1
|
Barut Z, Nalbantoğlu AM, Korkmaz H, Demir Z, Hatipoğlu M, Özkan A, Bulut Ş. The role of salivary galectin-3 and galectin-9 levels in plaque-induced gingivitis and periodontitis. Heliyon 2023; 9:e19979. [PMID: 37809904 PMCID: PMC10559674 DOI: 10.1016/j.heliyon.2023.e19979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background This study aimed to compare the salivary galectin-3 and galectin-9 levels in periodontitis, gingivitis, and periodontally healthy patients. Methods This study included 75 non-smokers who were systemically healthy. The clinical periodontal parameters of each participant were recorded. Individuals with periodontal health, gingivitis, and Stage II or Stage III Grade B periodontitis were allocated to the corresponding study groups (n = 25 each). Saliva samples were obtained from all individuals after they abstained from drinking and eating 1 h before sample collection. The galectin-3 and galectin-9 levels in the saliva were analyzed using enzyme-linked immunosorbent assay. One-way analysis of variance, student's t-test, Spearman correlation, and logistic regression were used for statistical analyses. Results The galectin-3 and galectin-9 levels were significantly higher in the periodontitis and gingivitis groups than in the healthy group (p < 0.001). The highest galectin-3 and galectin-9 levels were observed in the gingivitis group (p < 0.05). Overall, the galectin-3 levels were significantly higher than the galectin-9 levels in all the groups (p < 0.001). Conclusions The salivary galectin-3 and galectin-9 levels were high in patients with periodontitis and gingivitis, suggesting that they could be potential biomarkers for periodontal diseases.
Collapse
Affiliation(s)
- Zerrin Barut
- Department of Biochemistry, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Ahmet Mert Nalbantoğlu
- Department of Periodontology, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Hilal Korkmaz
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Zeynep Demir
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
| | - Mükerrem Hatipoğlu
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Aysun Özkan
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
| | - Şule Bulut
- Department of Periodontology, Faculty of Dentistry, Kyrenia University, Kyrenia, Northern Cyprus, Turkey
| |
Collapse
|
2
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
3
|
Brandini DA, Takamiya AS, Thakkar P, Schaller S, Rahat R, Naqvi AR. Covid-19 and oral diseases: Crosstalk, synergy or association? Rev Med Virol 2021; 31:e2226. [PMID: 33646645 PMCID: PMC8014590 DOI: 10.1002/rmv.2226] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (Covid-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that clinically affects multiple organs of the human body. Cells in the oral cavity express viral entry receptor angiotensin-converting enzyme 2 that allows viral replication and may cause tissue inflammation and destruction. Recent studies have reported that Covid-19 patients present oral manifestations with multiple clinical aspects. In this review, we aim to summarise main signs and symptoms of Covid-19 in the oral cavity, its possible association with oral diseases, and the plausible underlying mechanisms of hyperinflammation reflecting crosstalk between Covid-19 and oral diseases. Ulcers, blisters, necrotising gingivitis, opportunistic coinfections, salivary gland alterations, white and erythematous plaques and gustatory dysfunction were the most reported clinical oral manifestations in patients with Covid-19. In general, the lesions appear concomitant with the loss of smell and taste. Multiple reports show evidences of necrotic/ulcerative gingiva, oral blisters and hypergrowth of opportunistic oral pathogens. SARS-CoV-2 exhibits tropism for endothelial cells and Covid-19-mediated endotheliitis can not only promote inflammation in oral tissues but can also facilitate virus spread. In addition, elevated levels of proinflammatory mediators in patients with Covid-19 and oral infectious disease can impair tissue homeostasis and cause delayed disease resolution. This suggests potential crosstalk of immune-mediated pathways underlying pathogenesis. Interestingly, few reports suggest recurrent herpetic lesions and higher bacterial growth in Covid-19 subjects, indicating SARS-CoV-2 and oral virus/bacteria interaction. Larger cohort studies comparing SARS-CoV-2 negative and positive subjects will reveal oral manifestation of the virus on oral health and its role in exacerbating oral infection.
Collapse
Affiliation(s)
- Daniela A. Brandini
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Aline S. Takamiya
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Pari Thakkar
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Samantha Schaller
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Rani Rahat
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
4
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Blois SM, Verlohren S, Wu G, Clark G, Dell A, Haslam SM, Barrientos G. Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB). Semin Immunopathol 2020; 42:469-486. [PMID: 32601855 PMCID: PMC7508936 DOI: 10.1007/s00281-020-00801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating syndrome.
Collapse
Affiliation(s)
- Sandra M Blois
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany. .,Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stefan Verlohren
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Plasma Osteopontin Levels is Associated with Biochemical Markers of Kidney Injury in Patients with Leptospirosis. Diagnostics (Basel) 2020; 10:diagnostics10070439. [PMID: 32610429 PMCID: PMC7399986 DOI: 10.3390/diagnostics10070439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Leptospirosis becomes severe, with a fatality rate of >10%, and manifests as severe lung injury accompanied by acute kidney injury. Using urine and blood samples of 112 patients with leptospirosis, osteopontin (OPN), galectin-9 (Gal-9) and other kidney-related biomarkers were measured to understand the pathological and diagnostic roles of OPN and Gal-9 in leptospirosis. Plasma levels of full-length (FL)-OPN (pFL-OPN) (p < 0.0001), pFL-Gal-9(p < 0.0001) and thrombin-cleaved OPN (p < 0.01) were significantly higher in patients with leptospirosis than in healthy controls (n = 30), as were levels of several indicators of renal toxicity: serum cystatin C (p < 0.0001), urine N-acetyl-β-glucosaminidase (NAG)/creatinine (p < 0.05), and urine clusterin/creatinine (p < 0.05). pFL-Gal-9 levels were negatively correlated with pFL-OPN levels (r = −0.24, p < 0.05). pFL-OPN levels were positively correlated with serum cystatin C (r = 0.41, p < 0.0001), urine NAG/creatinine (r = 0.35, p < 0.001), urine clusterin/creatinine (r = 0.33, p < 0.01), and urine cystatin C/creatinine (r = 0.33, p < 0.05) levels. In a group of patients with abnormally high creatinine levels, significantly higher levels of serum cystatin C (p < 0.0001) and pFL-OPN (p < 0.001) were observed. Our results demonstrate that pFL-OPN reflect kidney injury among patients with leptospirosis.
Collapse
|
7
|
Li YM, Li Y, Yan L, Tang JT, Wu XJ, Bai YJ, An YF, Dai B, Yang CL, Wang LL, Shi YY. Assessment of serum Tim-3 and Gal-9 levels in predicting the risk of infection after kidney transplantation. Int Immunopharmacol 2019; 75:105803. [PMID: 31401383 DOI: 10.1016/j.intimp.2019.105803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/02/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023]
Abstract
Infection remains a major cause of morbidity and mortality after kidney transplantation (KT). Reliable biomarkers to predict post-transplant infection are lacking. We investigated the predictive performance of pre- and post-transplant levels of T-cell immunoglobulin and mucin domain-3 (Tim-3) and Galectin-9 (Gal-9), two pleiotropic immunomodulatory molecules, in early identification of infection. Serum Tim-3 and Gal-9 were paired measured before and 30 days after transplantation (PTD 30) in 95 KT recipients (KTRs). The decline rates of Tim-3 and Gal-9 were calculated relative to pre-transplant levels. KTRs with infection history had significantly higher levels of PTD 30 Tim-3 and Gal-9, and slower decrease rates of Gal-9 compared to non-infected recipients, while no difference was observed between two groups regarding pre-transplant levels. The AUCs for predicting 1-year post-transplant infection were 0.653 and 0.711 for post-transplant Tim-3 and Gal-9, 0.664 and 0.670 for relative Tim-3 and Gal-9, respectively. After adjusting for potential confounders, PTD 30 Tim-3, Gal-9 and relative Gal-9 remained as independent risk factors for post-transplant infection. Our results suggested that PTD 30 Tim-3 and Gal-9 and relative decrease of Gal-9 were promising predictors for identifying KTRs with high risk of infection, while pre-transplant Tim-3 and Gal-9 showed no predictive power to infection.
Collapse
Affiliation(s)
- Ya Mei Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yan
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Tao Tang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Juan Wu
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Juan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Fei An
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Dai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cui Li Yang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Lan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Ying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int J Mol Sci 2018; 19:ijms19020379. [PMID: 29373564 PMCID: PMC5855601 DOI: 10.3390/ijms19020379] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 (Gal-3) regulates basic cellular functions such as cell-cell and cell-matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Luca Lavra
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Morgante
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Ulivieri
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Fiorenza Magi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Gian Paolo De Francesco
- Department of Oncological Science, Breast Unit, St Andrea University Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Carlo Bellotti
- Operative Unit Surgery of Thyroid and Parathyroid, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Leila B Salehi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy.
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
9
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|
10
|
Zhang DL, Lv CH, Yu DH, Wang ZY. Characterization and functional analysis of a tandem-repeat galectin-9 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 52:167-178. [PMID: 26997199 DOI: 10.1016/j.fsi.2016.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Galectins are a family of endogenous lectins with β-galactosides affinity, playing significant roles in the innate immunity of vertebrates and invertebrates. In this report, a new galectin-9 cDNA was identified and characterized in large yellow croaker Larimichthys crocea (designated as LcGal-9). The complete cDNA sequence of LcGal-9 was 1795 bp, with an open reading frame (ORF) of 1032 bp encoding 343 amino acids. The putative LcGal-9 protein contained two carbohydrate recognition domains (CRDs) connected by a linker peptide, with each carrying two conserved β-galactoside binding motifs H-NPR and WG-EE-, and it possessed neither a signal peptide nor a transmembrane domain. LcGal-9 protein shared 43-74% identity with galectin-9 sequences from other species. The qRT-PCR analysis revealed that LcGal-9 mRNA was constitutively expressed in all tissues examined, predominately expressed in liver, spleen, gill, kidney, head-kidney and intestine. Western blot analysis showed that LcGal-9 protein was highly expressed in liver, spleen, intestine, kidney, head-kidney, skin, gill, and heart, but not detected in muscle and plasma. LcGal-9 mRNA transcripts were induced by poly I:C in the liver (from 6 h to 48 h), spleen (at 12 h) and head-kidney (at 12 h and 24 h). In contrast, Vibrio parahaemolyticus caused a significant down-regulation in these three tissues, except for in spleen of 48 h and head-kidney of 3 h. Post-infection with Cryptocaryon irritans, the transcripts were dramatically up-regulated in gill, skin, spleen and head-kidney during initial infection period, while significant down-regulation afterward was also observed both in spleen and head-kidney. The recombinant LcGal-9 (named as rLcGal-9) purified from Escherichia coli BL21 (DE3) demonstrated hemagglutination against human, rabbit and L. crocea in a Ca(2+)-independent manner, which was inhibited by α-Lactose and LPS. The results of bacterial agglutination assays showed that rLcGal-9 was able to agglutinate Gram-negative bacteria V. alginolyticus and Aeromonas hydrophila in a Ca(2+)-independent manner. By immunohistochemistry assay, significant increases of LcGal-9 protein appeared in the spleen stimulated with poly I:C (for 12 h) and V. parahaemolyticus (for 48 h) compared with the control. Based on the collective data, LcGal-9 might play an important role in innate immune responses, especially defense against Gram-negative bacteria in L. crocea.
Collapse
Affiliation(s)
- Dong Ling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Chang Huan Lv
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Da Hui Yu
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Zhi Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
11
|
Association of Common Variants in MMPs with Periodontitis Risk. DISEASE MARKERS 2016; 2016:1545974. [PMID: 27194818 PMCID: PMC4853955 DOI: 10.1155/2016/1545974] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/18/2016] [Accepted: 03/16/2016] [Indexed: 01/18/2023]
Abstract
Background. Matrix metalloproteinases (MMPs) are considered to play an important role during tissue remodeling and extracellular matrix degradation. And functional polymorphisms in MMPs genes have been reported to be associated with the increased risk of periodontitis. Recently, many studies have investigated the association between MMPs polymorphisms and periodontitis risk. However, the results remain inconclusive. In order to quantify the influence of MMPs polymorphisms on the susceptibility to periodontitis, we performed a meta-analysis and systematic review. Results. Overall, this comprehensive meta-analysis included a total of 17 related studies, including 2399 cases and 2002 healthy control subjects. Our results revealed that although studies of the association between MMP-8 −799 C/T variant and the susceptibility to periodontitis have not yielded consistent results, MMP-1 (−1607 1G/2G, −519 A/G, and −422 A/T), MMP-2 (−1575 G/A, −1306 C/T, −790 T/G, and −735 C/T), MMP-3 (−1171 5A/6A), MMP-8 (−381 A/G and +17 C/G), MMP-9 (−1562 C/T and +279 R/Q), and MMP-12 (−357 Asn/Ser), as well as MMP-13 (−77 A/G, 11A/12A) SNPs are not related to periodontitis risk. Conclusions. No association of these common MMPs variants with the susceptibility to periodontitis was found; however, further larger-scale and multiethnic genetic studies on this topic are expected to be conducted to validate our results.
Collapse
|
12
|
C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells. Int J Mol Sci 2016; 17:385. [PMID: 27011164 PMCID: PMC4813242 DOI: 10.3390/ijms17030385] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology.
Collapse
|
13
|
Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chacham O, Hahn S, Erez O, Papp Z, Kim CJ. Galectins: Double-edged Swords in the Cross-roads of Pregnancy Complications and Female Reproductive Tract Inflammation and Neoplasia. J Pathol Transl Med 2015; 49:181-208. [PMID: 26018511 PMCID: PMC4440931 DOI: 10.4132/jptm.2015.02.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eva Karpati
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
- Department of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | | | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Pathology, Wayne State University, Detroit, MI, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Chen HY, Weng IC, Hong MH, Liu FT. Galectins as bacterial sensors in the host innate response. Curr Opin Microbiol 2014; 17:75-81. [DOI: 10.1016/j.mib.2013.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022]
|
15
|
Li L, Han M, Li S, Wang L, Xu Y. Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway. DNA Cell Biol 2013; 32:488-97. [PMID: 23781879 PMCID: PMC3752521 DOI: 10.1089/dna.2013.2070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022] Open
Abstract
Physiological occlusal force constitutively exists in the oral environment and is important for periodontal homeostasis and remodeling. Cyclic tensile stress (CTS) triggers the biological response of periodontal ligament (PDL). However, a few reports have studied the correlation between CTS during physiological occlusal force and PDL cell activities such as osteogenic differentiation. In the present study, human PDL cells (hPDLCs) were subjected to 10% elongation CTS loading at 0.5 Hz for 24 h, which represents the physiological conditions of occlusal force. Gene expression microarray was used to investigate the mechano-induced differential gene profile and pathway analysis in vitro. The osteogenic relative factors, that is, SPP1, RUNX2, and SP7, were assessed by real-time PCR and Western blot. The involvement of mitogen-activated protein kinase (MAPK) signaling pathways was investigated by Western blot with a specific inhibitor. The expressions of SPP1, RUNX2, SP7, p-ERK1/2, and p-Elk1 were up-regulated after 10% CTS exposure. However, these up-regulated expressions were prevented by ERK1/2 inhibitor U0126 in the physiological occlusal force-applied hPDLCs. These results showed that 10% CTS could enhance osteogenic differentiation of hPDLCs via ERK1/2-Elk1 MAPK pathway, indicating that CTS during physiological occlusal force is a potent agent for PDL remodeling.
Collapse
Affiliation(s)
- Lu Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Minxuan Han
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Ma CJ, Li GY, Cheng YQ, Wang JM, Ying RS, Shi L, Wu XY, Niki T, Hirashima M, Li CF, Moorman JP, Yao ZQ. Cis association of galectin-9 with Tim-3 differentially regulates IL-12/IL-23 expressions in monocytes via TLR signaling. PLoS One 2013; 8:e72488. [PMID: 23967307 PMCID: PMC3743775 DOI: 10.1371/journal.pone.0072488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/10/2013] [Indexed: 12/28/2022] Open
Abstract
Human monocytes/macrophages (M/MФ) of the innate immunity sense and respond to microbial products via specific receptor coupling with stimulatory (such as TLR) and inhibitory (such as Tim-3) receptors. Current models imply that Tim-3 expression on M/MØ can deliver negative signaling to TLR-mediated IL-12 expression through trans association with its ligand Galectin-9 (Gal-9) presented by other cells. However, Gal-9 is also expressed within M/MØ, and the effect of intracellular Gal-9 on Tim-3 activities and inflammatory responses in the same M/MØ remains unknown. In this study, our data suggest that Tim-3 and IL-12/IL-23 gene transcriptions are regulated by enhanced or silenced Gal-9 expression within monocytes through synergizing with TLR signaling. Additionally, TLR activation facilitates Gal-9/Tim-3 cis association within the same M/MØ to differentially regulate IL-12/IL-23 expressions through STAT-3 phosphorylation. These results reveal a ligand (Gal-9) compartment-dependent regulatory effect on receptor (Tim-3) activities and inflammatory responses via TLR pathways—a novel mechanism underlying cellular responses to external or internal cues.
Collapse
Affiliation(s)
- Cheng J. Ma
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Guang Y. Li
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Yong Q. Cheng
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- International Center for Diagnosis and Treatment of Liver Diseases, 302 Hospital, Beijing, China
| | - Jia M. Wang
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Ruo S. Ying
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Hepatology, Guangzhou Number 8 People’s Hospital, Guangzhou, China
| | - Lei Shi
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Infectious Diseases, Xian Jiaotong University College of Medicine, Xi'an, China
| | - Xiao Y. Wu
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- GalPharma, Kagawa, Japan
| | - Mitsumi Hirashima
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- GalPharma, Kagawa, Japan
| | - Chuan F. Li
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jonathan P. Moorman
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen Veterans Affairs Medical Center, Johnson City, Tennessee, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Zhi Q. Yao
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen Veterans Affairs Medical Center, Johnson City, Tennessee, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Expression and function of galectins in the endometrium and at the human feto-maternal interface. Placenta 2013; 34:863-72. [PMID: 23911101 DOI: 10.1016/j.placenta.2013.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Galectins are classified as lectins that share structural similarities and bind β-galactosides via a conserved carbohydrate recognition domain. So far 16 out of 19 identified galectins were shown to be present in humans and numerous studies revealed galectins as pivotal modulators of cell death, differentiation and growth. Galectins were highlighted to interact with both the adaptive and innate immune response. In the field of reproductive medicine and placenta research different roles for galectins have been proposed. Several galectins, being abundantly present at the human feto-maternal interphase and endometrium, were hypothesized to significantly contribute to endometrial receptivity and pregnancy physiology. Hence, this review outlines selected aspects of galectin action within endometrial function and at the feto-maternal interphase. Further current knowledge on galectins in reproductive and pregnancy disorders like endometriosis, abortion or preeclampsia is summarized.
Collapse
|
18
|
Gieseke F, Kruchen A, Tzaribachev N, Bentzien F, Dominici M, Müller I. Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur J Immunol 2013; 43:2741-9. [PMID: 23817958 DOI: 10.1002/eji.201343335] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/09/2013] [Accepted: 06/26/2013] [Indexed: 01/14/2023]
Abstract
Human multipotent mesenchymal stromal cells (MSCs) are clinically applied to treat autoimmune diseases and graft-versus-host disease due to their immunomodulatory properties. Several molecules have been identified to mediate these effects, including constitutively expressed galectin-1. However, there are indications in the literature that MSCs exert enhanced immunosuppressive functions after interaction with an inflammatory environment. Therefore, we analyzed how inflammatory stimuli influence the expression of the galectin network in MSCs and functionally tested the relevance for the immunomodulatory effects of MSCs. We found that galectin-9 was strongly induced in MSCs upon interaction with activated PBMCs. Proinflammatory cytokines, such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), and also ligands of the Toll-like receptors (TLRs) TLR2, TLR3, and TLR4 elicited similar induction of galectin-9 in activated PBMCs. Galectin-9 was not only upregulated intracellularly, but also released by MSCs in significant amounts into the supernatant after exposure to proinflammatory stimuli. In proliferation assays, MSCs with a galectin-9 knockdown lost a significant portion of their antiproliferative effects on T cells. In conclusion, we found that unlike constitutively expressed galectin-1, galectin-9 is induced by several proinflammatory stimuli and released by MSCs. Thus, galectin-9 contributes to the inducible immunomodulatory functions of MSCs.
Collapse
|
19
|
Bostanci N, Ramberg P, Wahlander Å, Grossman J, Jönsson D, Barnes VM, Papapanou PN. Label-free quantitative proteomics reveals differentially regulated proteins in experimental gingivitis. J Proteome Res 2013; 12:657-78. [PMID: 23244068 DOI: 10.1021/pr300761e] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We investigated the sequential protein expression in gingival crevicular fluid samples during the induction (I) and resolution (R) of experimental gingivitis. Periodontally and systemically healthy volunteers (n = 20) participated in a three-week experimental gingivitis protocol, followed by debridement and two weeks of regular plaque control. Gingival crevicular fluid (GCF) samples were collected at baseline, Day 7, 14, and 21 (induction; I-phase), and at Day 21, 25, 30, and 35 (resolution; R-phase). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) for label-free quantitative proteomics was applied. A total of 287 proteins were identified including 254 human, 14 bacterial, 12 fungal, and 7 yeast proteins. Ontology analysis revealed proteins primarily involved in cytoskeletal rearrangements, immune response, antimicrobial function, protein degradation, and DNA binding. There was considerable variation in the number of proteins identified, both among subjects and within subjects across time points. After pooling of samples between subjects at each time point, the levels of 59 proteins in the I-phase and 73 proteins in the R-phase were quantified longitudinally. Our data demonstrate that LC-MS/MS label-free quantitative proteomics is valuable in the assessment of the protein content of the GCF and can facilitate a better understanding of the molecular mechanisms involved in the induction and resolution of plaque-induced gingival inflammation in humans.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Maeda H, Wada N, Tomokiyo A, Monnouchi S, Akamine A. Prospective potency of TGF-β1 on maintenance and regeneration of periodontal tissue. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:283-367. [PMID: 23809439 DOI: 10.1016/b978-0-12-407696-9.00006-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal ligament (PDL) tissue, central in the periodontium, plays crucial roles in sustaining tooth in the bone socket. Irreparable damages of this tissue provoke tooth loss, causing a decreased quality of life. The question arises as to how PDL tissue is maintained or how the lost PDL tissue can be regenerated. Stem cells included in PDL tissue (PDLSCs) are widely accepted to have the potential to maintain or regenerate the periodontium, but PDLSCs are very few in number. In recent studies, undifferentiated clonal human PDL cell lines were developed to elucidate the applicable potentials of PDLSCs for the periodontal regenerative medicine based on cell-based tissue engineering. In addition, it has been suggested that transforming growth factor-beta 1 is an eligible factor for the maintenance and regeneration of PDL tissue.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
21
|
Vega-Carrascal I, Reeves EP, McElvaney NG. The role of TIM-containing molecules in airway disease and their potential as therapeutic targets. J Inflamm Res 2012; 5:77-87. [PMID: 22952413 PMCID: PMC3430008 DOI: 10.2147/jir.s34225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T cell immunoglobulin and mucin-domain (TIM)-containing molecules have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. Despite the initial discovery linking TIM-containing molecules and the airway hyperreactivity regulatory locus in mice, there is a paucity of studies on the function of TIM-containing molecules in lung inflammatory disease. Initially, studies were limited to mice models of asthma. More recently however, TIM-containing molecules have been implicated in an ever-expanding list of airway conditions that includes pneumonia, tuberculosis, influenza, sarcoidosis, lung cancer, and cystic fibrosis. This present review discusses the role of TIM-containing molecules and their ligands in the lung, as well as their potential as therapeutic targets in airway disease.
Collapse
Affiliation(s)
- Isabel Vega-Carrascal
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | | |
Collapse
|
22
|
Kong HJ, Kim WJ, Kim HS, Lee YJ, Kim CH, Nam BH, Kim YO, Kim DG, Lee SJ, Lim SG, Kim BS. Molecular characterization of a tandem-repeat galectin-9 (RuGlec9) from Korean rose bitterling (Rhodeus uyekii). FISH & SHELLFISH IMMUNOLOGY 2012; 32:939-944. [PMID: 22342745 DOI: 10.1016/j.fsi.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
Galectin-9 is a b-galactoside-binding lectin that regulates many cellular functions, ranging from cell adhesion to pathogen recognition. We isolated and characterized the cDNA of tandem-repeat galectin-9 (RuGlec9) from the Korean rose bitterling (Rhodeus uyekii), an endemic Korean fish belonging to the Acheilognathinae subfamily of the Cyprinidae family. RuGlec9 cDNA is 1486 bp long and encodes a polypeptide of 323 amino acids containing two carbohydrate-recognition domains connected by a linker peptide. The deduced amino acid sequence of RuGlec9 shows 45-84% amino acid sequence identity to other galectin-9 sequences, including those from mammals and fish. RuGlec9 appeared in a large cluster with other galectin-9 sequences from fish and is more closely related to galectin-9 from Danio rerio than to those of other fish and mammals. RuGlec9 mRNA was expressed highly in the testis, spleen, intestine, stomach, and liver, and moderately in the brain, kidney, ovary, and gills of normal Korean rose bitterling. RuGlec9 mRNA expression in the spleen was increased by lipopolysaccharide. These results suggest that RuGlec9 plays a role in innate immunity in Korean rose bitterling.
Collapse
Affiliation(s)
- Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, Gijang-gun, Busan, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Seo T, Cha S, Kim TI, Lee JS, Woo KM. Porphyromonas gingivalis-derived lipopolysaccharide-mediated activation of MAPK signaling regulates inflammatory response and differentiation in human periodontal ligament fibroblasts. J Microbiol 2012; 50:311-9. [DOI: 10.1007/s12275-012-2146-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
|
24
|
Wiersma VR, de Bruyn M, Helfrich W, Bremer E. Therapeutic potential of Galectin-9 in human disease. Med Res Rev 2011; 33 Suppl 1:E102-26. [PMID: 21793015 DOI: 10.1002/med.20249] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, an important role has emerged for the glycan-binding protein Galectin-9 (Gal-9) in health and disease. In normal physiology, Gal-9 seems to be a pivotal modulator of T-cell immunity by inducing apoptosis in specific T-cell subpopulations. Because these T-cell populations are associated with autoimmunity, inflammatory disease, and graft rejection, it was postulated that application of exogenous Gal-9 may limit pathogenic T-cell activity. Indeed, treatment with recombinant Gal-9 ameliorates disease activity in various preclinical models of autoimmunity and allograft graft rejection. In many solid cancers, the loss of Gal-9 expression is closely associated with metastatic progression. In line with this observation, treatment with recombinant Gal-9 prevents metastatic spread in various preclinical cancer models. In addition, various hematological malignancies are sensitive to apoptotic elimination by recombinant Gal-9. Here, we review the biology and physiological role of this versatile lectin and discuss the therapeutic potential of Gal-9 in various diseases, including autoimmunity, asthma, infection, and cancer.
Collapse
Affiliation(s)
- Valerie R Wiersma
- Department of Surgery, Surgical Research Laboratories, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Meka A, Bakthavatchalu V, Sathishkumar S, Lopez MC, Verma RK, Wallet SM, Bhattacharyya I, Boyce BF, Handfield M, Lamont RJ, Baker HV, Ebersole JL, Kesavalu L. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles. Mol Oral Microbiol 2010; 25:61-74. [PMID: 20331794 DOI: 10.1111/j.2041-1014.2009.00555.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. This investigation aimed to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and was analysed for transcript profiles using Murine GeneChip((R)) arrays to provide a molecular profile of the events that occur following infection of these tissues. After P. gingivalis infection, 6452 and 2341 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P </= 0.05). Biological pathways significantly impacted by P. gingivalis infection in tissues and calvarial bone included cell adhesion (immune system) molecules, Toll-like receptors, B-cell receptor signaling, transforming growth factor-beta cytokine family receptor signaling, and major histocompatibility complex class II antigen processing pathways resulting in proinflammatory, chemotactic effects, T-cell stimulation, and downregulation of antiviral and T-cell chemotactic effects. P. gingivalis-induced inflammation activated osteoclasts, leading to local bone resorption. This is the first in vivo evidence that localized P. gingivalis infection differentially induces transcription of a broad array of host genes, the profiles of which differed between inflamed soft tissues and calvarial bone.
Collapse
Affiliation(s)
- A Meka
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Matsuura A, Tsukada J, Mizobe T, Higashi T, Mouri F, Tanikawa R, Yamauchi A, Hirashima M, Tanaka Y. Intracellular galectin-9 activates inflammatory cytokines in monocytes. Genes Cells 2009; 14:511-21. [PMID: 19335620 DOI: 10.1111/j.1365-2443.2009.01287.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Whether galectin-9 plays a role in inflammatory responses remains elusive. The present study was designed to determine the role of intracellular galectin-9 in activation of inflammatory cytokine genes in human monocytes. Galectin-9 expression vector pBKCMV3-G9 was transiently co-transfected into THP-1 monocytic cells along with luciferase reporters carrying gene promoters of IL-1alpha (IL1A), IL-1beta (IL1B) and IFNgamma. Transient transfection studies showed that galectin-9 over-expression activated all three gene promoters, suggesting that intracellular galectin-9 induces inflammatory cytokine genes in monocytes. Galectin-9 over-expression also activated NF-IL6 (C/EBP beta) and AP-1, but not NF-kappaB. In contrast, extracellular galectin-9 is not involved in regulation of inflammatory cytokines. Immunoprecipitation/Western blotting, using anti-galectin-9 Ab and anti-NF-IL6 Ab, showed physical association of intracellular galectin-9 with NF-IL6. RT-PCR confirmed that galectin-9 over-expression increased IL-1alpha and IL-1beta mRNA levels in THP-1 cells. The interaction of galectin-9 with NF-IL6 was enhanced following LPS treatment in THP-1 cells. Intracellular galectin-9 synergized with LPS to activate NF-IL6. Nuclear translocation of galectin-9 was also observed in THP-1 cells treated with LPS. Our results indicate that galectin-9 is a LPS-responsive factor, and further demonstrate that intracellular galectin-9 transactivates inflammatory cytokine genes in monocytes through direct physical interaction with NF-IL6.
Collapse
Affiliation(s)
- Ai Matsuura
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sato S, St-Pierre C, Bhaumik P, Nieminen J. Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev 2009; 230:172-87. [PMID: 19594636 DOI: 10.1111/j.1600-065x.2009.00790.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The glycocalyx is a glycan layer found on the surfaces of host cells as well as microorganisms and enveloped virus. Its thickness may easily exceed 50 nm. The glycocalyx does not only serve as a physical protective barrier but also contains various structurally different glycans, which provide cell- or microorganism-specific 'glycoinformation'. This information is decoded by host glycan-binding proteins, lectins. The roles of lectins in innate immunity are well established, as exemplified by collectins, dectin-1, and dendritic cell (DC)-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). These mammalian lectins are synthesized in the secretory pathway and presented on the cell surface to bind to specific glycan 'epitopes'. As they recognize non-self glycans presented by microorganisms, they can be considered as receptors for pathogen-associated molecular patterns (PAMPs), i.e. pattern recognition receptors (PRRs). One notable exception is the galectin family. Galectins are synthesized and stored in the cytoplasm, but upon infection-initiated tissue damage and/or following prolonged infection, cytosolic galectins are either passively released by dying cells or actively secreted by inflammatory activated cells through a non-classical pathway, the 'leaderless' secretory pathway. Once exported, galectins act as PRR, as well as immunomodulators (or cytokine-like modulators) in the innate response to some infectious diseases. As galectins are dominantly found in the lesions where pathogen-initiated tissue damage signals appear, this lectin family is also considered as potential damage-associated molecular pattern (DAMP) candidates that orchestrate innate immune responses alongside the PAMP system.
Collapse
Affiliation(s)
- Sachiko Sato
- Glycobiology Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, QC, Canada.
| | | | | | | |
Collapse
|
28
|
Repeke CE, Trombone APF, Ferreira SB, Cardoso CR, Silveira EM, Martins W, Trevilatto PC, Silva JS, Campanelli AP, Garlet GP. Strong and persistent microbial and inflammatory stimuli overcome the genetic predisposition to higher matrix metalloproteinase-1 (MMP-1) expression: a mechanistic explanation for the lack of association of MMP1-1607 single-nucleotide polymorphism genotypes with MMP-1 expression in chronic periodontitis lesions. J Clin Periodontol 2009; 36:726-38. [PMID: 19659894 DOI: 10.1111/j.1600-051x.2009.01447.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Our objective was to evaluate the association between the MMP1-1607 single-nucleotide polymorphism (SNP), periodontopathogens and inflammatory cytokines with matrix metalloproteinase-1 (MMP-1) mRNA levels in vitro and in vivo. MATERIALS AND METHODS This study investigated the influence of genetic (MMP1-1607 SNP), microbial (Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Actinobacillus actinomycetemcomitans) and inflammatory [tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta)] factors on the determination of MMP-1 mRNA levels in periodontal tissues of non-smoker chronic periodontitis (CP, N=178) and control (C, N=190) groups. The effects of single and repeated lipopolysaccharide (LPS) and inflammatory cytokine stimulation of macrophages with distinct MMP1-1607 SNP genotypes were also investigated. RESULTS In healthy tissues, the MMP1-1607 2G allele was associated with higher MMP-1 levels while in CP MMP-1 levels were associated with the presence and load of periodontopathogens, and also with TNF-alpha and IL-1beta expression irrespective of the MMP1-1607 genotype. In vitro data demonstrate that in 2G macrophages low- and intermediate-dose LPS and TNF-alpha+IL-1beta stimulation was associated with increased MMP-1 expression, while strong and repeated stimulation resulted in higher MMP-1 levels irrespective of the MMP1-1607 genotype. CONCLUSION Our data demonstrate a limited role for MMP1-1607 SNP in periodontitis, where the extensive chronic antigenic challenge exposure overcomes the genetic control and plays a major role in the determination of MMP-1 expression.
Collapse
Affiliation(s)
- Carlos Eduardo Repeke
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University - FOB/USP, Bauru, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Galectins, which were first characterized in the mid-1970s, were assigned a role in the recognition of endogenous ('self') carbohydrate ligands in embryogenesis, development and immune regulation. Recently, however, galectins have been shown to bind glycans on the surface of potentially pathogenic microorganisms, and function as recognition and effector factors in innate immunity. Some parasites subvert the recognition roles of the vector or host galectins to ensure successful attachment or invasion. This Review discusses the role of galectins in microbial infection, with particular emphasis on adaptations of pathogens to evasion or subversion of host galectin-mediated immune responses.
Collapse
Affiliation(s)
- Gerardo R Vasta
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, Columbus Center, Baltimore, 21202, USA.
| |
Collapse
|
30
|
Rabinovich GA, Liu FT, Hirashima M, Anderson A. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 2007; 66:143-58. [PMID: 17635792 DOI: 10.1111/j.1365-3083.2007.01986.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation is a critical process for eliminating pathogens, but can lead to serious deleterious effects if left unchecked. Identifying the endogenous factors that control immune tolerance and inflammation is a key goal in the field of immunology. Galectins, a family of endogenous lectins with affinity for beta-galactoside-containing oligosaccharides, are expressed by several cells of the immune system and tissue-resident stromal cells. According to their architecture, this family of glycan-binding proteins is classified in those containing one-carbohydrate-recognition domain (CRD) (proto-type), those containing two-CRD joined by a linker non-lectin domain (tandem-repeat) and those that have one-CRD attached to an N-terminal peptide (chimera-type). Accumulating evidence indicates that galectins play critical regulatory roles in immune cell response and homeostasis. In this review, we summarize recent developments in our understanding of the galectins' roles within different immune cell compartments, and in the broader context of the inflammatory microenvironments. In particular we illustrate the immunoregulatory role of three representative members of each galectin subfamily: galectin-1, -3 and -9. This body of knowledge, documenting the coming of age of galectins as potential immunosuppressive agents or targets for anti-inflammatory drugs, represents a sound basis to further explore their potential as novel therapies for autoimmune diseases, chronic inflammation and cancer.
Collapse
Affiliation(s)
- G A Rabinovich
- Department of Immunopathology, Institute of Biology and Experimental Medicine (IBYME/ CONICET), Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
31
|
Rossa C, Liu M, Bronson P, Kirkwood KL. Transcriptional activation of MMP-13 by periodontal pathogenic LPS requires p38 MAP kinase. ACTA ACUST UNITED AC 2007; 13:85-93. [PMID: 17621549 DOI: 10.1177/0968051907079118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Matrix metalloprotease-13 (MMP-13) is induced by pro-inflammatory cytokines and increased expression is associated with a number of pathological conditions such as tumor metastasis, osteoarthritis, rheumatoid arthritis and periodontal diseases. MMP-13 gene regulation and the signal transduction pathways activated in response to bacterial LPS are largely unknown. In these studies, the role of the mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-13 induced by lipopolysaccharide was investigated. Lipopolysaccharide from Escherichia coli and Actinobacillus actinomycetemcomitans significantly (P < 0.05) increased MMP-13 steady-state mRNA (average of 27% and 46% increase, respectively) in murine periodontal ligament fibroblasts. MMP-13 mRNA induction was significantly reduced by inhibition of p38 MAP kinase. Immunoblot analysis indicated that p38 signaling was required for LPS-induced MMP-13 expression. Lipopolysaccharide induced proximal promoter reporter (-660/+32 mMMP-13) gene activity required p38 signaling. Collectively, these results indicate that lipopolysaccharide-induced murine MMP-13 is regulated by p38 signaling through a transcriptional mechanism.
Collapse
Affiliation(s)
- Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of Sao Paulo UNESP, Araraquara, SP, Brazil
| | | | | | | |
Collapse
|
32
|
Yu Y, Yuan S, Yu Y, Huang H, Feng K, Pan M, Huang S, Dong M, Chen S, Xu A. Molecular and biochemical characterization of galectin from amphioxus: primitive galectin of chordates participated in the infection processes. Glycobiology 2007; 17:774-83. [PMID: 17442707 DOI: 10.1093/glycob/cwm044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel F4-carbohydrate recognition domain (CRD)-linker-F3-CRD-type bi-CRD Branchiostoma belcheri tsingtauense galectin (BbtGal)-L together with its alternatively spliced mono-CRD isoform BbtGal-S from amphioxus intestine was encoded by a 9488-bp unique gene with eight exons and seven introns. The recombinant proteins of BbtGal were found to have beta-galactoside-binding activity, indicating that BbtGal was a member of the galectin family. Phylogenetic analysis of this gene along with its splicing form and genome structure suggested that the BbtGal gene was the primitive form of the chordate galectin family. Real-time polymerase chain reaction analyses (PCR) indicated that BbtGal mRNA was expressed during all stages of embryonic development. In terms of tissue distribution, BbtGal-L mRNA was mainly expressed in the immunity-related organs, such as hepatic diverticulum, intestine, and gill, but BbtGal-S was ubiquitously expressed in all tissues. The expression of BbtGal-L mRNA was elevated after acute challenge with various microorganisms, but BbtGal-L only bound to specific bacteria. The immune function of BbtGal was consistent with its localization both outside and inside the cell. Our study on amphioxus galectin may help further understanding of the evolution of chordate galectin in terms of host-pathogen interaction in the immune system.
Collapse
Affiliation(s)
- Yanhong Yu
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, Sun Yat-sen (Zhongshan) University, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kasamatsu A, Endo Y, Uzawa K, Nakashima D, Koike H, Hashitani S, Numata T, Urade M, Tanzawa H. Identification of candidate genes associated with salivary adenoid cystic carcinomas using combined comparative genomic hybridization and oligonucleotide microarray analyses. Int J Biochem Cell Biol 2005; 37:1869-80. [PMID: 15908262 DOI: 10.1016/j.biocel.2005.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Adenoid cystic carcinoma (ACC) of the salivary gland often has a variable clinical course with a poor prognosis. To investigate DNA copy number aberrations associated with ACCs, we compared comparative genome hybridization data from ACCs (n = 6) with other types of salivary gland tumors such as adenocarcinomas (n = 3) and pleomorphic adenomas (n = 6). While 15 gain loci (1q32, 6p25, 6q21-q24, 7q11.2, 7q31, 10q11.2, 11p12-q12, 12q13, 12q14, 13q24, 16p13.3-13.2, 18p11.3, 18q23, 19q13.4, and Xq28) were detected, no DNA loss locus was evident. To examine the expression status of genes on the ACC-associated loci, transcriptional measurements of approximately 38000 human genes then were monitored using Affymetrix U133 Plus 2.0 GeneChips. A total of 4431 genes were found differentially expressed by at least two-fold between ACCs and normal salivary glands. Of them, 3162 genes were up-regulated and 1269 genes were down-regulated in ACCs. After obtaining locus information about the RNA transcripts from the Affymetrix database, we found 262 ACC-associated genes with increased expression on ACC-associated loci. To investigate functional network and gene ontology, the 262 genes were analyzed using Ingenuity Pathway Analysis Tool. The function with the highest P value was a cancer-related function (P = 2.52e-4 to 4.71e-2). In addition, we identified pituitary tumor-transforming gene 1 and transformation related protein 63 genes that were up-regulated by increasing DNA copy number and modulated expression of oncogenes. These results suggested that the combination of copy number and gene expression profiling provides an improved strategy for gene identification in salivary gland ACCs.
Collapse
Affiliation(s)
- Atsushi Kasamatsu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chuo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Koike H, Uzawa K, Grzesik WJ, Seki N, Endo Y, Kasamatsu A, Yamauchi M, Tanzawa H. GLUT1 is highly expressed in cementoblasts but not in osteoblasts. Connect Tissue Res 2005; 46:117-24. [PMID: 16147855 DOI: 10.1080/03008200591008437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cementum is a specialized mineralized tissue covering root surface of the tooth. Although the tissue's composition resembles bone, there are distinct structural and functional differences between the two mineralized tissues. In this study, the genes that are differentially expressed in putative cementoblasts (human cementum-derived cells [HCDCs]) compared with preosteoblastic cells (human bone marrow stromal cells [BMSCs]) were screened by two independent microarray systems, and some of the selected genes were further analyzed by quantitative real-time RT-PCR. The gene encoding glucose transporter 1 [GLUT1], which showed the greatest difference between the two groups by the latter analysis, was subjected to further analyses. High levels of the GLUT1 protein in HCDCs, but not in BMSCs, were detected by Western blotting and immunocytochemistry. Furthermore, intense immunoreactivities for GLUT1 were observed in cementoblasts and cementocytes but not in osteoblasts or osteocytes in human periodontal tissues. These results indicate that GLUT1 may play a role in cementogenesis and could serve as a biomarker to differentiate between cells of cementoblastic and osteoblastic lineage.
Collapse
Affiliation(s)
- Hirofumi Koike
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|