1
|
Hsieh CY, Lin CY, Wang SS, Chou YE, Chien MH, Wen YC, Hsieh MJ, Yang SF. Impact of Clinicopathological Characteristics and Tissue Inhibitor of Metalloproteinase-3 Polymorphism Rs9619311 on Biochemical Recurrence in Taiwanese Patients with Prostate Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:306. [PMID: 36612628 PMCID: PMC9819570 DOI: 10.3390/ijerph20010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The tissue inhibitors of metalloproteinases-3 (TIMP3) are not only endogenous regulators of matrix metalloproteinases (MMPs), but also induce apoptosis and inhibit endothelial cell migration and angiogenesis. The focus of this study was to investigate the relationship between TIMP3 genetic polymorphisms and biochemical recurrence and clinicopathological features of prostate cancer. The TIMP3 rs9619311, rs9862, and rs11547635 genetic polymorphisms were analyzed by real-time polymerase chain reaction to determine their genotypic distributions in 579 patients with prostate cancer. This study found that individuals with the TIMP3 rs9619311 TC or TC + CC genotypes have a significantly higher risk of biochemical recurrence of prostate cancer (p = 0.036 and 0.033, respectively). Moreover, in the multivariate analysis, our results showed that pathologic Gleason grade, pathologic T stage, seminal vesicle invasion, lymphovascular invasion, and TIMP3 rs9619311 were associated with increased odds of biochemical recurrence. Patients with a PSA concentration under 7 ng/mL that were found to have the TIMP3 rs9619311 genetic polymorphism were associated with Gleason total score upgrade (p = 0.012) and grade group upgrade (p = 0.023). Compared with the CC homozygous, the TIMP3 rs9862 CT + TT polymorphic variant was found to be associated with clinically advanced tumor stage (p = 0.030) and Gleason total score upgrade (p = 0.002) in prostate cancer patients. In conclusion, the results of our study demonstrated that the TIMP3 rs9619311 genetic polymorphism was significantly associated with susceptibility to biochemical recurrence of prostate cancer. TIMP3 genetic polymorphisms, especially rs9619311, can serve as key predictors of biochemical recurrence and disease prognosis of prostate cancer.
Collapse
Affiliation(s)
- Chun-Yu Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
2
|
Tissue Inhibitor of Metalloproteases 3 (TIMP-3): In Vivo Analysis Underpins Its Role as a Master Regulator of Ectodomain Shedding. MEMBRANES 2022; 12:membranes12020211. [PMID: 35207132 PMCID: PMC8878240 DOI: 10.3390/membranes12020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of TIMP-3 to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. This review provides an overview of the different functions of TIMP-3 in health and disease, with a major focus on the functional consequences in vivo related to its ability to control ectodomain shedding. Furthermore, herein we describe a collection of mass spectrometry-based approaches that have been used in recent years to identify new functions of sheddases and TIMP-3. These methods may be used in the future to elucidate the pathological mechanisms triggered by the Sorsby’s fundus dystrophy variants of TIMP-3 or to identify proteins released by less well characterized TIMP-3 target sheddases whose substrate repertoire is still limited, thus providing novel insights into the physiological and pathological functions of the inhibitor.
Collapse
|
3
|
Wang X, Wang Z, Wang Q, Wang B. Modulatory effect of euxanthone in liver cancer-bearing obese mice: crosstalk between PPARγ and TIMP3 signalling axes. 3 Biotech 2021; 11:464. [PMID: 34745815 DOI: 10.1007/s13205-021-03019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
Liver cancer is one of the prominent cancer-associated fatal diseases with > 80% of cases befall in low-middle resource nations worldwide. In the current study, we studied the effect of euxanthone (EUX) on obesity-associated liver cancer using a high-fat diet-fed mouse model of diethylnitrosamine (DEN)-provoked hepatocellular carcinoma. Mice with 2 weeks of age were intraperitoneally injected with diethylnitrosamine (DEN) 25 mg/kg b.w. After 4 weeks, the mice were divided into four groups with low-fat diet (LFD), high-fat diet (HFD), and EUX treatment groups with or without PPARγ inhibitor (GW9662). We observed that TIMP3, E-cadherin, and Klotho expressions were downmodulated, while MMP9, ADAM17, and Wnt signalling biofactors (Wnt5a, Wnt3a and β-catenin) were upmodulated in the HFD groups. Nevertheless, these aberrations were reciprocated by the treatment with EUX; at the same time, co-administration of PPARγ inhibitor ablated the anti-cancer effects of EUX, indicating that PPARγ activation is a pivotal mechanism underpinning the negative regulation of oncogenic factors by EUX. Together, these results imply that EUX might be a viable therapeutic option in the treatment of obesity-associated hepatocarcinogenesis.
Collapse
|
4
|
Karakousis ND, Papatheodoridi A, Chatzigeorgiou A, Papatheodoridis G. Cellular senescence and hepatitis B-related hepatocellular carcinoma: An intriguing link. Liver Int 2020; 40:2917-2927. [PMID: 32890439 DOI: 10.1111/liv.14659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B is mainly responsible for the morbidity and mortality from hepatitis B virus (HBV)-related complications, including hepatocellular carcinoma (HCC) and decompensated cirrhosis. Hepatocellular carcinoma remains the main challenge in the management of not only undiagnosed and/or untreated but also diagnosed and treated patients with chronic HBV infection, as its incidence decreases but is not eliminated even after many years of effective anti-HBV therapy. The exact mechanisms used by HBV to cause malignant transformation remain uncertain, although much of the available data are in favour of a pathogenetic role of HBx protein. Senescence is a cellular state, in which cells lose their ability to proliferate. This biological mechanism may function in a dual mode, namely being both cancer-protective as a result of reduced cellular proliferation, but also cancer-enhancing as a result of modulation of the tissular microenvironment by immune cells during persistent accumulation of senescent cells. Protein X of HBV protein exhibits many similarities in terms of the implemented mechanisms of action and pathways related to the biological process of cellular senescence. Concurrently, insufficient clearance of both senescent and precancerous hepatocytes combined with inadequate immune surveillance as a result of immunosenescence caused by chronic HBV infection may lead to hepatocarcinogenesis. Thus, the effect of HBV seems to be critical as a connecting link between cellular senescence and development of HCC. An ongoing research is underway towards identifying and validating markers of hepatocyte senescence, which could improve the landscape for evaluation of chronic liver disease, thereby providing valuable information in terms of HBV-related carcinogenesis.
Collapse
Affiliation(s)
- Nikolaos D Karakousis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece.,Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Alkistis Papatheodoridi
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece.,Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece.,Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
5
|
Mycobacterium tuberculosis-Secreted Protein, ESAT-6, Inhibits Lipopolysaccharide-Induced MMP-9 Expression and Inflammation Through NF-κB and MAPK Signaling in RAW 264.7 Macrophage Cells. Inflammation 2020; 43:54-65. [PMID: 31720987 DOI: 10.1007/s10753-019-01087-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
-20pt?>Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that causes contagious tuberculosis (TB). Recently, Mtb-secreted proteins have been considered virulence factors and candidates for drugs and vaccines. Among these proteins, 6-kDa early secreted antigenic target (ESAT-6) is known to be able to induce component of matrix metalloproteinase-9 (MMP-9) in epithelial cells, leading to recruitment of macrophages. However, detailed function of ESAT-6 during macrophage recruitment to inflammatory sites remains unknown. Thus, the objective of the present study was to elucidate such function of EAST-6 and mechanism(s) involved. In the present study, we have found that recombinant ESAT-6 purified in the form of ESAT-6 double-connected structure (2E6D) could inhibit lipopolysaccharide (LPS)-induced potential of cell migration and inflammation in murine macrophage cells. Interestingly, 2E6D suppressed LPS-induced MMP-9 expression at both protein and mRNA levels as well as its enzyme activity. Levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzymes as known upregulators of MMP-9 were significantly decreased when 2E6D has been treated. In addition, nitric oxide (NO) as a second messenger was also significantly decreased by treatment with the purified 2E6D. Furthermore, 2E6D inhibited LPS-induced phosphorylation of IκB and translocation of NF-κB. Moreover, 2E6D suppressed phosphorylation of MAPK signaling proteins. Taken together, these results suggest that ESAT-6 can suppress LPS-induced MMP-9 and inflammation by downregulating COX-2, iNOS, and NO through NF-κB and MAPK signaling.
Collapse
|
6
|
Park H, Park H, Chung TW, Choi HJ, Jung YS, Lee SO, Ha KT. Effect of Sorbus commixta on the invasion and migration of human hepatocellular carcinoma Hep3B cells. Int J Mol Med 2017; 40:483-490. [PMID: 28586002 DOI: 10.3892/ijmm.2017.3010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor metastasis is a main cause of cancer-related morbidity and mortality. Thus, a number of medicinal herbs and phytochemicals have been investigated as possible candidates for the inhibition of cancer metastasis. Sorbus commixta Hedl. (SC) is a traditional medicinal plant used in the treatment of inflammatory diseases, as it has antioxidant, anti-inflammatory, anti-atherosclerotic and anti-hepatotoxic activities. In this study, we demonstrate that the water extract of SC exerts inhibitory effect on the invasion and migration of hepatocellular carcinoma Hep3B cells. The activity and expression of matrix metalloproteinase (MMP)-9, which is responsible for the invasion of cancer cells, was decreased by SC treatment. The invasive and migratory potentials of the Hep3B cells were also decreased, as evidence by in vitro assay using the Boyden chamber system. In addition, the expression of the chemokine receptors, C-X-C chemokine receptor type 4 (CXCR)4 and C-X-C chemokine receptor type 6 (CXCR6), were inhibited by SC in Hep3B cells. Furthermore, actin fiber organization was markedly suppressed by SC treatment. Taken together, the findings of this study suggest for the first time, to the best of our knowledge, that SC suppresses the invasion and migration of highly metastatic Hep3B cells.
Collapse
Affiliation(s)
- Hyerin Park
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Hyunwook Park
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Hee-Jung Choi
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Yeon-Seop Jung
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| |
Collapse
|
7
|
Identification of Caveolin-1 as an Invasion-Associated Gene in Liver Cancer Cells Using Dendron-Coated DNA Microarrays. Appl Biochem Biotechnol 2017; 182:1276-1289. [DOI: 10.1007/s12010-017-2398-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/02/2017] [Indexed: 01/11/2023]
|
8
|
Lee N, Kwon JH, Kim YB, Kim SH, Park SJ, Xu W, Jung HY, Kim KT, Wang HJ, Choi KY. Vaccinia-related kinase 1 promotes hepatocellular carcinoma by controlling the levels of cell cycle regulators associated with G1/S transition. Oncotarget 2016; 6:30130-48. [PMID: 26375549 PMCID: PMC4745786 DOI: 10.18632/oncotarget.4967] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
We identified the specific role of vaccinia-related kinase 1 (VRK1) in the progression of hepatocellular carcinoma (HCC) and evaluated its therapeutic and prognostic potential. VRK1 levels were significantly higher in HCC cell lines than a normal hepatic cell line, and were higher in HCC than non-tumor tissue. VRK1 knockdown inhibited the proliferation of SK-Hep1, SH-J1 and Hep3B cells; moreover, depletion of VRK1 suppressed HCC tumor growth in vivo. We also showed that VRK1 knockdown increased the number of G1 arrested cells by decreasing cyclin D1 and p-Rb while upregulating p21 and p27, and that VRK1 depletion downregulated phosphorylation of CREB, a transcription factor regulating CCND1. Additionally, we found that luteolin, a VRK1 inhibitor, suppressed HCC growth in vitro and in vivo, and that the aberrant VRK1 expression correlated with poor prognostic features of HCC. High levels of VRK1 were associated with shorter overall and disease-free survival and higher recurrence rates. Taken together, our findings suggest VRK1 may act as a tumor promoter by controlling the level of cell cycle regulators associated with G1/S transition and could potentially serve as a therapeutic target and/or prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Namgyu Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | - Young Bae Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Weiguang Xu
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Hoe-Yune Jung
- Department of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.,Department of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Hee Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Kwan Yong Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.,Department of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
9
|
Lin HJ, Kao ST, Siao Y, Yeh CC. The Chinese medicine Sini-San inhibits HBx-induced migration and invasiveness of human hepatocellular carcinoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:348. [PMID: 26446078 PMCID: PMC4597375 DOI: 10.1186/s12906-015-0870-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022]
Abstract
Background Sini-San (SNS) is a formulation of four Traditional Chinese Drugs that exhibits beneficial therapeutic effects in liver injury and hepatitis. However, there are no reports describing its effects on the hepatitis B X-protein (HBx)-induced invasion and metastasis in hepatoma cells, and the detailed molecular mechanisms of its actions are still unclear. Methods In this study, we investigated the mechanisms underlying SNS-mediated inhibition of HBx-induced cell invasion and the inhibition of secreted and cytosolic MMP-9 production, using gelatin zymography and Western blot analysis in a human hepatoma cell line (HepG2). Relative luciferase activity was assessed for MMP-9, NF-κB, or AP-1 reporter plasmid-transfected cells. Results SNS suppressed MMP-9 transcription by inhibiting activator protein (AP)-1 and nuclear factor-κ B (NF-κB) activity. SNS suppressed HBx-induced AP-1 activity through inhibition of phosphorylation in the extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways. SNS also suppressed HBx-induced inhibition of NF-κB nuclear translocation through IκB and suppressed HBx-induced activation of ERK/phosphatidylinositol 3-kinase/Akt upstream of NF-κB and AP-1. Conclusions SNS suppresses the invasiveness and metastatic potential of hepatocellular carcinoma cells by inhibiting multiple signal transduction pathways.
Collapse
|
10
|
Xiao L, Wang M. Batimastat nanoparticles associated with transcatheter arterial chemoembolization decrease hepatocellular carcinoma recurrence. Cell Biochem Biophys 2015; 70:269-72. [PMID: 24639109 DOI: 10.1007/s12013-014-9893-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor characterized by easy metastasis and frequent recurrence. Transarterial chemoembolization (TACE) remains the routine treatment for patients with HCC who are not eligible for surgical resection or percutaneous tumor ablation; however, 5-year survival rates following interventional therapy are only 17-38.8 %, with liver recurrence due to incomplete embolization and tumor angiogenesis being a significant reason for treatment failure. Ischemia and hypoxia induced by TACE is correlated with an increased expression of angiogenic factor and stimulates an increase in angiogenesis, including endothelial cells (ECs) proliferation. Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic endopeptidases involved in tumor angiogenesis. In addition, MMPs stimulate tumor cell growth, migration and invasion, and metastasis. Hypoxia enhanced EC migration in a MMP-2-dependent manner while MMP inhibitors (MMPIs) significantly decreased the number of migrating cells in hypoxic cultures. We hypothesize batimastat (synthetic MMPI) nanoparticles associated with TACE could decrease HCC recurrence and metastasis. At first, batimastat nanoparticles were made from batimastat and poly(lactic-co-glycolic acid). Then, nanoparticles were mixed with lipiodol and chemotherapeutic drugs solution. The mixture was infused super-selectively into supplied artery of HCC through catheter. The disseminated area of batimastat might be same with TACE-induced hypoxia area. In the hypoxia area, batimastat inhibited the activity of MMPs, weakened the angiogenesis of tumor vascular system and migration of HCC cells. HCC cells could not escape from hypoxia area and tumor angiogenesis inhibited could not supply sufficient nutrients and O2 to residual HCC cells. With the help of batimastat, the killing effect of chemotherapeutic drugs might be enhanced. The rate of complete necrosis of HCC lesion might be increased and local recurrence and metastasis of HCC might be reduced. The hypothesis might increase the clinical efficacy of TACE and improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Liang Xiao
- The First Hospital of China Medical University, No. 155, St Nanjingbei, Dist Heping, Shenyang, 110001, Liaoning, People's Republic of China,
| | | |
Collapse
|
11
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent causes of cancer-related death globally. Above well-known risk factors for HCC development ranging from various toxins to diseases such as diabetes mellitus, chronic infection with hepatitis B virus and hepatitis C virus (HCV) poses the most serious threat, constituting the cause in more than 80 % of cases. In addition to the viral genes intensively investigated, the pathophysiological importance of host genetic factors has also been greatly and increasingly appreciated. Genome-wide association studies (GWAS) comprehensively search the host genome at the single-nucleotide level, and have successfully identified the genomic region associated with a whole variety of diseases. With respect to HCC, there have been reports from several groups on single nucleotide polymorphisms (SNPs) associated with hepatocarcinogenesis, among which was our GWAS discovering MHC class I polypeptide-related sequence A (MICA) as a susceptibility gene for HCV-induced HCC. MICA is a natural killer (NK) group 2D (NKG2D) ligand, whose interaction with NKG2D triggers NK cell-mediated cytotoxicity toward the target cells, and is a key molecule in tumor immune surveillance as its expression is induced on stressed cells such as transformed tumor cells for the detection by NK cells. In this review, the latest understanding of the MICA-NKG2D system in viral HCC, particularly focused on its antitumor properties and the involvement of MICA SNPs, is summarized, followed by a discussion of targets for state-of-the-art cancer immunotherapy with personalized medicine in view.
Collapse
|
12
|
Seanpong P, Srisaowakarn C, Thammaporn A, Leardkamolkarn V, Kumkate S. Different Responses in MMP/TIMP Expression of U937 and HepG2 Cells to Dengue Virus Infection. Jpn J Infect Dis 2015; 68:221-9. [DOI: 10.7883/yoken.jjid.2013.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | - Vijittra Leardkamolkarn
- Center for Emerging and Neglected Infectious Diseases, Mahidol University
- Department of Anatomy, Faculty of Science, Mahidol University
| | | |
Collapse
|
13
|
Tsai HT, Hsieh MJ, Chiou HL, Lee HL, Hsin MC, Liou YS, Yang CC, Yang SF, Kuo WH. TIMP-3 -1296 T>C and TIMP-4 -55 T>C gene polymorphisms play a role in the susceptibility of hepatocellular carcinoma among women. Tumour Biol 2014; 35:8999-9007. [PMID: 24903383 DOI: 10.1007/s13277-014-2170-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study was to investigate genetic impact of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) gene polymorphisms on the susceptibility and clinicopathological characteristics of hepatocellular carcinoma (HCC). A total of 759 subjects, including 530 healthy controls and 229 patients with hepatocellular carcinoma, were recruited in this study. Allelic discrimination of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) polymorphisms was assessed with the ABI StepOne™ Real-Time PCR System. Among women group, individuals with TC or CC alleles of TIMP-3 -1296 T>C gene polymorphism protected against HCC (AOR = 0.35, 95% confidence interval (CI) = 0.12-0.97; p = 0.04) compared to individuals with TT alleles, after adjusting for other confounders. Also, women with TC alleles and with TC or CC alleles of TIMP-4 -55 T>C polymorphisms had a 2.52-fold risk (95%CI = 1.23-5.13; p = 0.01) and 2.47-fold risk (95%CI = 1.26-4.87; p = 0.008) of developing HCC compared to individuals with TT alleles, after adjusting for other confounders. There was no synergistic effect between gene polymorphism and environmental risk factors, including tobacco and alcohol consumptions and clinical statuses of HCC as well as serum expression of liver-related clinicopathological markers. In conclusion, gene polymorphisms of TIMP-3 -1296 T>C (rs9619311) and TIMP-4 -55 T>C (rs3755724) play a role in the susceptibility of HCC among Taiwan women.
Collapse
Affiliation(s)
- Hsiu-Ting Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology 2014; 67:1-12. [PMID: 25002206 DOI: 10.1007/s10616-014-9761-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 01/11/2023] Open
Abstract
As cellular models for in vitro liver cancer and toxicity studies, HepG2 and Hep3B are the two most frequently used liver cancer cell lines. Because of their similarities they are often treated as the same in experimental studies. However, there are many differences that have been largely over-sighted or ignored between them. In this review, we summarize the differences between HepG2 and Hep3B cell lines that can be found in the literature based on PubMed search. We particularly focus on the differential gene expression, differential drug responses (chemosensitivity, cell cycle and growth inhibition, and gene induction), signaling pathways associated with these differences, as well as the factors in governing these differences between HepG2 and Hep3B cell lines. Based on our analyses of the available data, we suggest that neither HBx nor p53 may be the crucial factor to determine the differences between HepG2 and Hep3B cell lines although HBx regulates the expression of the majority of genes that are differentially expressed between HepG2 and Hep3B. Instead, the different maturation stages in cancer development of the original specimen between HepG2 and Hep3B may be responsible for the differences between them. This review provides insight into the molecular mechanisms underlying the differences between HepG2 and Hep3B and help investigators especially the beginners in the areas of liver cancer research and drug metabolism to fully understand, and thus better use and interpret the data from these two cell lines in their studies.
Collapse
|
15
|
Lee JY, Chung TW, Choi HJ, Lee CH, Eun JS, Han YT, Choi JY, Kim SY, Han CW, Jeong HS, Ha KT. A novel cantharidin analog N-benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR. Biochem Biophys Res Commun 2014; 447:371-7. [PMID: 24735540 DOI: 10.1016/j.bbrc.2014.04.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
Invasion and metastasis are major causes of malignant tumor-associated mortality. The present study aimed to investigate the molecular events underlying inhibitory effect of N-benzylcantharidinamide, a novel synthetic analog of cantharidin, on matrix metalloproteinase-9 (MMP-9)-mediated invasion in highly metastatic hepatocellular carcinoma Hep3B cells. In this investigation, among six analogs of cantharidin, only N-benzylcantharidinamide has the inhibitory action on MMP-9 expression at non-toxic dose. The MMP-9 expression and invasion of Hep3B cells were significantly suppressed by treatment of N-benzylcantharidinamide in a dose-dependent manner. On the other hand, the transcriptional activity of MMP-9 promoter and nuclear levels of NF-κB and AP-1 as the main transcriptional factors inducing MMP-9 expression were not affected by it although the level of MMP-9 mRNA was reduced by treatment of N-benzylcantharidinamide. Interestingly, the stability of MMP-9 mRNA was significantly reduced by N-benzylcantharidinamide-treatment. In addition, the cytosolic translocation of human antigen R (HuR), which results in the increase of MMP-9 mRNA stability through interaction of HuR with 3'-untranslated region of MMP-9 mRNA, was suppressed by treatment of N-benzylcantharidinamide, in a dose-dependent manner. Taken together, it was demonstrated, for the first time, that N-benzylcantharidinamide suppresses MMP-9 expression by reducing HuR-mediated MMP-9 mRNA stability for the inhibition of invasive potential in highly metastatic Hep3B cells.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Hee-Jung Choi
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Chang Hyun Lee
- Department of Anatomy, College of Korean Medicine, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Jae Soon Eun
- College of Pharmacy, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Jun-Yong Choi
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - So-Yeon Kim
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Chang-Woo Han
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.
| |
Collapse
|
16
|
Lo PHY, Urabe Y, Kumar V, Tanikawa C, Koike K, Kato N, Miki D, Chayama K, Kubo M, Nakamura Y, Matsuda K. Identification of a functional variant in the MICA promoter which regulates MICA expression and increases HCV-related hepatocellular carcinoma risk. PLoS One 2013; 8:e61279. [PMID: 23593449 PMCID: PMC3623965 DOI: 10.1371/journal.pone.0061279] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/11/2013] [Indexed: 01/16/2023] Open
Abstract
Hepatitis C virus (HCV) infection is the major cause of hepatocellular carcinoma (HCC) in Japan. We previously identified the association of SNP rs2596542 in the 5' flanking region of the MHC class I polypeptide-related sequence A (MICA) gene with the risk of HCV-induced HCC. In the current study, we performed detailed functional analysis of 12 candidate SNPs in the promoter region and found that a SNP rs2596538 located at 2.8 kb upstream of the MICA gene affected the binding of a nuclear protein(s) to the genomic segment including this SNP. By electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay, we identified that transcription factor Specificity Protein 1 (SP1) can bind to the protective G allele, but not to the risk A allele. In addition, reporter construct containing the G allele was found to exhibit higher transcriptional activity than that containing the A allele. Moreover, SNP rs2596538 showed stronger association with HCV-induced HCC (P = 1.82 × 10(-5) and OR = 1.34) than the previously identified SNP rs2596542. We also found significantly higher serum level of soluble MICA (sMICA) in HCV-induced HCC patients carrying the G allele than those carrying the A allele (P = 0.00616). In summary, we have identified a functional SNP that is associated with the expression of MICA and the risk for HCV-induced HCC.
Collapse
Affiliation(s)
- Paulisally Hau Yi Lo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Urabe
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Departments of Medical and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Vinod Kumar
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Naoya Kato
- Unit of Disease Control Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daiki Miki
- Departments of Medical and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Kazuaki Chayama
- Departments of Medical and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Michiaki Kubo
- Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Departments of Medicine and Surgery, and Center for Personalized Therapeutics, The University of Chicago, Chicago, Illinois, United States of America
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Vrancken K, Paeshuyse J, Liekens S. Angiogenic activity of hepatitis B and C viruses. Antivir Chem Chemother 2012; 22:159-70. [PMID: 22182803 DOI: 10.3851/imp1987] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The limited treatment options and poor prognosis of HCC patients underscore the importance of developing new therapeutic strategies. Infection with HBV and HCV are the major risk factors for developing HCC. While the precise molecular mechanisms that link HBV and HCV infections to the development and progression of HCC are not entirely understood, increasing evidence indicates that stimulation of angiogenesis by these viruses may contribute to HCC malignancy. In this review, we summarize the progress in understanding the role of HBV and HCV infection in liver and HCC angiogenesis, the mechanisms applied by these viruses to deregulate the angiogenic balance and the potential therapeutic options that come with this understanding.
Collapse
|
18
|
Chen R, Cui J, Xu C, Xue T, Guo K, Gao D, Liu Y, Ye S, Ren Z. The significance of MMP-9 over MMP-2 in HCC invasiveness and recurrence of hepatocellular carcinoma after curative resection. Ann Surg Oncol 2011; 19 Suppl 3:S375-84. [PMID: 21681378 DOI: 10.1245/s10434-011-1836-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND The extracellular matrix metalloproteases MMP-9 and MMP-2 are critical for the invasive potential of tumors. However, it is not clear which of the two plays the predominant role in tumor invasion and progression. In the present study, we compared the clinical efficacy of MMP-9 and MMP-2 overexpression for predicting tumor recurrence and survival after surgical resection in HCC patients. MATERIALS AND METHODS MMP-9 and MMP-2 expression in HCC cell lines and in vitro HCC invasion model were detected by quantitative RT-PCR and immunofluorescence. The expression levels of MMP-9 and MMP-2 were assessed by immunohistochemistry in HCC tissue microarrays from HCC patients (study set) who underwent curative resection. The clinicopathological data were retrospectively analyzed. The results were further verified in an independent cohort of 92 HCC patients (validation set). RESULTS Univariate analysis demonstrated that high expression of MMP-9 was associated with both time to recurrence (TTR, P = .015) and overall survival (OS, P = .024), whereas high expression of MMP-2 was only correlated with TTR (P = .041). Multivariate analysis confirmed that MMP-9 expression was an independent predictor of TTR and OS. The coindex of MMP-9 and preoperative serum AFP levels was significantly correlated with TTR and OS (P = .036 and P = .040), but the coindex of MMP-2 and AFP did not show prognostic significance for either TTR or OS (P = .067 and P = .053). The prognostic value of MMP-9 overexpression was validated in the independent data set. CONCLUSION MMP-9 is superior to MMP-2 for the prediction of tumor recurrence and survival in HCC patients after surgical resection.
Collapse
Affiliation(s)
- Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Caffeoyl pyrrolidine derivative LY52 inhibits hepatocellular carcinoma invasion via suppressing matrix metalloproteinase-2. Hepatol Int 2011; 5:716-21. [PMID: 21484106 DOI: 10.1007/s12072-010-9234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE In this study, we examined the effects of LY52, a caffeoyl pyrrolidine derivative designed to fit the S'1 active pocket of gelatinases, on the expressions of matrix metalloproteinases and invasion abilities of hepatocellular carcinoma cells. METHODS The effects of LY52 on the proliferations of HepG2 (hepatitis B virus (HBV) negative) and HepG2.2.15 (HBV-producing) cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Gelatin zymography was used to detect the effects of LY52 on matrix metalloproteinases expressions and Western blot was used to detect matrix metalloproteinase-2 expressions. Transwell chamber assay was used to detect the effects of LY52 on invasion of the cells. RESULTS Gelatin zymography and Western blot showed that matrix metalloproteinase-2 expressions were inhibited by LY52 in a dose-dependent manner, and inhibitory rates of LY52 on HepG2 cells were higher than on HepG2.2.15 cells. Transwell chamber showed that LY52 could significantly inhibit the invasion of both cells, although the inhibitory effects of LY52 on HepG2.2.15 cells were was not as obvious as on HepG2 cells. CONCLUSIONS These results suggested that LY52 might inhibit the invasion of hepatocellular carcinoma cells by suppressing matrix metalloproteinase-2, although the inhibitory effects of LY52 on HBV-negative cells were more obvious than that of HBV-infected cells.
Collapse
|
20
|
Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol 2010; 21:35-43. [PMID: 20946957 DOI: 10.1016/j.semcancer.2010.10.007] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 12/16/2022]
Abstract
A growing body of literature highlights the cross-talk between tumor cells and the surrounding peri-tumoral stroma as a key modulator of the processes of hepatocarcinogenesis, epithelial mesenchymal transition (EMT), tumor invasion and metastasis. The tumor microenvironment can be broadly classified into cellular and non-cellular components. The major cellular components include hepatic stellate cells, fibroblasts, immune, and endothelial cells. These cell types produce the non-cellular components of the tumor stroma, including extracellular matrix (ECM) proteins, proteolytic enzymes, growth factors and inflammatory cytokines. The non-cellular component of the tumor stroma modulates hepatocellular carcinoma (HCC) biology by effects on cancer signaling pathways in tumor cells and on tumor invasion and metastasis. Global gene expression profiling of HCC has revealed that the tumor microenvironment is an important component in the biologic and prognostic classification of HCC. There are substantial efforts underway to develop novel drugs targeting tumor-stromal interactions. In this review, we discuss the current knowledge about the role of the tumor microenvironment in pathogenesis of HCC, the role of the tumor microenvironment in the classification of HCC and efforts to develop treatments targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Ju Dong Yang
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
| | | | | |
Collapse
|
21
|
Bartel DP, Nakamura I, Roberts LR, Scimè A, Rudnicki MA. MicroRNAs: target recognition and regulatory functions. Cell 2009. [PMID: 23403079 DOI: 10.1016/j] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
22
|
Putative roles of hepatitis B x antigen in the pathogenesis of chronic liver disease. Cancer Lett 2009; 286:69-79. [PMID: 19201080 DOI: 10.1016/j.canlet.2008.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 11/18/2008] [Accepted: 12/02/2008] [Indexed: 12/18/2022]
Abstract
Under most circumstances, hepatitis B virus (HBV) is noncytopathic. However, hepatocellular regeneration that accompanies each bout of hepatitis appears to be associated with increased integration of HBV DNA fragments expressing the virus encoded hepatitis B x antigen (HBxAg). Intrahepatic HBxAg staining correlates with the intensity and progression of chronic liver disease (CLD), and additional work has shown that HBxAg blocks immune mediated killing by Fas and by tumor necrosis factor alpha (TNFalpha). This is not only associated with the blockage of caspase activities by HBxAg, but also by the constitutive stimulation of hepatoprotective pathways, such as nuclear factor kappa B (NF-kappaB), phosphoinositol 3-kinase (PI3K), and beta-catenin (beta-catenin). HBxAg also appears to promote fibrogenesis, by stimulating the production of fibronectin. HBxAg also stimulates the production and activity of transforming growth factor beta1 (TGFbeta1) by several mechanisms, thereby promoting the profibrogenic and tumorigenic properties of this important cytokine. In addition, HBxAg appears to remodel the extracellular matrix (ECM) by altering the expression of several matrix metalloproteinases (MMPs), which may promote tumor metastasis. Hence, HBxAg appears to promote chronic infection by preventing immune mediated apoptosis of infected hepatocytes, by promoting the establishment and persistence of fibrosis and cirrhosis preceding the development of HCC, and by promoting the remodeling of EMC during tumor progression.
Collapse
|
23
|
Puff C, Krudewig C, Imbschweiler I, Baumgärtner W, Alldinger S. Influence of persistent canine distemper virus infection on expression of RECK, matrix-metalloproteinases and their inhibitors in a canine macrophage/monocytic tumour cell line (DH82). Vet J 2008; 182:100-7. [PMID: 18684651 DOI: 10.1016/j.tvjl.2008.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 12/16/2022]
Abstract
A morbillivirus infection of tumour cells is known to exert oncolytic activity, but the mechanism of this inhibitory action has not been well defined. Matrix metalloproteinases (MMPs) are important enzymes degrading the extracellular matrix and are often upregulated in malignant neoplasms. Recent studies have demonstrated that RECK may potently suppress MMP-2 and -9 activity, thus inhibiting angiogenesis and metastasis. In this study, real time quantitative polymerase chain reaction (RT-qPCR) was used to determine the effect of persistent infection with canine distemper virus (CDV) infection on the expression of MMPs and their inhibitors (TIMPS) in a canine macrophage/monocytic tumour cell line (DH82). The activity of proMMP-2 and proMMP-9 was also verified zymographically. Following CDV infection, MMP-2, TIMP-1 and TIMP-2 were down-regulated, while RECK was upregulated. These findings suggest that CDV infection restores RECK expression in tumour cells and may interfere with the intracellular processing of MMPs and TIMPs, thus possibly influencing tumour cell behaviour beneficially for the host. However, this needs to be verified in in vivo studies.
Collapse
Affiliation(s)
- Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
24
|
Hu D, Man Z, Wang P, Tan X, Wang X, Takaku S, Hyuga S, Sato T, Yao X, Yamagata S, Yamagata T. Ganglioside GD1a negatively regulates matrix metalloproteinase-9 expression in mouse FBJ cell lines at the transcriptional level. Connect Tissue Res 2007; 48:198-205. [PMID: 17653976 DOI: 10.1080/03008200701458731] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mouse FBJ virus-induced osteosarcoma FBJ-S1 cells rich in GD1a are not readily metastatic, whereas FBJ-LL cells with low levels of GD1a are highly metastatic. GD1a was previously shown to suppress metastasis of mouse FBJ cells and to upregulate caveolin-1 and stromal interaction molecule 1 expression. The present study demonstrates that matrix metalloproteinase-9 (MMP-9) expression renders FBJ-LL cells invasive. MMP-9 is inversely regulated by GD1a, based upon four observations: MMP-9 mRNA content was 5 times higher in FBJ-LL cells than FBJ-S1 cells; a GD1a-re-expressing FBJ-LL cell variant produced through beta1,4GalNAcT-1 cDNA transfection expressed lower levels of MMP-9; exogenous addition of GD1a to FBJ-LL cells decreased MMP-9 production in a dose- and time-dependent manner; and treatment of GD1a-rich cells with D-PDMP or siRNA targeting St3gal2 decreased GD1a expression, but augmented MMP-9 expression. This is the first report demonstrating that GD1a negatively regulates expression of MMP-9 at the transcriptional level.
Collapse
Affiliation(s)
- Dan Hu
- Laboratory of Tumor Biology and Glycobiology, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Su LJ, Ding GW, Yang ZL, Zhang SB, Yang YX, Xu CS. Expression patterns and action analysis of genes associated with hepatitis virus infection during rat liver regeneration. World J Gastroenterol 2006; 12:7626-34. [PMID: 17171791 PMCID: PMC4088044 DOI: 10.3748/wjg.v12.i47.7626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the action of hepatitis virus infection-associated genes at transcription level during liver regeneration (LR).
METHODS: Hepatitis virus infection-associated genes were obtained by collecting the data from databases and retrieving the correlated articles, and their expression changes in the regenerating rat liver were detected with the rat genome 230 2.0 array.
RESULTS: Eighty-eight genes were found to be associated with liver regeneration. The number of genes initially and totally expressed during initial LR [0.5-4 h after partial hepatectomy (PH)], transition from G0 to G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and reorganization of structure-function (66-168 h after PH) was 37, 8, 48, 3 and 37, 26, 80, 57, respectively, indicating that the genes were mainly triggered at the early stage of LR (0.5-4 h after PH), and worked at different phases. These genes were classified into 5 types according to their expression similarity, namely 37 up-regulated, 9 predominantly up-regulated, 34 down-regulated, 6 predominantly down-regulated and 2 up/down-regulated genes. Their total up- and down-regulation frequencies were 359 and 149 during LR, indicating that the expression of most genes was enhanced, while the expression of a small number of genes was attenuated during LR. According to time relevance, they were classified into 12 groups (0.5 and 1 h, 2 and 4 h, 6 h, 8 and 12 h, 16 and 96 h, 18 and 24 h, 30 and 42 h, 36 and 48 h, 54 and 60 h, 66 and 72 h, 120 and 144 h, 168 h), demonstrating that the cellular physiological and biochemical activities during LR were fluctuated. According to expression changes of the genes, their expression patterns were classified into 23 types, suggesting that the cellular physiological and biochemical activities during LR were diverse and complicated.
CONCLUSION: The anti-virus infection capacity of regenerating liver can be enhanced and 88 genes play an important role in LR.
Collapse
Affiliation(s)
- Li-Juan Su
- Faculty of Life Science and Technology, Ocean University of China, Qingdao 260003, Shandong Province, China
| | | | | | | | | | | |
Collapse
|
26
|
Li Q, Yan W, Cheng S, Guo S, Wang W, Zhang Z, Wang L, Zhang J, Wang W. Introduction of G1 phase arrest in Human Hepatocellular carcinoma cells (HHCC) by APMCF1 gene transfection through the down-regulation of TIMP3 and up-regulation of the CDK inhibitors p21. Mol Biol Rep 2006; 33:257-63. [PMID: 17080297 DOI: 10.1007/s11033-006-9007-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 07/06/2006] [Indexed: 01/21/2023]
Abstract
We previously found that there was up-regulation of APMCF1 expression in apoptotic MCF-7 cells. Moreover, bioinformatics analysis has found that APMCF1 molecules had similar size and structure with molecules which belong to small G-protein superfamily. We presume that APMCF1 plays certain biological role in the regulation of cell proliferation and apoptosis. In this study, we first detected the expression pattern of APMCF1 in human hepatocellular carcinoma cell line and find no expression in Human Hepatocellular carcinoma cells (HHCC) and enhanced expression in HepG2 cells. Expression of liposome-mediated ectogenic APMCF1 induced inhibition of HHCC growth and cell cycle, and RNAi inhibited APMCF1 expression and promoted HepG2 cell growth. Results of cell cycle gene chips analysis showed up-regulation of p21 expression and down-regulation of TIMP3 in HHCC cells expressing ectogenic APMCF1, indicating that APMCF1 participates at least partially in cell cycle regulation through regulating genes such as p21 and TIMP3.
Collapse
Affiliation(s)
- Qinlong Li
- Department of Pathology, State Key Laboratory of GI Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang Y, Lu MQ, Li H, Xu C, Yi SH, Chen GH. Occurrence of cGMP/nitric oxide-sensitive store-operated calcium entry in fibroblasts and its effect on matrix metalloproteinase secretion. World J Gastroenterol 2006; 12:5483-9. [PMID: 17006985 PMCID: PMC4088230 DOI: 10.3748/wjg.v12.i34.5483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the existence of Nitric oxide/cGMP sensitive store-operated Ca2+ entry in mouse fibroblast NIH/3T3 cells and its influence on matrix metalloproteinase (MMP) production and adhesion ability of fibroblasts.
METHODS: NIH/3T3 cells were cultured. Confocal laser scanning microscopy was used to examine the existence of thapsigargin-induced store-operated Ca2+ entry in fibroblasts. Gelatin zymography and semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) were employed to detect the involvement of [Ca2+]i and NO/cGMP in MMP secretion. The involvement of NO/cGMP-sensitive Ca2+ entry in adhesion was determined using matrigel-coated culture plates.
RESULTS: 8-bromo-cGMP inhibited the thapsigargin-induced Ca2+ entry in 3T3 cells. The cGMP-induced inhibition was abolished by an inhibitor of protein kinase G, KT5823 (1μmol/L). A similar effect on the Ca2+ entry was observed in 3T3 cells in response to a NO donor, (±)-S-nitroso-N-acetylpenicillamine (SNAP). The inhibitory effect of SNAP on the thapsigargin-induced Ca2+ entry was also observed, indicating NO/cGMP-regulated Ca2+ entry in 3T3 cells. Results of gelatin zymography assay showed that addition of extracellular Ca2+ concentration induced MMP release and activation in a dose-dependent manner. RT-PCR also showed that cGMP and SNAP reduced the production of MMP mRNA in 3T3 cells. Experiments investigating adhesion potentials demonstrated that cGMP and SNAP could upgrade 3T3 cell attachment rate to the matrigel-coated culture plates.
CONCLUSION: NO/cGMP sensitive store-operated Ca2+ entry occurs in fibroblasts, and attenuates their adhesion potentials through its influence on MMP secretion.
Collapse
Affiliation(s)
- Yong Huang
- Liver Transplantation Centre, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
28
|
Huang Y, Jiang J, Dou K, Chen Z. HAb18G/CD147 enhances the secretion of matrix metalloproteinases (MMP) via cGMP/NO-sensitive capacitative calcium entry (CCE) and accordingly attenuates adhesion ability of fibroblasts. Eur J Cell Biol 2005; 84:59-73. [PMID: 15724816 DOI: 10.1016/j.ejcb.2004.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The present study examined the effect of hepatoma-associated antigen HAb18G (homologous to CD147) expression on the NO/cGMP-regulated Ca2+ mobilization to induce matrix metalloproteinases (MMP) production and attenuate adhesion ability of mouse fibroblast NIH/3T3 cells. HAb18G/CD147 cDNA was transfected into fibroblast 3T3 cells to obtain a cell line stably expressing HAb18G/CD147, t3T3, as demonstrated by immunofluorescence staining and flow cytometry assays. 8-Bromo-cGMP inhibited the thapsigargin-induced Ca2+ entry in 3T3 cells, whereas an inhibitor of protein kinase G, KT5823 (1 microM), led to an increase in Ca2+ entry. Expression of HAb18G/CD147 in t3T3 cells decreased the inhibitory response to cGMP. A similar effect on the Ca2+ entry was observed in 3T3 cells in response to an NO donor, (+/-)-S-nitroso-N-acetylpenicillamine (SNAP). The inhibitory effect of SNAP on the thapsigargin-induced Ca2+ entry was also reduced in HAb18G/CD147-expressing t3T3 cells, indicating a role for HAb18G/CD 147 in NO/cGMP-regulated Ca2+ entry. Results of gelatin zymography assays showed that addition of extracellular Ca2+ induced MMP (MMP-2, MMP-9) release and activation in a dose-dependent manner, and expression of HAb18G/CD147 enhanced the secretion of MMP-2 and MMP-9 in 3T3 cells. 8-Bromo-cGMP and SNAP reduced the production of MMP in 3T3 cells but not in t3T3 with HAb18G/CD147 expression. RT-PCR experiments substantiated that the expression of MMP-2 and MMP-9 mRNA in HAb18G/CD 147-expressing t3T3 cell was significantly greater than that in 3T3 cells. Experiments investigating adhesion potentials demonstrated that HAb18G/CD147-expressing t3T3 cells pretreated with Ca2+ attached to Matrigel-coated culture plates significantly less efficiently than 3T3 cells. The proportion of attached cells could be increased by treatment with 8-bromo-cGMP and SNAP in 3T3 cells, but not in t3T3. These results suggest that HAb18G/CD147 attenuates adhesion potentials in fibroblasts by enhancing the secretion of MMP through NO/cGMP-sensitive capacitative Ca2+ entry.
Collapse
Affiliation(s)
- Yong Huang
- Cell Engineering Research Centre & Department of Cell Biology, The Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | |
Collapse
|