiliation(s)
| | - Aracely Serrano-Medina
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Kenia Palomino-Vizcaino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 22427, Mexico
| | | | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
23
|
Zhu Y, Motin MA, Cui Q. Editorial: Highlights in diagnostic and therapeutic devices 2021/22. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1119558. [PMID: 36908291 PMCID: PMC9992967 DOI: 10.3389/fmedt.2023.1119558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Mohammod Abdul Motin
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, United States
| |
Collapse
|