1
|
Chen R, Zheng Y, Zhou C, Dai H, Wang Y, Chu Y, Luo J. N-Acetylcysteine Attenuates Sepsis-Induced Muscle Atrophy by Downregulating Endoplasmic Reticulum Stress. Biomedicines 2024; 12:902. [PMID: 38672256 PMCID: PMC11048408 DOI: 10.3390/biomedicines12040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Sepsis-induced muscle atrophy is characterized by a loss of muscle mass and function which leads to decreased quality of life and worsens the long-term prognosis of patients. N-acetylcysteine (NAC) has powerful antioxidant and anti-inflammatory properties, and it relieves muscle wasting caused by several diseases, whereas its effect on sepsis-induced muscle atrophy has not been reported. The present study investigated the effect of NAC on sepsis-induced muscle atrophy and its possible mechanisms. (2) Methods: The effect of NAC on sepsis-induced muscle atrophy was assessed in vivo and in vitro using cecal ligation and puncture-operated (CLP) C57BL/6 mice and LPS-treated C2C12 myotubes. We used immunofluorescence staining to analyze changes in the cross-sectional area (CSA) of myofibers in mice and the myotube diameter of C2C12. Protein expressions were analyzed by Western blotting. (3) Results: In the septic mice, the atrophic response manifested as a reduction in skeletal muscle weight and myofiber cross-sectional area, which is mediated by muscle-specific ubiquitin ligases-muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle ring finger 1 (MuRF1). NAC alleviated sepsis-induced skeletal muscle wasting and LPS-induced C2C12 myotube atrophy. Meanwhile, NAC inhibited the sepsis-induced activation of the endoplasmic reticulum (ER) stress signaling pathway. Furthermore, using 4-Phenylbutyric acid (4-PBA) to inhibit ER stress in LPS-treated C2C12 myotubes could partly abrogate the anti-muscle-atrophy effect of NAC. Finally, NAC alleviated myotube atrophy induced by the ER stress agonist Thapsigargin (Thap). (4) Conclusions: NAC can attenuate sepsis-induced muscle atrophy, which may be related to downregulating ER stress.
Collapse
Affiliation(s)
- Renyu Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Chu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.C.); (Y.Z.); (C.Z.); (H.D.); (Y.W.); (Y.C.)
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Darden N, Sharma S, Wu X, Mancini B, Karamchandani K, Bonavia AS. Long-term clinical outcomes in critically ill patients with sepsis and pre-existing low muscle mass: a retrospective cohort study. BMC Anesthesiol 2023; 23:313. [PMID: 37715183 PMCID: PMC10503077 DOI: 10.1186/s12871-023-02274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
PURPOSE Critically ill patients with sepsis account for significant disease morbidity and healthcare costs. Low muscle mass has been proposed as an independent risk factor for poor short-term outcomes, although its effect on long-term outcomes remains unclear. METHODS Retrospective cohort analysis of patients treated at a quaternary care medical center over 6 years (09/2014 - 12/2020). Critically ill patients meeting Sepsis-3 criteria were included, with low muscle mass defined by [Formula: see text] 5th percentile skeletal muscle index, measured at the L3 lumbar level (L3SMI) on Computed-Tomography (CT) scan ([Formula: see text] 41.6 cm2/m2 for males and [Formula: see text] 32.0 cm2/m2 for females). L3SMI was calculated by normalizing the CT-measured skeletal muscle area to the square of the patient's height (in meters). Measurements were taken from abdominal/pelvic CT scan obtained within 7 days of sepsis onset. The prevalence of low muscle mass and its association with clinical outcomes, including in-hospital and one-year mortality, and post-hospitalization discharge disposition in survivors, was analyzed. Unfavorable post-hospitalization disposition was defined as discharge to a location other than the patient's home. RESULTS Low muscle mass was present in 34 (23%) of 150 patients, with mean skeletal muscle indices of 28.0 ± 2.9 cm2/m2 and 36.8 ± 3.3 cm2/m2 in females and males, respectively. While low muscle mass was not a significant risk factor for in-hospital mortality (hazard ratio 1.33; 95% CI 0.64 - 2.76; p = 0.437), it significantly increased one-year mortality after adjusting for age and illness severity using Cox multivariate regression (hazard ratio 1.9; 95% CI 1.1 - 3.2; p = 0.014). Unfavorable post-hospitalization discharge disposition was not associated with low muscle mass, after adjusting for age and illness severity in a single, multivariate model. CONCLUSION Low muscle mass independently predicts one-year mortality but is not associated with in-hospital mortality or unfavorable hospital discharge disposition in critically ill patients with sepsis.
Collapse
Affiliation(s)
- Nola Darden
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S Hershey Medical Center, 500 University Dr, Mailbox H-187, Hershey, PA, 17033, USA
| | | | - Xue Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | | | - Kunal Karamchandani
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony S Bonavia
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S Hershey Medical Center, 500 University Dr, Mailbox H-187, Hershey, PA, 17033, USA.
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, Penn State Milton S Hershey Medical Center, 500 University Dr, Mailbox H-187, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Exogenous Melatonin Alleviates Skeletal Muscle Wasting by Regulating Hypothalamic Neuropeptides Expression in Endotoxemia Rats. Neurochem Res 2022; 47:885-896. [PMID: 35061163 PMCID: PMC8891201 DOI: 10.1007/s11064-021-03489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 10/25/2022]
Abstract
To investigate whether exogenous melatonin (MLT) could alleviate skeletal muscle wasting by regulating hypothalamic neuropeptides expression. Adult male Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg), followed by MLT (30 mg/kg/day) or saline for 3 days. Hypothalamic tissues and skeletal muscle were obtained on day 3. Skeletal muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle atrophy F-box and muscle ring finger 1 as well as 3-methylhistidine (3-MH) and tyrosine release. Three hypothalamic neuropeptides (POMC, AgRP, CART) expression were detected in all groups. POMC expression knockdown was achieved by ARC injection of lentiviruses containing shRNA against POMC. Two weeks after ARC viruses injection, rats were i.p. injected with LPS (10 mg/kg) followed by MLT (30 mg/kg/day) or saline for 3 days. Brain tissues were harvested for immunostaining. In septic rats, 3-MH, tyrosine release and muscle atrophic gene expression were significantly decreased in MLT treated group. POMC and CART expression were lower while AgRP expression was higher in MLT treated group. Furthermore, in septic rats treated with MLT, muscle wasting in those with lower expression of neuropeptide POMC did not differ from those with normal POMC expression. Exogenous MLT could alleviate skeletal muscle wasting in septic rats by regulating hypothalamic neuropeptides.
Collapse
|
4
|
Dalle S, Poffé C, Hiroux C, Suhr F, Deldicque L, Koppo K. Ibuprofen does not impair skeletal muscle regeneration upon cardiotoxin-induced injury. Physiol Res 2020; 69:847-859. [PMID: 32901495 DOI: 10.33549/physiolres.934482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Muscle regeneration is regulated through interaction between muscle and immune cells. Studies showed that treatment with supra-physiological doses of Non-Steroidal Anti-Inflammatory Drug (NSAID) abolished inflammatory signaling and impaired muscle recovery. The present study examines the effects of pharmacologically-relevant NSAID treatment on muscle regeneration. C57BL/6 mice were injected in the tibialis anterior (TA) with either PBS or cardiotoxin (CTX). CTX-injected mice received ibuprofen (CTX-IBU) or were untreated (CTX-PLAC). After 2 days, Il-1beta and Il-6 expression was upregulated in the TA of CTX-IBU and CTX-PL vs. PBS. However, Cox-2 expression and macrophage infiltration were higher in CTX-PL vs. PBS, but not in CTX-IBU. At the same time, anabolic markers were higher in CTX-IBU vs. PBS, but not in CTX-PL. Nevertheless, ibuprofen did not affect muscle mass or muscle fiber regeneration. In conclusion, mild ibuprofen doses did not worsen muscle regeneration. There were even signs of a transient improvement in anabolic signaling and attenuation of inflammatory signaling.
Collapse
Affiliation(s)
- S Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, Faculty of Movement and Rehabilitation Sciences, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Skeletal muscle atrophy is a common side effect of most human diseases. Muscle loss is not only detrimental for the quality of life but it also dramatically impairs physiological processes of the organism and decreases the efficiency of medical treatments. While hypothesized for years, the existence of an atrophying programme common to all pathologies is still incompletely solved despite the discovery of several actors and key regulators of muscle atrophy. More than a decade ago, the discovery of a set of genes, whose expression at the mRNA levels were similarly altered in different catabolic situations, opened the way of a new concept: the presence of atrogenes, i.e. atrophy-related genes. Importantly, the atrogenes are referred as such on the basis of their mRNA content in atrophying muscles, the regulation at the protein level being sometimes more complicate to elucidate. It should be noticed that the atrogenes are markers of atrophy and that their implication as active inducers of atrophy is still an open question for most of them. While the atrogene family has grown over the years, it has mostly been incremented based on data coming from rodent models. Whether the rodent atrogenes are valid for humans still remain to be established. An "atrogene" was originally defined as a gene systematically up- or down-regulated in several catabolic situations. Even if recent works often restrict this notion to the up-regulation of a limited number of proteolytic enzymes, it is important to keep in mind the big picture view. In this review, we provide an update of the validated and potential rodent atrogenes and the metabolic pathways they belong, and based on recent work, their relevance in human physio-pathological situations. We also propose a more precise definition of the atrogenes that integrates rapid recovery when catabolic stimuli are stopped or replaced by anabolic ones.
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| |
Collapse
|
6
|
Crossland H, Skirrow S, Puthucheary ZA, Constantin-Teodosiu D, Greenhaff PL. The impact of immobilisation and inflammation on the regulation of muscle mass and insulin resistance: different routes to similar end-points. J Physiol 2018; 597:1259-1270. [PMID: 29968251 PMCID: PMC6395472 DOI: 10.1113/jp275444] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/16/2018] [Indexed: 01/04/2023] Open
Abstract
Loss of muscle mass and insulin sensitivity are common phenotypic traits of immobilisation and increased inflammatory burden. The suppression of muscle protein synthesis is the primary driver of muscle mass loss in human immobilisation, and includes blunting of post‐prandial increases in muscle protein synthesis. However, the mechanistic drivers of this suppression are unresolved. Immobilisation also induces limb insulin resistance in humans, which appears to be attributable to the reduction in muscle contraction per se. Again mechanistic insight is missing such that we do not know how muscle senses its “inactivity status” or whether the proposed drivers of muscle insulin resistance are simply arising as a consequence of immobilisation. A heightened inflammatory state is associated with major and rapid changes in muscle protein turnover and mass, and dampened insulin‐stimulated glucose disposal and oxidation in both rodents and humans. A limited amount of research has attempted to elucidate molecular regulators of muscle mass loss and insulin resistance during increased inflammatory burden, but rarely concurrently. Nevertheless, there is evidence that Akt (protein kinase B) signalling and FOXO transcription factors form part of a common signalling pathway in this scenario, such that molecular cross‐talk between atrophy and insulin signalling during heightened inflammation is believed to be possible. To conclude, whilst muscle mass loss and insulin resistance are common end‐points of immobilisation and increased inflammatory burden, a lack of understanding of the mechanisms responsible for these traits exists such that a substantial gap in understanding of the pathophysiology in humans endures.![]()
Collapse
Affiliation(s)
- Hannah Crossland
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, UK
| | - Sarah Skirrow
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, UK
| | - Zudin A Puthucheary
- Institute of Sport, Exercise and Health, London, UK.,Royal Free NHS Foundation Trust, London, UK
| | - Dumitru Constantin-Teodosiu
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, UK
| | - Paul L Greenhaff
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, UK
| |
Collapse
|
7
|
Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin–proteasome system and oxidative stress. Pflugers Arch 2018; 470:1503-1519. [DOI: 10.1007/s00424-018-2167-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
|
8
|
Restorative Mechanisms Regulating Protein Balance in Skeletal Muscle During Recovery From Sepsis. Shock 2018; 47:463-473. [PMID: 27749759 DOI: 10.1097/shk.0000000000000762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Muscle deconditioning is commonly observed in patients surviving sepsis. Little is known regarding the molecular mechanisms regulating muscle protein homeostasis during the recovery or convalescence phase. We adapted a sepsis-recovery mouse model that uses cecal ligation and puncture (CLP), followed 24 h later by cecal resection and antibiotic treatment, to identify putative cellular pathways regulating protein synthesis and breakdown in skeletal muscle. Ten days after CLP, body weight and food consumption did not differ between control and sepsis-recovery mice, but gastrocnemius weight was reduced. During sepsis-recovery, muscle protein synthesis was increased 2-fold and associated with enhanced mTOR kinase activity (4E-BP1 and S6K1 phosphorylation). The sepsis-induced increase in 4E-BP1 was associated with enhanced formation of the eIF4E-eIF4G active cap-dependent complex, while the increased S6K1 was associated with increased phosphorylation of downstream targets S6 and eIF4B. Proximal to mTOR, sepsis-recovery increased Akt and TSC2 phosphorylation, did not alter AMPK phosphorylation, and decreased REDD1 protein content. Despite the decreased mRNA content for the E3 ubiquitin ligases atrogin-1 and muscle RING-finger 1, proteasomal activity was increased 50%. In contrast, sepsis-recovery was associated with an apparent decrease in autophagy (e.g., increased ULK-1 phosphorylation, decreased LCB3-II, and increased p62). The mRNA content for IL-1β, IL-18, TNFα, and IL-6 in muscle was elevated in sepsis-recovery. During recovery after sepsis skeletal muscle responds with an increase in Akt-TSC2-mTOR-dependent protein synthesis and decreased autophagy, but full restoration of muscle protein content may be slowed by the continued stimulation of ubiquitin-proteasome activity.
Collapse
|
9
|
Jeong JH, Yang DS, Koo JH, Hwang DJ, Cho JY, Kang EB. Effect of Resistance Exercise on Muscle Metabolism and Autophagy in sIBM. Med Sci Sports Exerc 2018; 49:1562-1571. [PMID: 28333717 DOI: 10.1249/mss.0000000000001286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Sporadic inclusion body myositis (sIBM), a muscular degenerative disease in the elderly, is an inflammatory myopathy characterized by muscle weakness in the wrist flexor, quadriceps, and tibialis anterior muscles. We aimed to identify the therapeutic effect of resistance exercise (RE) in improving sIBM symptoms in an sIBM animal model. METHODS Six-week-old male Wistar rats were divided into a sham group (sham, n = 12), chloroquine-control group (CQ-con, n = 12), and chloroquine-RE group (CQ-RE, n = 12). The rats were subjected to 1 wk of exercise adaptation and 8 wk of exercise (three sessions per week). Protein expression was measured by Western blotting. Rimmed vacuoles (RV) were identified by hematoxylin and eosin staining and modified Gömöri trichrome staining, and amyloid deposition was examined by Congo red staining. RESULTS The effects of CQ and RE differed depending on myofiber characteristics. Soleus muscles showed abnormal autophagy in response to CQ, which increased RV generation and amyloid-β accumulation, resulting in atrophy. RE generated RV and decreased amyloid deposition in soleus muscles and also improved autophagy without generating hypertrophy. This reduced the atrophy signal transduction, resulting in decreased atrophy compared with the CQ-con group. Despite no direct effect of CQ, flexor hallucis longus muscles showed loss of mass because of reduced activity or increased inflammatory response; however, RE increased the hypertrophy signal, resulting in reduced autophagy and atrophy. CONCLUSIONS These results demonstrate that RE had a preventive effect on sIBM induced by CQ treatment in an animal model. However, because the results were from an animal experiment, a more detailed study should be conducted over a longer period, and the effectiveness of different RE programs should also be investigated.
Collapse
Affiliation(s)
- Jae-Hoon Jeong
- 1Department of Physical Education, Hanyang University, Seoul, KOREA; 2Department of Taekwondo Studies, Gachon University, Gyeonggi-do, KOREA; and 3Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, KOREA
| | | | | | | | | | | |
Collapse
|
10
|
Ozkok E, Yorulmaz H, Ates G, Aksu A, Balkis N, Şahin Ö, Tamer S. Amelioration of energy metabolism by melatonin in skeletal muscle of rats with LPS induced endotoxemia. Physiol Res 2017; 65:833-842. [PMID: 27875899 DOI: 10.33549/physiolres.933282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the literature, few studies have investigated the effects of melatonin on energy metabolism in skeletal muscle in endotoxemia. We investigated the effects of melatonin on tissue structure, energy metabolism in skeletal muscle, and antioxidant level of rats with endotoxemia. We divided rats into 4 groups, control, lipopolysaccharide (LPS) (20 mg/kg, i.p., single dose), melatonin (10 mg/kg, i.p., three times), and melatonin + LPS. Melatonin was injected i.p. 30 min before and after the 2nd and 4th hours of LPS injection. Antioxidant status was determined by glutathione (GSH) measurement in the blood. Muscle tissue was stained using modified Gomori trichrome (MGT), succinic dehydrogenase (SDH), and cytochrome oxidase (COX) and histological scored. Also the sections were then stained with hematoxylin and eosin. The stained sections were visualized and photographed. Creatine, creatine phosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) levels were investigated using high performance liquid chromatography (HPLC) in muscle tissue. In the Melatonin + LPS group, blood GSH levels were increased compared with the LPS group (P<0.01). Melatonin reduced myopathic changes in the LPS group according to the histopathologic findings. In addition, ATP values were increased compared with the LPS group (P<0.05). Our findings showed melatonin treatment prevented muscle damage by increasing ATP and GSH levels in rats with LPS induced endotoxemia.
Collapse
Affiliation(s)
- E Ozkok
- Istanbul University, Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
11
|
Sun R, Zhang S, Hu W, Lu X, Lou N, Yang Z, Chen S, Zhang X, Yang H. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia. Am J Physiol Cell Physiol 2016; 311:C101-15. [DOI: 10.1152/ajpcell.00344.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia.
Collapse
Affiliation(s)
- Rulin Sun
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Santao Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Xing Lu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China; and
| | - Zhende Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China; and
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| |
Collapse
|
12
|
Chen PY, Liu CS, Lin LY, Lin YC, Sun HL, Li CC, Chen HW, Wang TS, Wang J, Liu KL. Borage oil supplementation decreases lipopolysaccharide-induced inflammation and skeletal muscle wasting in mice. RSC Adv 2016. [DOI: 10.1039/c6ra14163c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Schematic outline of the proposed mechanism by which borage oil supplementation prevented LPS-induced inflammation and skeletal muscle wasting in mice.
Collapse
|
13
|
Heidari Z, Bickerdike R, Tinsley J, Zou J, Wang TY, Chen TY, Martin SA. Regulatory factors controlling muscle mass: Competition between innate immune function and anabolic signals in regulation of atrogin-1 in Atlantic salmon. Mol Immunol 2015; 67:341-9. [DOI: 10.1016/j.molimm.2015.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 12/12/2022]
|
14
|
Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism. Clin Sci (Lond) 2015; 129:461-76. [PMID: 25989282 DOI: 10.1042/cs20140840] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.
Collapse
|
15
|
Dios S, Balseiro P, Costa MM, Romero A, Boltaña S, Roher N, Mackenzie S, Figueras A, Novoa B. The involvement of cholesterol in sepsis and tolerance to lipopolysaccharide highlighted by the transcriptome analysis of zebrafish (Danio rerio). Zebrafish 2014; 11:421-33. [PMID: 25181277 DOI: 10.1089/zeb.2014.0995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Septic shock is the most common cause of death in intensive care units due to an aggressive inflammatory response that leads to multiple organ failure. However, a lipopolysaccharide (LPS) tolerance phenomenon (a nonreaction to LPS), is also often described. Neither the inflammatory response nor the tolerance is completely understood. In this work, both of these responses were analyzed using microarrays in zebrafish. Fish that were 4 or 6 days postfertilization (dpf) and received a lethal dose (LD) of LPS exhibited 100% mortality in a few days. Their transcriptome profile, even at 4 dpf, resembled the profile in humans with severe sepsis. Moreover, we selected 4-dpf fish to set up a tolerance protocol: fish treated with a nonlethal concentration of Escherichia coli LPS exhibited complete protection against the LD of LPS. Most of the main inflammatory molecules described in mammals were represented in the zebrafish microarray experiments. Additionally and focusing on this tolerance response, the use of cyclodextrins may mobilize cholesterol reservoirs to decrease mortality after a LD dose of LPS. Therefore, it is possible that the use of the whole animal could provide some clues to enhance the understanding of the inflammatory/tolerance response and to guide drug discovery.
Collapse
Affiliation(s)
- Sonia Dios
- 1 Instituto de Investigaciones Marinas (IIM)-Consejo Superior de Investigaciones Científicas (CSIC) , Vigo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Deane CS, Hughes DC, Sculthorpe N, Lewis MP, Stewart CE, Sharples AP. Impaired hypertrophy in myoblasts is improved with testosterone administration. J Steroid Biochem Mol Biol 2013; 138:152-61. [PMID: 23714396 DOI: 10.1016/j.jsbmb.2013.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022]
Abstract
We investigated the ability of testosterone (T) to restore differentiation in multiple population doubled (PD) murine myoblasts, previously shown to have a reduced differentiation in monolayer and bioengineered skeletal muscle cultures vs. their parental controls (CON) (Sharples et al., 2011, 2012 [7,26]). Cells were exposed to low serum conditions in the presence or absence of T (100nM)±PI3K inhibitor (LY294002) for 72h and 7 days (early and late muscle differentiation respectively). Morphological analyses were performed to determine myotube number, diameter (μm) and myonuclear accretion as indices of differentiation and myotube hypertrophy. Changes in gene expression for myogenin, mTOR and myostatin were also performed. Myotube diameter in CON and PD cells increased from 17.32±2.56μm to 21.02±1.89μm and 14.58±2.66μm to 18.29±3.08μm (P≤0.05) respectively after 72h of T exposure. The increase was comparable in both PD (+25%) and CON cells (+21%) suggesting a similar intrinsic ability to respond to exogenous T administration. T treatment also significantly increased myonuclear accretion (% of myotubes expressing 5+ nuclei) in both cell types after 7 days exposure (P≤0.05). Addition of PI3K inhibitor (LY294002) in the presence of T attenuated these effects in myotube morphology (in both cell types) suggesting a role for the PI3K pathway in T stimulated hypertrophy. Finally, PD myoblasts showed reduced responsiveness to T stimulated mRNA expression of mTOR vs. CON cells and T also reduced myostatin expression in PD myoblasts only. The present study demonstrates testosterone administration improves hypertrophy in myoblasts that basally display impaired differentiation and hypertrophic capacity vs. their parental controls, the action of testosterone in this model was mediated by PI3K/Akt pathway.
Collapse
Affiliation(s)
- Colleen S Deane
- Muscle Cellular and Molecular Physiology Research Group (MCMPRG), Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, UK; School of Health and Social Care, Bournemouth University, UK
| | | | | | | | | | | |
Collapse
|
17
|
Sharples AP, Al-Shanti N, Hughes DC, Lewis MP, Stewart CE. The role of insulin-like-growth factor binding protein 2 (IGFBP2) and phosphatase and tensin homologue (PTEN) in the regulation of myoblast differentiation and hypertrophy. Growth Horm IGF Res 2013; 23:53-61. [PMID: 23583027 DOI: 10.1016/j.ghir.2013.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 01/30/2013] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
Abstract
The complex actions of the insulin-like-growth factor binding proteins (IGFBPs) in skeletal muscle are becoming apparent, with IGFBP2 being implicated in skeletal muscle cell proliferation and differentiation (Ernst et al., 1992; Sharples et al., 2010). Furthermore, PTEN signalling has been linked to IGFBP2 action in other cell types by co-ordinating downstream Akt signalling, a known modulator of myoblast differentiation. The present study therefore aimed to determine the interaction between IGFBP2 and PTEN on myoblast differentiation. It has previously been established that C2C12 cells have high IGFBP2 gene expression upon transfer to low serum media, and that expression reduces rapidly as cells differentiate over 72 h [1]. Wishing to establish a potential role for IGFBP2 in this model, a neutralising IGFBP2 antibody was administered to C2C12 myoblasts upon initiation of differentiation. Myoblasts subsequently displayed reduced morphological differentiation (myotube number), biochemical differentiation (creatine kinase) and myotube hypertrophy (myotube area) with an early reduction in Akt phosphorylation. Knock-down of phosphatase and tensin homologue (PTEN) using siRNA in the absence of the neutralising antibody did not improve differentiation or hypertrophy vs. control conditions, however, in the presence of the neutralising IGFBP2 antibody, differentiation was restored and importantly hypertrophy exceeded that of control levels. Overall, these data suggest that; 1) reduced early availability of IGFBP2 can inhibit myoblast differentiation at later time points, 2) knock-down of PTEN levels can restore myoblast differentiation in the presence of neutralising IGFBP2 antibody, and 3) PTEN inhibition acts as a potent inducer of myotube hypertrophy when the availability of IGFBP2 is reduced in C2C12 myoblasts.
Collapse
Affiliation(s)
- Adam P Sharples
- Stem Cell, Ageing and Molecular Physiology (SCAMP) Unit, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, UK.
| | | | | | | | | |
Collapse
|
18
|
Alamdari N, Aversa Z, Castillero E, Hasselgren PO. Acetylation and deacetylation--novel factors in muscle wasting. Metabolism 2013; 62:1-11. [PMID: 22626763 PMCID: PMC3430797 DOI: 10.1016/j.metabol.2012.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 11/24/2022]
Abstract
We review recent evidence that acetylation and deacetylation of cellular proteins, including transcription factors and nuclear cofactors, may be involved in the regulation of muscle mass. The level of protein acetylation is balanced by histone acetyltransferases (HATs) and histone deacetylases (HDACs) and studies suggest that this balance is perturbed in muscle wasting. Hyperacetylation of transcription factors and nuclear cofactors regulating gene transcription in muscle wasting may influence muscle mass. In addition, hyperacetylation may render proteins susceptible to degradation by different mechanisms, including intrinsic ubiquitin ligase activity exerted by HATs and by dissociation of proteins from cellular chaperones. In recent studies, inhibition of p300/HAT expression and activity and stimulation of SIRT1-dependent HDAC activity reduced glucocorticoid-induced catabolic response in skeletal muscle, providing further evidence that hyperacetylation plays a role in muscle wasting. It should be noted, however, that although several studies advocate a role of hyperacetylation in muscle wasting, apparently contradictory results have also been reported. For example, muscle atrophy caused by denervation or immobilization may be associated with reduced, rather than increased, protein acetylation. In addition, whereas hyperacetylation results in increased degradation of certain proteins, other proteins may be stabilized by increased acetylation. Thus, the role of acetylation and deacetylation in the regulation of muscle mass may be both condition- and protein-specific. The influence of HATs and HDACs on the regulation of muscle mass, as well as methods to modulate protein acetylation, is an important area for continued research aimed at preventing and treating muscle wasting.
Collapse
Affiliation(s)
- Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
19
|
Coelho CW, Jannig PR, Souza ABD, Fronza H, Westphal GA, Petronilho F, Constantino L, Dal-Pizzol F, Ferreira GK, Streck EE, Silva E. Exercise training prevents skeletal muscle damage in an experimental sepsis model. Clinics (Sao Paulo) 2013; 68:107-14. [PMID: 23420166 PMCID: PMC3552448 DOI: 10.6061/clinics/2013(01)oa17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/22/2012] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Oxidative stress plays an important role in skeletal muscle damage in sepsis. Aerobic exercise can decrease oxidative stress and enhance antioxidant defenses. Therefore, it was hypothesized that aerobic exercise training before a sepsis stimulus could attenuate skeletal muscle damage by modulating oxidative stress. Thus, the aim of this study was to evaluate the effects of aerobic physical preconditioning on the different mechanisms that are involved in sepsis-induced myopathy. METHODS Male Wistar rats were randomly assigned to either the untrained or trained group. The exercise training protocol consisted of an eight-week treadmill program. After the training protocol, the animals from both groups were randomly assigned to either a sham group or a cecal ligation and perforation surgery group. Thus, the groups were as follows: sham, cecal ligation and perforation, sham trained, and cecal ligation and perforation trained. Five days after surgery, the animals were euthanized and their soleus and plantaris muscles were harvested. Fiber cross-sectional area, creatine kinase, thiobarbituric acid reactive species, carbonyl, catalase and superoxide dismutase activities were measured. RESULTS The fiber cross-sectional area was smaller, and the creatine kinase, thiobarbituric acid reactive species and carbonyl levels were higher in both muscles in the cecal ligation and perforation group than in the sham and cecal ligation and perforation trained groups. The muscle superoxide dismutase activity was higher in the cecal ligation and perforation trained group than in the sham and cecal ligation and perforation groups. The muscle catalase activity was lower in the cecal ligation and perforation group than in the sham group. CONCLUSION In summary, aerobic physical preconditioning prevents atrophy, lipid peroxidation and protein oxidation and improves superoxide dismutase activity in the skeletal muscles of septic rats.
Collapse
Affiliation(s)
- Carla Werlang Coelho
- Faculdade de Medicina da Universidade de São Paulo, Anesthesiology Strict Sensus Post Graduation Program of the Medical School, São Paulo/SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim HC, Cho HY, Hah YS. Role of IL-15 in Sepsis-Induced Skeletal Muscle Atrophy and Proteolysis. Tuberc Respir Dis (Seoul) 2012; 73:312-9. [PMID: 23319993 PMCID: PMC3538184 DOI: 10.4046/trd.2012.73.6.312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/04/2012] [Accepted: 12/10/2012] [Indexed: 12/23/2022] Open
Abstract
Background Muscle wasting in sepsis is associated with increased proteolysis. Interleukin-15 (IL-15) has been characterized as an anabolic factor for skeletal muscles. Our study aims to investigate the role of IL-15 in sepsis-induced muscle atrophy and proteolysis. Methods Mice were rendered septic either by cecal ligation and puncture or by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg i.p.). Expression of IL-15 mRNA and protein was determined by reverse transcriptase polymerase chain reaction and Western blot analysis in the control and septic limb muscles. C2C12 skeletal muscle cells were stimulated in vitro with either LPS or dexamethasone in the presence and absence of IL-15 and sampled at different time intervals (24, 48, or 72 hours). IL-15 (10µg/kg) was intraperitoneally administered 6 hours before sepsis induction and limb muscles were sampled after 24 hours of sepsis. Cathepsin L activity was determined to measure muscle proteolysis. Atrogin-1 and muscle-specific ring finger protein 1 (MuRF1) expressions in limb muscle protein lysates was analyzed. Results IL-15 mRNA expression was significantly lower in the limb muscles of septic mice compared to that of controls. Cathepsin L activity in C2C12 cells was significantly lower in presence of IL-15, when compared to that observed with individual treatments of LPS or dexamethasone or tumor necrosis factor α. Further, the limb muscles of mice pre-treated with IL-15 prior to sepsis induction showed a lower expression of atrogin-1 and MuRF1 than those not pre-treated. Conclusion IL-15 may play a role in protection against sepsis-induced muscle wasting; thereby, serving as a potential therapeutic target for sepsis-induced skeletal muscle wasting and proteolysis.
Collapse
Affiliation(s)
- Ho Cheol Kim
- Department of Internal Medicine, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | |
Collapse
|
21
|
Schakman O, Dehoux M, Bouchuari S, Delaere S, Lause P, Decroly N, Shoelson SE, Thissen JP. Role of IGF-I and the TNFα/NF-κB pathway in the induction of muscle atrogenes by acute inflammation. Am J Physiol Endocrinol Metab 2012; 303:E729-39. [PMID: 22739109 PMCID: PMC4118721 DOI: 10.1152/ajpendo.00060.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several catabolic states (sepsis, cancer, etc.) associated with acute inflammation are characterized by a loss of skeletal muscle due to accelerated proteolysis. The main proteolytic systems involved are the autophagy and the ubiquitin-proteasome (UPS) pathways. Among the signaling pathways that could mediate proteolysis induced by acute inflammation, the transcription factor NF-κB, induced by TNFα, and the transcription factor forkhead box O (FOXO), induced by glucocorticoids (GC) and inhibited by IGF-I, are likely to play a key role. The aim of this study was to identify the nature of the molecular mediators responsible for the induction of these muscle proteolytic systems in response to acute inflammation caused by LPS injection. LPS injection robustly stimulated the expression of several components of the autophagy and the UPS pathways in the skeletal muscle. This induction was associated with a rapid increase of circulating levels of TNFα together with a muscular activation of NF-κB followed by a decrease in circulating and muscle levels of IGF-I. Neither restoration of circulating IGF-I nor restoration of muscle IGF-I levels prevented the activation of autophagy and UPS genes by LPS. The inhibition of TNFα production and muscle NF-κB activation, respectively by using pentoxifilline and a repressor of NF-κB, did not prevent the activation of autophagy and UPS genes by LPS. Finally, inhibition of GC action with RU-486 blunted completely the activation of these atrogenes by LPS. In conclusion, we show that increased GC production plays a more crucial role than decreased IGF-I and increased TNFα/NF-κB pathway for the induction of the proteolytic systems caused by acute inflammation.
Collapse
Affiliation(s)
- O. Schakman
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
- 2Laboratory of Cell Physiology, Institute of Neurosciences,
Université Catholique de Louvain, Brussels, Belgium;
| | - M. Dehoux
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - S. Bouchuari
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - S. Delaere
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - P. Lause
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - N. Decroly
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - S. E. Shoelson
- 3Joslin Diabetes Center and Department of Medicine, Harvard
Medical School, Boston, Massachusetts
| | - J.-P. Thissen
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| |
Collapse
|
22
|
Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle 2012; 3:163-79. [PMID: 22673968 PMCID: PMC3424188 DOI: 10.1007/s13539-012-0074-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/13/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy is defined as a decrease in muscle mass and it occurs when protein degradation exceeds protein synthesis. Potential triggers of muscle wasting are long-term immobilization, malnutrition, severe burns, aging as well as various serious and often chronic diseases, such as chronic heart failure, obstructive lung disease, renal failure, AIDS, sepsis, immune disorders, cancer, and dystrophies. Interestingly, a cooperation between several pathophysiological factors, including inappropriately adapted anabolic (e.g., growth hormone, insulin-like growth factor 1) and catabolic proteins (e.g., tumor necrosis factor alpha, myostatin), may tip the balance towards muscle-specific protein degradation through activation of the proteasomal and autophagic systems or the apoptotic pathway. Based on the current literature, we present an overview of the molecular and cellular mechanisms that contribute to muscle wasting. We also focus on the multifacetted therapeutic approach that is currently employed to prevent the development of muscle wasting and to counteract its progression. This approach includes adequate nutritional support, implementation of exercise training, and possible pharmacological compounds.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, viale Europa 11, 25123, Brescia, Italy,
| | | | | | | |
Collapse
|
23
|
Hadj Sassi A, Monteil J, Sauvant P, Atgié C. Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: relationship with myostatin activity. J Physiol Biochem 2012; 68:683-90. [DOI: 10.1007/s13105-012-0192-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/22/2012] [Indexed: 01/10/2023]
|
24
|
Chamberlain W, Gonnella P, Alamdari N, Aversa Z, Hasselgren PO. Multiple muscle wasting-related transcription factors are acetylated in dexamethasone-treated muscle cells. Biochem Cell Biol 2012; 90:200-8. [DOI: 10.1139/o11-082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest that the expression and activity of the histone acetyltransferase p300 are upregulated in catabolic muscle allowing for acetylation of cellular proteins. The function of transcription factors is influenced by posttranslational modifications, including acetylation. It is not known if transcription factors involved in the regulation of muscle mass are acetylated in atrophying muscle. We determined cellular levels of acetylated C/EBPβ, C/EBPδ, FOXO1, FOXO3a, and NF-kB/p65 in dexamethasone-treated L6 muscle cells, a commonly used in vitro model of muscle wasting. The role of p300 in dexamethasone-induced transcription factor acetylation and myotube atrophy was examined by transfecting muscle cells with p300 siRNA. Treatment of L6 myotubes with dexamethasone resulted in increased cellular levels of acetylated C/EBPβ and δ, FOXO1 and 3a, and p65. Downregulation of p300 with p300 siRNA reduced acetylation of transcription factors and decreased dexamethasone-induced myotube atrophy and expression of the ubiquitin ligase MuRF1. The results suggest that several muscle wasting-related transcription factors are acetylated supporting the concept that posttranslational modifications of proteins regulating gene transcription may be involved in the loss of muscle mass. The results also suggest that acetylation of the transcription factors is at least in part regulated by p300 and plays a role in glucocorticoid-induced muscle atrophy. Targeting molecules that regulate acetylation of transcription factors may help reduce the impact of muscle wasting.
Collapse
Affiliation(s)
- Wei Chamberlain
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Patricia Gonnella
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zaira Aversa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- 330 Brookline Avenue, ST 919, Boston, MA 02215, USA
| |
Collapse
|
25
|
Reed SA, Sandesara PB, Senf SM, Judge AR. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 2011; 26:987-1000. [PMID: 22102632 DOI: 10.1096/fj.11-189977] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.
Collapse
Affiliation(s)
- Sarah A Reed
- Department of Physical Therapy, 101 S. Newell Dr., University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
26
|
Gonnella P, Alamdari N, Tizio S, Aversa Z, Petkova V, Hasselgren PO. C/EBPβ regulates dexamethasone-induced muscle cell atrophy and expression of atrogin-1 and MuRF1. J Cell Biochem 2011; 112:1737-48. [PMID: 21381078 DOI: 10.1002/jcb.23093] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Muscle wasting in catabolic patients is in part mediated by glucocorticoids and is associated with increased expression and activity of the transcription factor C/EBPβ. It is not known, however, if C/EBPβ is causally linked to glucocorticoid-induced muscle atrophy. We used dexamethasone-treated L6 myoblasts and myotubes to test the role of C/EBPβ in glucocorticoid-induced expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF1, protein degradation, and muscle atrophy by transfecting cells with C/EBPβ siRNA. In myoblasts, silencing C/EBPβ expression with siRNA inhibited dexamethasone-induced increase in protein degradation, atrogin-1 and MuRF1 expression, and muscle cell atrophy. Similar effects of C/EBPβ siRNA were seen in myotubes except that the dexamethasone-induced increase in MuRF1 expression was not affected by C/EBPβ siRNA in myotubes. In additional experiments, overexpressing C/EBPβ did not influence atrogin-1 or MuRF1 expression in myoblasts or myotubes. Taken together, our observations suggest that glucocorticoid-induced muscle wasting is at least in part regulated by C/EBPβ. Increased C/EBPβ expression alone, however, is not sufficient to upregulate atrogin-1 and MuRF1 expression.
Collapse
Affiliation(s)
- Patricia Gonnella
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
27
|
Aversa Z, Alamdari N, Hasselgren PO. Molecules modulating gene transcription during muscle wasting in cancer, sepsis, and other critical illness. Crit Rev Clin Lab Sci 2011; 48:71-86. [DOI: 10.3109/10408363.2011.591365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Effects on the ubiquitin proteasome system after closed soft-tissue trauma in rat skeletal muscle. Eur J Trauma Emerg Surg 2011; 37:645-54. [PMID: 26815477 DOI: 10.1007/s00068-011-0083-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/30/2011] [Indexed: 10/18/2022]
Abstract
Previous studies have suggested that an increased catabolic stage of skeletal muscle in pathological situations is mainly a reflection of ubiquitin-proteasome system-controlled proteolysis. The proteolytic mechanisms that occur after local muscle trauma are poorly defined. We investigated the effects of closed soft-tissue trauma on ubiquitin-proteasome dependent protein breakdown in rats (n = 25). The enzymatic activities of the ubiquitination and proteasome reactions were both reduced (p < 0.05) immediately after contusion of the hind limb musculus extensor digitorum longus. The same effect was observed in extracts of lung tissue from the injured animals. Cellular levels of free and protein-conjugated ubiquitin were significantly elevated upon decreased proteolytic activity. Our data support an early-state anti-proteolytic role of the ubiquitin-proteasome pathway after local injury. This further implies that there is a yet-to-be elucidated complex regulatory mechanism of muscle regeneration that involves various proteolytic systems.
Collapse
|
29
|
Ohno Y, Yamada S, Sugiura T, Ohira Y, Yoshioka T, Goto K. Possible Role of NF-ĸB Signals in Heat Stress-Associated Increase in Protein Content of Cultured C2C12 Cells. Cells Tissues Organs 2011; 194:363-70. [DOI: 10.1159/000323324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 12/31/2022] Open
|
30
|
Schefold JC, Bierbrauer J, Weber-Carstens S. Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle 2010; 1:147-157. [PMID: 21475702 PMCID: PMC3060654 DOI: 10.1007/s13539-010-0010-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 10/14/2010] [Indexed: 01/04/2023] Open
Abstract
Sepsis presents a major health care problem and remains one of the leading causes of death within the intensive care unit (ICU). Therapeutic approaches against severe sepsis and septic shock focus on early identification. Adequate source control, administration of antibiotics, preload optimization by fluid resuscitation and further hemodynamic stabilisation using vasopressors whenever appropriate are considered pivotal within the early-golden-hours of sepsis. However, organ dysfunction develops frequently in and represents a significant comorbidity of sepsis. A considerable amount of patients with sepsis will show signs of severe muscle wasting and/or ICU-acquired weakness (ICUAW), which describes a frequently observed complication in critically ill patients and refers to clinically weak ICU patients in whom there is no plausible aetiology other than critical illness. Some authors consider ICUAW as neuromuscular organ failure, caused by dysfunction of the motor unit, which consists of peripheral nerve, neuromuscular junction and skeletal muscle fibre. Electrophysiologic and/or biopsy studies facilitate further subclassification of ICUAW as critical illness myopathy, critical illness polyneuropathy or critical illness myoneuropathy, their combination. ICUAW may protract weaning from mechanical ventilation and impede rehabilitation measures, resulting in increased morbidity and mortality. This review provides an insight on the available literature on sepsis-mediated muscle wasting, ICUAW and their potential pathomechanisms.
Collapse
Affiliation(s)
- Joerg C. Schefold
- Department of Nephrology and Intensive Care Medicine, Charité University Medicine, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jeffrey Bierbrauer
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité University Medicine, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité University Medicine, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
31
|
PARK K, PRAMOD A, KIM J, CHOE H, HWANG I. MOLECULAR AND BIOLOGICAL FACTORS AFFECTING SKELETAL MUSCLE CELLS AFTER SLAUGHTERING AND THEIR IMPACT ON MEAT QUALITY: A MINI REVIEW. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1745-4573.2009.00182.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
|
33
|
Abstract
Sepsis is a major cause of morbidity and mortality in critically ill patients, and despite advances in management, mortality remains high. In survivors, sepsis increases the risk for the development of persistent acquired weakness syndromes affecting both the respiratory muscles and the limb muscles. This acquired weakness results in prolonged duration of mechanical ventilation, difficulty weaning, functional impairment, exercise limitation, and poor health-related quality of life. Abundant evidence indicates that sepsis induces a myopathy characterized by reductions in muscle force-generating capacity, atrophy (loss of muscle mass), and altered bioenergetics. Sepsis elicits derangements at multiple subcellular sites involved in excitation contraction coupling, such as decreasing membrane excitability, injuring sarcolemmal membranes, altering calcium homeostasis due to effects on the sarcoplasmic reticulum, and disrupting contractile protein interactions. Muscle wasting occurs later and results from increased proteolytic degradation as well as decreased protein synthesis. In addition, sepsis produces marked abnormalities in muscle mitochondrial functional capacity and when severe, these alterations correlate with increased death. The mechanisms leading to sepsis-induced changes in skeletal muscle are linked to excessive localized elaboration of proinflammatory cytokines, marked increases in free-radical generation, and activation of proteolytic pathways that are upstream of the proteasome including caspase and calpain. Emerging data suggest that targeted inhibition of these pathways may alter the evolution and progression of sepsis-induced myopathy and potentially reduce the occurrence of sepsis-mediated acquired weakness syndromes.
Collapse
|
34
|
Crossland H, Constantin-Teodosiu D, Greenhaff PL, Gardiner SM. Low-dose dexamethasone prevents endotoxaemia-induced muscle protein loss and impairment of carbohydrate oxidation in rat skeletal muscle. J Physiol 2010; 588:1333-47. [PMID: 20176631 DOI: 10.1113/jphysiol.2009.183699] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We recently provided evidence suggesting a role for cytokine-mediated inhibition of Akt/Forkhead box O 1 (FOXO1) signalling in the induction of muscle atrophy and impairment of muscle carbohydrate oxidation during lipopolysaccharide (LPS)-induced endotoxaemia in rats. We hypothesized that a low-dose dexamethasone (Dex; anti-inflammatory agent) infusion during endotoxaemia would prevent the LPS-induced impairment of Akt/FOXO1 signalling, and therefore prevent the muscle atrophy and impairment of carbohydrate oxidation. Chronically instrumented Sprague-Dawley rats received a continuous intravenous infusion of LPS (15 microg kg(-1) h(-1)), Dex (12.5 microg kg(-1) h(-1)), Dex+LPS or saline for 24 h at 0.4 ml h(-1). LPS infusion caused haemodynamic changes consistent with a hyperdynamic circulation and induced increases in muscle tumour necrosis factor-alpha (TNF-alpha; 10-fold, P < 0.001), interleukin-6 (IL-6; 14-fold, P < 0.001) and metallothionein-1A (MT-1A; 187-fold, P < 0.001) mRNA expression. Dex co-administration abolished most of the haemodynamic effects of LPS and reduced the increase in muscle TNF-alpha, IL-6 and MT-1A by 51% (P < 0.01), 85% (P < 0.001) and 58% (P < 0.01), respectively. Dex infusion during endotoxaemia also prevented the LPS-induced 40% reduction in the muscle protein:DNA ratio and decrease in Akt phosphorylation, and partially prevented the reduction in FOXO1 phosphorylation. However, Dex did not prevent the LPS-mediated increase in muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1) mRNA expression, but did significantly reduce the LPS-mediated increase in cathepsin-L mRNA expression and enzyme activity by 43% (P < 0.001) and 53% (P < 0.05), respectively. Furthermore, Dex suppressed LPS-induced pyruvate dehydrogenase kinase 4 (PDK4) mRNA upregulation by approximately 50% (P < 0.01), and prevented LPS-mediated muscle glycogen breakdown and lactate accumulation. Thus, low-dose Dex infusion during endotoxaemia prevented muscle atrophy and the impairment of carbohydrate oxidation, potentially through suppression of cytokine-mediated Akt/FOXO inhibition, and blunting of cathepsin-L-mediated lysosomal protein breakdown.
Collapse
Affiliation(s)
- Hannah Crossland
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | |
Collapse
|
35
|
O'Neal P, Alamdari N, Smith I, Poylin V, Menconi M, Hasselgren PO. Experimental hyperthyroidism in rats increases the expression of the ubiquitin ligases atrogin-1 and MuRF1 and stimulates multiple proteolytic pathways in skeletal muscle. J Cell Biochem 2010; 108:963-73. [PMID: 19777444 DOI: 10.1002/jcb.22329] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Muscle wasting is commonly seen in patients with hyperthyroidism and is mainly caused by stimulated muscle proteolysis. Loss of muscle mass in several catabolic conditions is associated with increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF1 but it is not known if atrogin-1 and MuRF1 are upregulated in hyperthyroidism. In addition, it is not known if thyroid hormone increases the activity of proteolytic mechanisms other than the ubiquitin-proteasome pathway. We tested the hypotheses that experimental hyperthyroidism in rats, induced by daily intraperitoneal injections of 100 microg/100 g body weight of triiodothyronine (T3), upregulates the expression of atrogin-1 and MuRF1 in skeletal muscle and stimulates lysosomal, including cathepsin L, calpain-, and caspase-3-dependent protein breakdown in addition to proteasome-dependent protein breakdown. Treatment of rats with T3 for 3 days resulted in an approximately twofold increase in atrogin-1 and MuRF1 mRNA levels. The same treatment increased proteasome-, cathepsin L-, and calpain-dependent proteolytic rates by approximately 40% but did not influence caspase-3-dependent proteolysis. The expression of atrogin-1 and MuRF1 remained elevated during a more prolonged period (7 days) of T3 treatment. The results provide support for a role of the ubiquitin-proteasome pathway in muscle wasting during hyperthyroidism and suggest that other proteolytic pathways as well may be activated in the hyperthyroid state.
Collapse
Affiliation(s)
- Patrick O'Neal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
36
|
Itagaki K, Menconi M, Antoniu B, Zhang Q, Gonnella P, Soybel D, Hauser C, Hasselgren PO. Dexamethasone stimulates store-operated calcium entry and protein degradation in cultured L6 myotubes through a phospholipase A(2)-dependent mechanism. Am J Physiol Cell Physiol 2010; 298:C1127-39. [PMID: 20107037 DOI: 10.1152/ajpcell.00309.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Muscle wasting in various catabolic conditions is at least in part regulated by glucocorticoids. Increased calcium levels have been reported in atrophying muscle. Mechanisms regulating calcium homeostasis in muscle wasting, in particular the role of glucocorticoids, are poorly understood. Here we tested the hypothesis that glucocorticoids increase intracellular calcium concentrations in skeletal muscle and stimulate store-operated calcium entry (SOCE) and that these effects of glucocorticoids may at least in part be responsible for glucocorticoid-induced protein degradation. Treatment of cultured myotubes with dexamethasone, a frequently used in vitro model of muscle wasting, resulted in increased intracellular calcium concentrations determined by fura-2 AM fluorescence measurements. When SOCE was measured by using calcium "add-back" to muscle cells after depletion of intracellular calcium stores, results showed that SOCE was increased 15-25% by dexamethasone and that this response to dexamethasone was inhibited by the store-operated calcium channel blocker BTP2. Dexamethasone treatment stimulated the activity of calcium-independent phospholipase A(2) (iPLA(2)), and dexamethasone-induced increase in SOCE was reduced by the iPLA(2) inhibitor bromoenol lactone (BEL). In additional experiments, treatment of myotubes with the store-operated calcium channel inhibitor gadolinium ion or BEL reduced dexamethasone-induced increase in protein degradation. Taken together, the results suggest that glucocorticoids increase calcium concentrations in myocytes and stimulate iPLA(2)-dependent SOCE and that glucocorticoid-induced muscle protein degradation may at least in part be regulated by increased iPLA(2) activity, SOCE, and cellular calcium levels.
Collapse
Affiliation(s)
- Kiyoshi Itagaki
- Dept. of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Endotoxin and interferon-gamma inhibit translation in skeletal muscle cells by stimulating nitric oxide synthase activity. Shock 2010; 32:416-26. [PMID: 19295495 DOI: 10.1097/shk.0b013e3181a034d2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of the present study was to test the hypothesis that endogenous NO negatively affects translation in skeletal muscle cells after exposure to a combination of endotoxin (LPS) and interferon-gamma (IFN-gamma). Individually, LPS and IFN-gamma did not alter protein synthesis, but in combination, they inhibited protein synthesis by 80% in C2C12 myotubes. The combination of LPS and IFN-gamma dramatically downregulated the autophosphorylation of the mammalian target of rapamycin and its substrates S6K1 and 4EBP-1. The phosphorylation of ribosomal protein S6 was decreased, whereas phosphorylation of elongation factor 2 and raptor was enhanced, consistent with defects in both translation initiation and elongation. Reduced S6 phosphorylation occurred 8 to 18 h after LPS/IFN-gamma and coincided with a prolonged upregulation of NOS2 messenger RNA and protein. NOS2 protein expression and the LPS/IFN-gamma-induced fall in phosphorylated S6 were prevented by the proteasome inhibitor MG-132. The general NOS inhibitor, L-NAME, and the specific NOS2 inhibitor, 1400W, also prevented the LPS/IFN-gamma-induced decrease in protein synthesis and restored translational signaling. LPS/IFN-gamma downregulated the phosphorylation of multiple Akt substrates, including the proline-rich Akt substrate 40, while enhancing the phosphorylation of raptor on a 5'-AMP-activated kinase (AMPK)-regulated site. The negative effects of LPS/IFN-gamma were blunted by the AMPK inhibitor compound C. The data suggest that, in combination, LPS and IFN-gamma induce a prolonged expression of NOS2 and excessive production of NO that reciprocally alter Akt and AMPK activity and consequently downregulate translation via reduced mammalian target of rapamycin signaling.
Collapse
|
38
|
Eley HL, Russell ST, Tisdale MJ. Mechanism of activation of dsRNA-dependent protein kinase (PKR) in muscle atrophy. Cell Signal 2010; 22:783-90. [PMID: 20074639 DOI: 10.1016/j.cellsig.2010.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 12/30/2022]
Abstract
The role of Ca(2+) in the activation of PKR (double-stranded-RNA-dependent protein kinase), which leads to skeletal muscle atrophy, has been investigated in murine myotubes using the cell-permeable Ca(2+) chelator BAPTA/AM (1,2-bis (o-aminphenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester). BAPTA/AM effectively attenuated both the increase in total protein degradation, through the ubiquitin-proteasome pathway, and the depression of protein synthesis, induced by both proteolysis-inducing factor (PIF) and angiotensin II (Ang II). Since both protein synthesis and degradation were attenuated this suggests the involvement of PKR. Indeed BAPTA/AM attenuated both the activation (autophosphorylation) of PKR and the subsequent phosphorylation of eIF2alpha (eukaryotic initiation factor 2alpha) in the presence of PIF, suggesting the involvement of Ca(2+) in this process. PIF also induced an increase in the activity of both caspases-3 and -8, which was attenuated by BAPTA/AM. The increase in caspase-3 and -8 activity was shown to be responsible for the activation of PKR, since the latter was completely attenuated by the specific caspase-3 and -8 inhibitors. These results suggest that Ca(2+) is involved in the increase in protein degradation and decrease in protein synthesis by PIF and Ang II through activation of PKR by caspases-3 and -8.
Collapse
Affiliation(s)
- H L Eley
- Aston University, Birmingham, United Kingdom
| | | | | |
Collapse
|
39
|
MOHANTY T, PARK K, PRAMOD A, KIM J, CHOE H, HWANG I. MOLECULAR AND BIOLOGICAL FACTORS AFFECTING SKELETAL MUSCLE CELLS AFTER SLAUGHTERING AND THEIR IMPACT ON MEAT QUALITY: A MINI-REVIEW. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1745-4573.2009.00167.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Al-Shanti N, Stewart CE. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development. Biol Rev Camb Philos Soc 2009; 84:637-52. [PMID: 19725819 DOI: 10.1111/j.1469-185x.2009.00090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases pathways (via CaMKs) or calmodulin-dependent serine/threonine phosphatases (via calcineurin). (3) How calmodulin kinases alter transcription in the nucleus through the phosphorylation, deactivation and translocation of histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. (4) How calcineurin transmits signals to the nucleus through the dephosphorylation and translocation of NFAT from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Nasser Al-Shanti
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, Manchester, M1 5GD, UK.
| | | |
Collapse
|
41
|
Murton A, Constantin D, Greenhaff P. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta Mol Basis Dis 2008; 1782:730-43. [DOI: 10.1016/j.bbadis.2008.10.011] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/23/2008] [Accepted: 10/24/2008] [Indexed: 12/14/2022]
|
42
|
Is there a common mechanism linking muscle wasting in various disease types? Curr Opin Support Palliat Care 2008; 1:287-92. [PMID: 18685377 DOI: 10.1097/spc.0b013e3282f35238] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW There have been a number of recent developments in our understanding of the cellular mechanisms leading to muscle atrophy, which are likely to be of major importance in the design of therapeutic agents. RECENT FINDINGS Muscle atrophy in a range of conditions is thought to be due to an increased expression of the ubiquitin-proteasome proteolytic pathway. The main transcription factors involved in muscle atrophy are nuclear factor-kappaB and the forkhead type transcription factors, as determined from experiments with transgenic mice. Catabolic agents such as cytokines, proteolysis-inducing factor and angiotensin II induce activation of nuclear factor-kappaB through an increase in reactive oxygen species, causing an increased gene expression of proteasome subunits and the ubiquitin ligase MuRF1. Glucocorticoids cause activation of forkhead type transcription factors possibly through an increase in expression of myostatin, which leads to an increased expression of the E3 ligase atrogin-1/MAFbx and cathepsin L. Forkhead type transcription factors is regulated by its state of phosphorylation induced by Akt, while activation of nuclear factor-kappaB requires reactive oxygen species and activation of the dsRNA-dependent protein kinase. Activation of dsRNA-dependent protein kinase also inhibits translational initiation of protein synthesis through phosphorylation of eukaryotic initiation factor 2 on the alpha-subunit. SUMMARY These results suggest a common mechanism leading to muscle atrophy, which has important implications in the clinical treatment of wasting diseases.
Collapse
|
43
|
Abstract
Muscle wasting in sepsis reflects activation of multiple proteolytic mechanisms, including lyosomal and ubiquitin-proteasome-dependent protein breakdown. Recent studies suggest that activation of the calpain system also plays an important role in sepsis-induced muscle wasting. Perhaps the most important consequence of calpain activation in skeletal muscle during sepsis is disruption of the sarcomere, allowing for the release of myofilaments (including actin and myosin) that are subsequently ubiquitinated and degraded by the 26S proteasome. Other important consequences of calpain activation that may contribute to muscle wasting during sepsis include degradation of certain transcription factors and nuclear cofactors, activation of the 26S proteasome, and inhibition of Akt activity, allowing for downstream activation of Foxo transcription factors and GSK-3beta. The role of calpain activation in sepsis-induced muscle wasting suggests that the calpain system may be a therapeutic target in the prevention and treatment of muscle wasting during sepsis. Furthermore, because calpain activation may also be involved in muscle wasting caused by other conditions, including different muscular dystrophies and cancer, calpain inhibitors may be beneficial not only in the treatment of sepsis-induced muscle wasting but in other conditions causing muscle atrophy as well.
Collapse
Affiliation(s)
- Ira J Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
44
|
Van Gammeren D, Damrauer JS, Jackman RW, Kandarian SC. The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy. FASEB J 2008; 23:362-70. [PMID: 18827022 DOI: 10.1096/fj.08-114249] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) signaling is necessary for many types of muscle atrophy, yet only some of the required components have been identified. Gene transfer of a dominant negative (d.n.) IKKbeta into rat soleus muscles showed complete inhibition of 7-day disuse-induced activation of a kappaB reporter gene, while overexpression of wild-type (w.t.) IKKbeta did not. Overexpression of a d.n. IKKbeta-EGFP fusion protein showed that atrophy was inhibited by 50%, indicating that IKKbeta is required for the atrophy process. Overexpression of constitutively active (c.a.) IKKbeta-EGFP showed a marked increase in NF-kappaB activity and a decrease in fiber size of weight-bearing soleus muscles, while muscles overexpressing w.t. IKKbeta-HA had no effect. The same results were found for IKKalpha; overexpression of a d.n. form of the protein decreased unloading-induced NF-kappaB activation and inhibited atrophy by 50%, while overexpression of the w.t. protein had no effect. Overexpression of a c.a. IKKalpha-EGFP fusion protein showed that IKKalpha was sufficient to activate NF-kappaB activity and induce fiber atrophy in muscle. Overexpression of d.n. IKKbeta plus d.n. IKKalpha showed an additive effect on the inhibition of disuse atrophy (70%), suggesting that both kinases of the IKK complex are required for muscle atrophy. These data show that both IKKalpha and IKKbeta are necessary and sufficient for physiological muscle atrophy.
Collapse
|
45
|
The NF-kappaB inhibitor curcumin blocks sepsis-induced muscle proteolysis. Mediators Inflamm 2008; 2008:317851. [PMID: 18389075 PMCID: PMC2279164 DOI: 10.1155/2008/317851] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/26/2007] [Indexed: 11/25/2022] Open
Abstract
We tested the hypothesis that treatment of rats with curcumin prevents sepsis-induced muscle protein degradation. In addition, we determined the influence of curcumin on different proteolytic pathways that are activated in septic muscle (i.e., ubiquitin-proteasome-, calpain-, and cathepsin L-dependent proteolysis) and examined the role of NF-κB and p38/MAP kinase inactivation in curcumin-induced inhibition of muscle protein breakdown. Rats were made septic by cecal ligation and puncture or were sham-operated. Groups of rats were treated with three intraperitoneal doses (600 mg/kg) of curcumin or corresponding volumes of solvent. Protein breakdown rates were measured as release of tyrosine from incubated extensor digitorum longus muscles. Treatment with curcumin prevented sepsis-induced increase in muscle protein breakdown. Surprisingly, the upregulated expression of the ubiquitin ligases atrogin-1 and MuRF1 was not influenced by curcumin. When muscles from septic rats were treated with curcumin in vitro, proteasome-, calpain-, and cathepsin L-dependent protein breakdown rates were reduced, and nuclear NF-κB/p65 expression and activity as well as levels of phosphorylated (activated) p38 were decreased. Results suggest that sepsis-induced muscle proteolysis can be blocked by curcumin and that this effect may, at least in part, be caused by inhibited NF-κB and p38 activities. The results also suggest that there is not an absolute correlation between changes in muscle protein breakdown rates and changes in atrogin-1 and MuRF1 expression during treatment of muscle wasting.
Collapse
|
46
|
Al-Shanti N, Saini A, Faulkner SH, Stewart CE. Beneficial synergistic interactions of TNF-alpha and IL-6 in C2 skeletal myoblasts--potential cross-talk with IGF system. Growth Factors 2008; 26:61-73. [PMID: 18428025 DOI: 10.1080/08977190802025024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The interaction effects of tumour necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) on skeletal muscle proliferation and differentiation remains controversial. We therefore investigated the potential interactive effects of TNF-alpha and IL-6 on murine C2 skeletal myoblast survival, differentiation and proliferation. A novel and unexpected positive temporal interaction between TNF-alpha and IL-6 on cell growth was identified (90%), with maximal beneficial effects obtained in myoblasts treated with TNF-alpha (10 ng/ml) for 24 h prior to being dosed with IL-6 (2.5 ng/ml) for a further 24 h. This combined treatment significantly (p < 0.05) increased the level of total cellular protein (330%), extracellular signal-regulated kinase (ERK) phosphorylation (55%), and S-phase of cell cycle (2.5-fold), confirming cell growth. The expression of mRNAs of key regulators of muscle mass: insulin-like growth factor binding protein-5, insulin-like growth factor-II (IGF-II), IGF-I receptor (IGF-IR) and IGF-II receptor (IGF-IIR) were also significantly (p < 0.05) increased by 1600-, 1.6-, 27- and 6-fold, respectively, giving an indication of the regulatory mechanisms of this interaction. Moreover, in response to this treatment, the expression level of signal-transducing glycoprotein 130 (gp130) was induced up to 3.5-fold but not after either treatments alone. This may not only explain the beneficial effects of this treatment on skeletal myoblast numbers but also define a functional role of gp130 in skeletal muscle cells. Our data suggest that in the presence of TNF-alpha/IL-6 functions positively and potentially also cooperatively with the IGF system to achieve the maximal beneficial effect on skeletal myoblast numbers.
Collapse
Affiliation(s)
- Nasser Al-Shanti
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Cheshire, England, UK.
| | | | | | | |
Collapse
|
47
|
Dröge W, Kinscherf R. Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 2008; 10:661-78. [PMID: 18162053 DOI: 10.1089/ars.2007.1953] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms leading to the increase in free radical-derived oxidative stress in "normal aging" remains obscure. Here we present our perspective on studies from different fields that reveal a previously unnoticed vicious cycle of oxidative stress. The plasma cysteine concentrations during starvation in the night and early morning hours (the postabsorptive state) decreases with age. This decrease is associated with a decrease in tissue concentrations of the cysteine derivative and quantitatively important antioxidant glutathione. The decrease in cysteine reflects changes in the autophagic protein catabolism that normally ensures free amino acid homeostasis during starvation. Autophagy is negatively regulated by the insulin receptor signaling cascade that is enhanced by oxidative stress in the absence of insulin. This synopsis of seemingly unrelated processes reveals a novel mechanism of progressive oxidative stress in which decreasing antioxidant concentrations and increasing basal (postabsorptive) insulin receptor signaling activity compromise not only the autophagic protein catabolism but also the activity of FOXO transcription factors (i.e., two functions that were found to have an impact on lifespan in several animal models of aging). In addition, the aging-related decrease in glutathione levels is likely to facilitate certain "secondary" disease-related mechanisms of oxidative stress. Studies on cysteine supplementation show therapeutic promise.
Collapse
Affiliation(s)
- Wulf Dröge
- Department of Research and Development, Immunotec Inc, Vaudreuil, Québec, Canada.
| | | |
Collapse
|
48
|
Menconi M, Fareed M, O'Neal P, Poylin V, Wei W, Hasselgren PO. Role of glucocorticoids in the molecular regulation of muscle wasting. Crit Care Med 2007; 35:S602-8. [PMID: 17713416 DOI: 10.1097/01.ccm.0000279194.11328.77] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review glucocorticoid-regulated molecular mechanisms of muscle wasting. DESIGN Review of recent literature describing the role of glucocorticoids in the regulation of proteolytic mechanisms, transcription factors, and nuclear cofactors in skeletal muscle during various catabolic conditions. MAIN RESULTS Catabolic doses of glucocorticoids induce muscle atrophy both in vivo and in vitro by stimulating protein breakdown and inhibiting protein synthesis. Signaling pathways that regulate muscle protein synthesis at the translational level are inhibited by glucocorticoids. Glucocorticoids increase the expression and activity of the ubiquitin-proteasome pathway, a major proteolytic mechanism of muscle atrophy. The expression and activity of muscle wasting-related transcription factors, including C/EBPbeta and delta and Forkhead box O 1, 3, and 4, as well as the nuclear cofactor p300, are up-regulated by glucocorticoid excess. CONCLUSIONS Muscle wasting in various catabolic conditions is, at least in part, regulated by glucocorticoids. The role of glucocorticoids in muscle wasting is complex and reflects regulation at the molecular level of multiple mechanisms influencing both synthesis and degradation of muscle proteins.
Collapse
Affiliation(s)
- Michael Menconi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Continual synthesis and breakdown or remodeling of proteins (also called protein turnover) is a principal characteristic of protein metabolism. During animal production, the net differences between synthesis and breakdown represent the actual marketable muscle foods. Because protein synthesis is a highly end-ergonic and protein breakdown is metabolic energy dependent, efficiency of production can be markedly enhanced by lower muscle protein breakdown rates. Herein, various methodological approaches to studying protein breakdown, with particular emphasis toward food-producing animals, are presented. These include whole-animal tracer AA infusions in vivo, quantifying marker AA release from muscle proteins, and in vitro AA release-based methodologies. From such methods, protein synthesis rates and protein breakdown rates (mass units/time) may be obtained. The applications of such methods and innovations based on traditional methods are discussed. Whole-animal in vivo approaches are resource intensive and often not easily applied to high-throughput metabolic screening. Over the last 25 yr, biochemical mechanisms and molecular regulation of protein biosynthesis and protein breakdown have been extensively documented. Proteolysis is dependent in part on the extent of expression of genes for components of cellular proteolytic machinery during skeletal muscle atrophy. It is proposed that high-throughput methods, based on emerging understanding about protein breakdown, may be useful in enhancing production efficiency.
Collapse
Affiliation(s)
- W G Bergen
- Program in Cellular and Molecular Biosciences, Department of Animal Sciences, Auburn University, Auburn, TX 36849-5415, USA.
| |
Collapse
|
50
|
Abstract
Prolonged sepsis and exposure to an inflammatory milieu decreases muscle protein synthesis and reduces muscle mass. As a result of its ability to integrate diverse signals, including hormones and nutrients, the mammalian target of rapamycin (mTOR) is a dominant regulator in the translational control of protein synthesis. Under postabsorptive conditions, sepsis decreases mTOR kinase activity in muscle, as evidenced by reduced phosphorylation of both eukaryotic initiation factor (eIF)4E-binding protein (BP)-1 and ribosomal S6 kinase (S6K)1. These sepsis-induced changes, along with the redistribution of eIF4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex, are preventable by neutralization of tumor necrosis factor (TNF)-alpha but not by antagonizing glucocorticoid action. Although the ability of mTOR to respond to insulin-like growth factor (IGF)-I is not disrupted by sepsis, the ability of leucine to increase 4E-BP1 and S6K1 phosphorylation is greatly attenuated. This "leucine resistance" results from a cooperative interaction between both TNF-alpha and glucocorticoids. Finally, although septic animals are not IGF-I resistant, the anabolic actions of IGF-I are nonetheless reduced because of the development of growth hormone resistance, which decreases both circulating and muscle IGF-I. Herein, we highlight recent advances in the mTOR signaling network and emphasize their connection to the atrophic response observed in skeletal muscle during sepsis. Although many unanswered questions remain, understanding the cellular basis of the sepsis-induced decrease in translational activity will contribute to the rational development of therapeutic interventions and thereby minimize the debilitating affects of the atrophic response that impairs patient recovery.
Collapse
Affiliation(s)
- Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|