1
|
Chan DD, Guilak F, Sah RL, Calve S. Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues. Annu Rev Biomed Eng 2024; 26:25-47. [PMID: 38166186 DOI: 10.1146/annurev-bioeng-073123-120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.
Collapse
Affiliation(s)
- Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
2
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Lu KH, Lu PWA, Lin CW, Lu EWH, Yang SF. Different molecular weights of hyaluronan research in knee osteoarthritis: A state-of-the-art review. Matrix Biol 2023; 117:46-71. [PMID: 36849081 DOI: 10.1016/j.matbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Osteoarthritis (OA), the most common form of arthritis, is characterized by progressive cartilage destruction, concomitant adaptive osteogenesis, and loss of joint function. The progression of OA with aging is associated with a decrease in native hyaluronan (HA, hyaluronate or hyaluronic acid) with a high molecular weight (HMW) in synovial fluid and a subsequent increase in lower MW HA and fragments. As HMW HA possesses numerous biochemical and biological properties, we review new molecular insights into the potential of HA to modify OA processes. Different MWs in the formulation of products appear to have varying effects on knee OA (KOA) pain relief, improved function, and postponing surgery. In addition to the safety profile, more evidence indicates that intraarticular (IA) HA administration may be an effective option to treat KOA, with a particular emphasis on the use of HA with fewer injections of higher MW, including potential applications of HA of very HMW. We also analyzed published systemic reviews and meta-analyses of IA HA in treating KOA in order to discuss their conclusions and consensus statements. According to its MW, HA may offer a simple way to refine therapeutic information in selective KOA.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Eric Wun-Hao Lu
- Department of Mechanical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Cunha PP, Bargiela D, Minogue E, Krause LCM, Barbieri L, Brombach C, Gojkovic M, Marklund E, Pietsch S, Foskolou I, Branco CM, Veliça P, Johnson RS. Infiltration of Tumors Is Regulated by T cell-Intrinsic Nitric Oxide Synthesis. Cancer Immunol Res 2023; 11:351-363. [PMID: 36574610 PMCID: PMC9975666 DOI: 10.1158/2326-6066.cir-22-0387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) is a signaling molecule produced by NO synthases (NOS1-3) to control processes such as neurotransmission, vascular permeability, and immune function. Although myeloid cell-derived NO has been shown to suppress T-cell responses, the role of NO synthesis in T cells themselves is not well understood. Here, we showed that significant amounts of NO were synthesized in human and murine CD8+ T cells following activation. Tumor growth was significantly accelerated in a T cell-specific, Nos2-null mouse model. Genetic deletion of Nos2 expression in murine T cells altered effector differentiation, reduced tumor infiltration, and inhibited recall responses and adoptive cell transfer function. These data show that endogenous NO production plays a critical role in T cell-mediated tumor immunity.
Collapse
Affiliation(s)
- Pedro P Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - David Bargiela
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Minogue
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Lena C M Krause
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Laura Barbieri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Carolin Brombach
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Milos Gojkovic
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Emilia Marklund
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Sandra Pietsch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Iosifina Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Cristina M Branco
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Pedro Veliça
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
5
|
von Mentzer U, Corciulo C, Stubelius A. Biomaterial Integration in the Joint: Pathological Considerations, Immunomodulation, and the Extracellular Matrix. Macromol Biosci 2022; 22:e2200037. [PMID: 35420256 DOI: 10.1002/mabi.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Defects of articular joints are becoming an increasing societal burden due to a persistent increase in obesity and aging. For some patients suffering from cartilage erosion, joint replacement is the final option to regain proper motion and limit pain. Extensive research has been undertaken to identify novel strategies enabling earlier intervention to promote regeneration and cartilage healing. With the introduction of decellularized extracellular matrix (dECM), researchers have tapped into the potential for increased tissue regeneration by designing biomaterials with inherent biochemical and immunomodulatory signals. Compared to conventional and synthetic materials, dECM-based materials invoke a reduced foreign body response. It is therefore highly beneficial to understand the interplay of how these native tissue-based materials initiate a favorable remodeling process by the immune system. Yet, such an understanding also demands increasing considerations of the pathological environment and remodeling processes, especially for materials designed for early disease intervention. This knowledge would avoid rejection and help predict complications in conditions with inflammatory components such as arthritides. This review outlines general issues facing biomaterial integration and emphasizes the importance of tissue-derived macromolecular components in regulating essential homeostatic, immunological, and pathological processes to increase biomaterial integration for patients suffering from joint degenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ula von Mentzer
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden
| | - Carmen Corciulo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 41296, Sweden
| | - Alexandra Stubelius
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden
| |
Collapse
|
6
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
7
|
Saruga T, Sasaki E, Inoue R, Chiba D, Ota S, Iwasaki H, Uesato R, Nakaji S, Ishibashi Y. Usefulness of serum hyaluronic acid levels as a predictor of incidence of hand osteoarthritis analyzed by longitudinal analysis from the Iwaki cohort. Sci Rep 2021; 11:4074. [PMID: 33603120 PMCID: PMC7892545 DOI: 10.1038/s41598-021-83693-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
The factors predicting hand osteoarthritis (HOA) in patients remain unknown. We aimed to investigate the usefulness of serum hyaluronic acid (sHA) levels in predicting HOA progression from a 6-year longitudinal epidemiological study. A total of 417 participants in the Iwaki cohort were followed-up over 6 years. Hand and knee radiographs taken at baseline and follow-up were scored according to Kellgren–Lawrence grades and Kallman score. Participants were classified into the HOA group and the non-HOA group. sHA levels at baseline were determined by ELISA. Correlations between sHA levels, the number of involved joints, and Kallman score were estimated. Factors related to the incidence or progression of HOA over 6 years were analyzed. The prevalence of HOA was 19.9% at baseline, and 3.6 ± 2.1 joints were involved. sHA levels in the HOA group at baseline were significantly higher than in the non-HOA group (p < 0.001) and correlated with the number of involved joints (r = 0.399, p < 0.001) and Kallman score (r = 0.540, p < 0.001). The incidence rate was 14.5%, and the progression rate was 46.1% over 6 years. Higher sHA levels at baseline were the risk factor of HOA incidence. Thus, sHA levels predicted the incidence of HOA over 6 years.
Collapse
Affiliation(s)
- Tatsuro Saruga
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Eiji Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Ryo Inoue
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Daisuke Chiba
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Seiya Ota
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroki Iwasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Ryoko Uesato
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
8
|
Li C, Cao Z, Li W, Liu R, Chen Y, Song Y, Liu G, Song Z, Liu Z, Lu C, Liu Y. A review on the wide range applications of hyaluronic acid as a promising rejuvenating biomacromolecule in the treatments of bone related diseases. Int J Biol Macromol 2020; 165:1264-1275. [PMID: 33039536 DOI: 10.1016/j.ijbiomac.2020.09.255] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
Hyaluronic acid (HA) is a multifunctional high molecular weight polysaccharide produced by synoviocytes, fibroblasts, and chondrocytes, and is naturally found in many tissues and fluids, and more abundantly in articular cartilage and synovial fluid. Naturally occurring HA is thought to participate in many biological processes, such as regulation of cell adhesion and cell motility, manipulation of cell differentiation and proliferation, and providing mechanical properties to tissues (Girish and Kemparaju, 2007). Due to its excellent physicochemical properties such as high viscosity, elasticity, biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity, HA based formulations have a wide range of applications and serves as a promising rejuvenating biomacromolecule in biomedical applications. In recent decades, HA is currently a popular topic, and has been widely used in bone related diseases for its remarkable efficacy in articular cartilage lubrication, analgesia, anti-inflammation, immunomodulatory, chondroprotection, anti-cancer and etc. Moreover, the safety and tolerability of HA based formulations have also been well-documented for treatment of various types of bone related diseases (Chen et al., 2018). This review gives a deep understanding on the special benefits and provides a mechanism-based rationale for the use of HA in bone related diseases conditions with special reference to osteoarthritis (OA), rheumatoid arthritis (RA), bone metastatic cancers.
Collapse
Affiliation(s)
- Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhiqian Song
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhenli Liu
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
9
|
Peal BT, Gagliardi R, Su J, Fortier LA, Delco ML, Nixon AJ, Reesink HL. Synovial fluid lubricin and hyaluronan are altered in equine osteochondral fragmentation, cartilage impact injury, and full-thickness cartilage defect models. J Orthop Res 2020; 38:1826-1835. [PMID: 31965593 PMCID: PMC7354223 DOI: 10.1002/jor.24597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 02/04/2023]
Abstract
The objectives of this study were to evaluate temporal changes in lubricin, hyaluronan (HA), and HA molecular weight (MW) distributions in three distinct models of equine joint injury affecting the carpal (wrist), tarsal (ankle), and femoropatellar (knee) joints. To establish ranges for lubricin, HA, and HA MW distributions across multiple joints, we first evaluated clinically healthy, high-motion equine joints. Synovial fluid was collected from high-motion joints in horses without clinical signs of joint disease (n = 11 horses, 102 joints) and from research horses undergoing carpal osteochondral fragmentation (n = 8), talar cartilage impact injury (n = 7), and femoral trochlear ridge full-thickness cartilage injury (n = 22) prior to and following arthroscopically induced joint injury. Lubricin and HA concentrations were measured via enzyme-linked immunosorbent assays, and gel electrophoresis was performed to evaluate HA MW distributions. Synovial fluid parameters were analyzed via linear regression models, revealing that lubricin and HA concentrations were conserved across healthy, high-motion joints. Lubricin concentrations increased post-injury in all osteoarthritis models (carpal fragmentation P = .001; talar impact P < .001; femoral trochlear ridge cartilage defect P = .03). Sustained loss of HA was noted post-arthroscopy following carpal osteochondral fragmentation (P < .0001) and talar impact injury (P < .001). Lubricin may be elevated to compensate for the loss of HA and to protect cartilage post-injury. Further investigation into the mechanisms regulating lubricin and HA following joint injury and their effects on joint homeostasis is warranted, including whether lubricin has value as a biomarker for post-traumatic osteoarthritis.
Collapse
Affiliation(s)
- Bridgette T. Peal
- Department of Clinical Sciences, College of Veterinary
Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853 USA
| | - Rachel Gagliardi
- Department of Clinical Sciences, College of Veterinary
Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853 USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary
Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853 USA
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary
Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853 USA
| | - Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary
Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853 USA
| | - Alan J. Nixon
- Department of Clinical Sciences, College of Veterinary
Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853 USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary
Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853 USA
| |
Collapse
|
10
|
Shirokova L, Noskov S, Gorokhova V, Reinecke J, Shirokova K. Intra-Articular Injections of a Whole Blood Clot Secretome, Autologous Conditioned Serum, Have Superior Clinical and Biochemical Efficacy Over Platelet-Rich Plasma and Induce Rejuvenation-Associated Changes of Joint Metabolism: A Prospective, Controlled Open-Label Clinical Study in Chronic Knee Osteoarthritis. Rejuvenation Res 2020; 23:401-410. [PMID: 31847701 DOI: 10.1089/rej.2019.2263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis is a frequent, age-associated disease affecting >10% of world's population over 60 years of age. This study intended to compare intra-articular whole blood clot secretome (autologous conditioned serum [ACS], recently re-named blood clot secretome [BCS]) to platelet-rich plasma (PRP) in knee osteoarthritis (OA). A clinical, nonrandomized open-label comparison of ACS versus PRP in knee OA with subclinical or moderate synovitis symptomology was performed. One hundred and twenty-three patients with knee OA, Kellgren and Lawrence grade II-III, were each treated with six i.a. injections of ACS or PRP. The clinical efficacy was measured by visual analog scale and Western Ontario and McMaster Universities Arthritis Index (WOMAC) score. The biochemical effects measured include synovial fluid (SF) viscosity, cytokines interleukin (IL)-1Ra and IL-1b, radical footprint NO3, and conjugated dienes (CDs). At the 3-month follow-up, clinical efficacy of ACS was significant in all groups, versus PRP. PRP had significant versus baseline efficacy in subclinical, but not in moderate, synovitis cases. ACS was more effective than PRP regarding all analytical parameters. It induced endogenous IL-1Ra expression, downregulated IL-1b, and improved SF viscosity. ACS reduced-significantly stronger than PRP-the concentration of CDs-interpreted as reactive oxygen species footprints-and NO3-interpreted as nitric oxide footprint-in SF. ACS displayed significant efficacy in all groups, which was clinically and biochemically superior to PRP. ACS appears to improve i.a. homeostasis. Strength of this open clinical study is the combination of clinical and biochemical data.
Collapse
Affiliation(s)
- Larisa Shirokova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | - Sergey Noskov
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | - Victoria Gorokhova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | | | - Ksenia Shirokova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| |
Collapse
|
11
|
Ishizuka S, Tsuchiya S, Ohashi Y, Terabe K, Askew EB, Ishizuka N, Knudson CB, Knudson W. Hyaluronan synthase 2 (HAS2) overexpression diminishes the procatabolic activity of chondrocytes by a mechanism independent of extracellular hyaluronan. J Biol Chem 2019; 294:13562-13579. [PMID: 31270213 DOI: 10.1074/jbc.ra119.008567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/25/2019] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease of the joints caused in part by a change in the phenotype of resident chondrocytes within affected joints. This altered phenotype, often termed proinflammatory or procatabolic, features enhanced production of endoproteinases and matrix metallo-proteinases (MMPs) as well as secretion of endogenous inflammatory mediators. Degradation and reduced retention of the proteoglycan aggrecan is an early event in OA. Enhanced turnover of hyaluronan (HA) is closely associated with changes in aggrecan. Here, to determine whether experimentally increased HA production promotes aggrecan retention and generates a positive feedback response, we overexpressed HA synthase-2 (HAS2) in chondrocytes via an inducible adenovirus construct (HA synthase-2 viral overexpression; HAS2-OE). HAS2-OE incrementally increased high-molecular-mass HA >100-fold within the cell-associated and growth medium pools. More importantly, our results indicated that the HAS2-OE expression system inhibits MMP3, MMP13, and other markers of the procatabolic phenotype (such as TNF-stimulated gene 6 protein (TSG6)) and also enhances aggrecan retention. These markers were inhibited in OA-associated chondrocytes and in chondrocytes activated by interleukin-1β (IL1β), but also chondrocytes activated by lipopolysaccharide (LPS), tumor necrosis factor α (TNFα), or HA oligosaccharides. However, the enhanced extracellular HA resulting from HAS2-OE did not reduce the procatabolic phenotype of neighboring nontransduced chondrocytes as we had expected. Rather, HA-mediated inhibition of the phenotype occurred only in transduced cells. In addition, high HA biosynthesis rates, especially in transduced procatabolic chondrocytes, resulted in marked changes in chondrocyte dependence on glycolysis versus oxidative phosphorylation for their metabolic energy needs.
Collapse
Affiliation(s)
- Shinya Ishizuka
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Saho Tsuchiya
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Yoshifumi Ohashi
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Kenya Terabe
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Emily B Askew
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Naoko Ishizuka
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Cheryl B Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
12
|
Majors AK, Chakravarti R, Ruple LM, Leahy R, Stuehr DJ, Lauer M, Erzurum SC, Janocha A, Aronica MA. Nitric oxide alters hyaluronan deposition by airway smooth muscle cells. PLoS One 2018; 13:e0200074. [PMID: 29966020 PMCID: PMC6028120 DOI: 10.1371/journal.pone.0200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/19/2018] [Indexed: 12/04/2022] Open
Abstract
Asthma is a chronic inflammatory disease that is known to cause changes in the extracellular matrix, including changes in hyaluronan (HA) deposition. However, little is known about the factors that modulate its deposition or the potential consequences. Asthmatics with high levels of exhaled nitric oxide (NO) are characterized by greater airway reactivity and greater evidence of airway inflammation. Based on these data and our previous work we hypothesized that excessive NO promotes the pathologic production of HA by airway smooth muscle cells (SMCs). Exposure of cultured SMCs to various NO donors results in the accumulation of HA in the form of unique, cable-like structures. HA accumulates rapidly after exposure to NO and can be seen as early as one hour after NO treatment. The cable-like HA in NO-treated SMC cultures supports the binding of leukocytes. In addition, NO produced by murine macrophages (RAW cells) and airway epithelial cells also induces SMCs to produce HA cables when grown in co-culture. The modulation of HA by NO appears to be independent of soluble guanylate cyclase. Taken together, NO-induced production of leukocyte-binding HA by SMCs provides a new potential mechanism for the non-resolving airway inflammation in asthma and suggests a key role of non-immune cells in driving the chronic inflammation of the submucosa. Modulation of NO, HA and the consequent immune cell interactions may serve as potential therapeutic targets in asthma.
Collapse
Affiliation(s)
- Alana K. Majors
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ritu Chakravarti
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lisa M. Ruple
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Rachel Leahy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Mark Lauer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Serpil C. Erzurum
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Allison Janocha
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Mark A. Aronica
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
13
|
The pericellular hyaluronan of articular chondrocytes. Matrix Biol 2018; 78-79:32-46. [PMID: 29425696 DOI: 10.1016/j.matbio.2018.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/01/2023]
Abstract
The story of hyaluronan in articular cartilage, pericellular hyaluronan in particular, essentially is also the story of aggrecan. Without properly tethered aggrecan, the load bearing function of cartilage is compromised. The anchorage of aggrecan to the cell surface only occurs due to the binding of aggrecan to hyaluronan-with hyaluronan tethered either to a hyaluronan synthase or by multivalent binding to CD44. In this review, details of hyaluronan synthesis are discussed including how HAS2 production of hyaluronan is necessary for normal chondrocyte development and matrix assembly, how an abundance or deficit of pericellular hyaluronan alters chondrocyte metabolism, and whether hyaluronan size matters or changes with aging or disease. The biomechanical role and matrix assembly function of hyaluronan in addition to the functions of hyaluronidases are discussed. The turnover of hyaluronan is considered including mechanisms by which its turnover, at least in part, is mediated by endocytosis by chondrocytes and regulated by aggrecan degradation. Differences between turnover and clearance of newly synthesized hyaluronan and aggrecan versus the half-life of hyaluronan remaining within the inter-territorial matrix of cartilage are discussed. The release of neutral pH-acting hyaluronidase activity remains one unanswered question concerning the loss of cartilage hyaluronan in osteoarthritis. Signaling events driven by changes in hyaluronan-chondrocyte interactions may involve a chaperone function of CD44 with other receptors/cofactors as well as the changes in hyaluronan production functioning as a metabolic rheostat.
Collapse
|
14
|
Weigel PH, Baggenstoss BA. What is special about 200 kDa hyaluronan that activates hyaluronan receptor signaling? Glycobiology 2017; 27:868-877. [PMID: 28486620 PMCID: PMC5881711 DOI: 10.1093/glycob/cwx039] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 12/23/2022] Open
Abstract
The polydispersity of hyaluronan (HA) presents challenges for analyzing its solution properties, such as the relationship between mass and particle size. The broad mass range of natural HA (≤50-fold) makes molecular characterization difficult and ambiguous compared to molecules with known molecular weights (e.g., proteins). Biophysical studies show that large >MDa HA behaves like a random coil, whereas very small (e.g., 10 kDa) HA behaves like a rod. However, the mass range for this conformational transition is not easily determined in natural polydisperse HA. Some HA receptors (e.g., CD44 and HARE) initiate signaling responses upon binding HA in the 100-300 kDa range, but not larger MDa HA. Size-dependent responses are studied using nonnatural HA: purified narrow-size range HA [Pandey MS, Baggenstoss BA, Washburn J, Harris EN, Weigel PH. 2013. The hyaluronan receptor for endocytosis (HARE) activates NF-κB-mediated gene expression in response to 40-400 kDa, but not smaller or sarger, hyaluronans. J Biol Chem. 288:14068-14079] and very narrow size range Select-HA made chemo-enzymatically [Jing W, DeAngelis PL. 2004. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J Biol Chem. 279:42345-42349]. Here, we used size exclusion chromatography and multiangle light scattering to determine the weight-average molar mass and diameter of ~60 very narrow size preparations from 29 to 1650 kDa. The ratio of HA mass to HA diameter showed a transition in the 150-250 kDa size range (~65 nm). The HA rod-to-coil transition occurs within the size range that specifically activates cell signaling by some receptors. Thus, size-specific signaling could be due to unique external receptor•HA conformation changes that enable transmembrane-mediated activation of cytoplasmic domains. Alternatively and more likely, transition-size HA may enable multiple receptors to bind the same HA, creating new internal signal-competent cytoplasmic domain complexes.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Hemshekhar M, Thushara RM, Chandranayaka S, Sherman LS, Kemparaju K, Girish KS. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int J Biol Macromol 2016; 86:917-28. [DOI: 10.1016/j.ijbiomac.2016.02.032] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
|
16
|
Biner O, Trachsel C, Moser A, Kopp L, Langenegger N, Kämpfer U, von Ballmoos C, Nentwig W, Schürch S, Schaller J, Kuhn-Nentwig L. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei. PLoS One 2015; 10:e0143963. [PMID: 26630650 PMCID: PMC4667920 DOI: 10.1371/journal.pone.0143963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022] Open
Abstract
Structure of Cupiennius salei venom hyaluronidase Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40–60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Function of venom hyaluronidases Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.
Collapse
Affiliation(s)
- Olivier Biner
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Aline Moser
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Lukas Kopp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Nicolas Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Urs Kämpfer
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Wolfgang Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Johann Schaller
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Peake NJ, Bader DL, Vessillier S, Ramachandran M, Salter DM, Hobbs AJ, Chowdhury TT. C-type natriuretic peptide signalling drives homeostatic effects in human chondrocytes. Biochem Biophys Res Commun 2015; 465:784-9. [PMID: 26307537 DOI: 10.1016/j.bbrc.2015.08.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Signals induced by mechanical loading and C-type natriuretic peptide (CNP) represent chondroprotective routes that may potentially prevent osteoarthritis (OA). We examined whether CNP will reduce hyaluronan production and export via members of the multidrug resistance protein (MRP) and diminish pro-inflammatory effects in human chondrocytes. The presence of interleukin-1β (IL-1β) increased HA production and export via MRP5 that was reduced with CNP and/or loading. Treatment with IL-1β conditioned medium increased production of catabolic mediators and the response was reduced with the hyaluronan inhibitor, Pep-1. The induction of pro-inflammatory cytokines by the conditioned medium was reduced by CNP and/or Pep-1, αCD44 or αTLR4 in a cytokine-dependent manner, suggesting that the CNP pathway is protective and should be exploited further.
Collapse
Affiliation(s)
- N J Peake
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - D L Bader
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - S Vessillier
- National Institute for Biological Standards and Control, Biotherapeutics Group, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - M Ramachandran
- Department of Orthopaedics and Trauma, The Royal London Hospital and Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Whitechapel Road, London E1 1BB, UK
| | - D M Salter
- Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crew Road, Edinburgh EH4 2XU, UK
| | - A J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, QMUL, Charterhouse Square, London EC1M 6BQ, UK
| | - T T Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
18
|
Cianflocco AJ. Viscosupplementation in Patients with Osteoarthritis of the Knee. Postgrad Med 2015; 125:97-105. [DOI: 10.3810/pgm.2013.01.2618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
|
20
|
Quero L, Klawitter M, Schmaus A, Rothley M, Sleeman J, Tiaden AN, Klasen J, Boos N, Hottiger MO, Wuertz K, Richards PJ. Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways. Arthritis Res Ther 2013; 15:R94. [PMID: 23968377 PMCID: PMC3978638 DOI: 10.1186/ar4274] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Intervertebral disc (IVD) degeneration is characterized by extracellular matrix breakdown and is considered to be a primary cause of discogenic back pain. Although increases in pro-inflammatory cytokine levels within degenerating discs are associated with discogenic back pain, the mechanisms leading to their overproduction have not yet been elucidated. As fragmentation of matrix components occurs during IVD degeneration, we assessed the potential involvement of hyaluronic acid fragments (fHAs) in the induction of inflammatory and catabolic mediators. Methods Human IVD cells isolated from patient biopsies were stimulated with fHAs (6 to 12 disaccharides) and their effect on cytokine and matrix degrading enzyme production was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The involvement of specific cell surface receptors and signal transduction pathways in mediating the effects of fHAs was tested using small interfering RNA (siRNA) approaches and kinase inhibition assays. Results Treatment of IVD cells with fHAs significantly increased mRNA expression levels of interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1 and -13. The stimulatory effects of fHAs on IL-6 protein production were significantly impaired when added to IVD cells in combination with either Toll-like receptor (TLR)-2 siRNA or a TLR2 neutralizing antibody. Furthermore, the ability of fHAs to enhance IL-6 and MMP-3 protein production was found to be dependent on the mitogen-activated protein (MAP) kinase signaling pathway. Conclusions These findings suggest that fHAs may have the potential to mediate IVD degeneration and discogenic back pain through activation of the TLR2 signaling pathway in resident IVD cells.
Collapse
|
21
|
Lu HT, Sheu MT, Lin YF, Lan J, Chin YP, Hsieh MS, Cheng CW, Chen CH. Injectable hyaluronic-acid-doxycycline hydrogel therapy in experimental rabbit osteoarthritis. BMC Vet Res 2013; 9:68. [PMID: 23574696 PMCID: PMC3637605 DOI: 10.1186/1746-6148-9-68] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/26/2013] [Indexed: 12/16/2022] Open
Abstract
Background Osteoarthritis (OA) is a common joint disease that causes disabilities in elderly adults. However, few long-lasting pharmacotherapeutic agents with low side effects have been developed to treat OA. We evaluated the therapeutic effects of intra-articular injections of hydrogels containing hyaluronic acid (HA) and doxycycline (DOX) in a rabbit OA model. Results Thirteen week old New Zealand White rabbits undergone a partial meniscectomy and unilateral fibular ligament transection were administered with either normal saline (NT), HA, DOX or HA-DOX hydrogels on day 0, 3, 6, 9 and 12; animals were also examined the pain assessment in every three days. The joint samples were taken at day 14 post-surgery for further histopathological evaluation. The degree of pain was significantly attenuated after day 7 post-treatment with both HA and HA-DOX hydrogels. In macroscopic appearance, HA-DOX hydrogel group showed a smoother cartilage surface, no or minimal signs of ulceration, smaller osteophytes, and less fissure formation in compare to HA or DOX treatment alone. In the areas with slight OA changes, HA-DOX hydrogel group exhibited normal distribution of chondrocytes, indicating the existence of cartilage regeneration. In addition, HA-DOX hydrogels also ameliorated the progression of OA by protecting the injury of articular cartilage layer and restoring the elastoviscosity. Conclusion Overall, from both macroscopic and microscopic data of this study indicate the injectable HA-DOX hydrogels presented as a long-lasting pharmacotherapeutic agent to apply for OA therapy.
Collapse
Affiliation(s)
- Hsien-Tsung Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Xinyi District, Taipei City 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ariyoshi W, Takahashi N, Hida D, Knudson CB, Knudson W. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides. ACTA ACUST UNITED AC 2012; 64:187-97. [PMID: 21905012 DOI: 10.1002/art.33329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Small hyaluronan (HA) oligosaccharides serve as competitive receptor antagonists to displace HA from the cell surface and induce cell signaling events. In articular chondrocytes, this cell signaling is mediated by the HA receptor CD44 and induces stimulation of genes involved in matrix degradation, such as matrix metalloproteinases (MMPs) as well as matrix repair genes including type II collagen, aggrecan, and HA synthase 2. The objective of this study was to determine changes in the expression and function of aggrecanases after disruption of chondrocyte CD44-HA interactions. METHODS Bovine articular chondrocytes or bovine cartilage tissue was pretreated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in aggrecanase were monitored by real-time reverse transcription-polymerase chain reaction and Western blot analyses of ADAMTS-4, ADAMTS-5, and aggrecan proteolytic fragments. To test the interactions between ADAMTS-4 and membrane type 4 MMP (MT4-MMP), protein lysates purified from stimulated chondrocytes were subjected to coimmunoprecipitation. RESULTS Disruption of chondrocyte CD44-HA interactions with HA oligosaccharides induced the transcription of ADAMTS-4 and ADAMTS-5 in a time- and dose-dependent manner. The association of glycosyl phosphatidylinositol-anchored MT4-MMP with ADAMTS-4 was also induced in articular chondrocytes by HA oligosaccharides. Inhibition of the NF-κB pathway blocked HA oligosaccharide-mediated stimulation of aggrecanases. CONCLUSION Disruptive changes in chondrocyte-matrix interactions by HA oligosaccharides induce matrix degradation and elevate aggrecanases via the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wataru Ariyoshi
- Department of Anatomy and Cell Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834-4354, USA
| | | | | | | | | |
Collapse
|
23
|
Campo GM, Avenoso A, D'Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S. Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. Biofactors 2012; 38:69-76. [PMID: 22287316 DOI: 10.1002/biof.202] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/28/2011] [Indexed: 02/05/2023]
Abstract
Hyaluronic acid (HA) may exert different action depending on its degree of polymerization. Small HA fragments induce proinflammatory responses, while highly polymerized HA exerts a protective effect in inflammatory pathologies such as rheumatoid arthritis. In both cases the toll-like receptor 4 (TLR-4) seems to be involved in the modulation of the inflammation process. The aim of this study was to investigate the influence of short HA oligosaccharides (HA 4-mers) and high molecular weight HA (HMWHA) in the inflammatory response in normal mouse chondrocytes. Messenger RNA and related protein levels were measured for TLR-4, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and interleukin-18 (IL-18) in cells with and without the addition of HA. NF-kB activation was also evaluated. 4-mer HA treatment produced a significant up-regulation of all parameters considered while HMWHA did not exert any activity in untreated cells although it was able to reduce the effects of 4- mers HA significantly. Specific TLR-4 small interference RNA (siRNA) was used to confirm TLR-4 as the target of HA action. This study suggests that HA may modulate proinflammatory cytokines via its different degree of polymerization and inflammatory action may be modulated as a result of the interaction between HA and TLR-4.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons. J Neurosci 2011; 31:2361-70. [PMID: 21325503 DOI: 10.1523/jneurosci.5764-10.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.
Collapse
|
25
|
Melrose J, Little CB. Immunolocalization of lymphatic vessels in human fetal knee joint tissues. Connect Tissue Res 2010; 51:289-305. [PMID: 20334573 DOI: 10.3109/03008200903318287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We immunolocalized lymphatic and vascular blood vessels in 12- and 14-week-old human fetal knee joint tissues using a polyclonal antibody to a lymphatic vascular endothelium specific hyaluronan receptor (LYVE-1) and a monoclonal antibody to podoplanin (mAb D2-40). A number of lymphatic vessels were identified in the stratified connective tissues surrounding the cartilaginous knee joint femoral and tibial rudiments. These tissues also contained small vascular vessels with entrapped red blood cells which were imaged using Nomarsky DIC microscopy. Neither vascular nor lymphatic vessels were present in the knee joint cartilaginous rudiments. The menisci in 12-week-old fetal knees were incompletely demarcated from the adjacent tibial and femoral cartilaginous rudiments which was consistent with the ongoing joint cavitation process at the femoral-tibial junction. At 14 weeks of age the menisci were independent structural entities; they contained a major central blood vessel containing red blood cells and numerous communicating vessels at the base of the menisci but no lymphatic vessels. In contrast to the 12-week-old menisci, the 14-week meniscal rudiments contained abundant CD-31 and CD-34 positive but no lymphatic vessels. Isolated 14-week-old meniscal cells also were stained with the CD-31 and CD 34 antibodies; CD-68 +ve cells, also abundant in the 14-week-old menisci, were detectable to a far lesser degree in the 12-week menisci and were totally absent from the femoral and tibial rudiments. The distribution of lymphatic vessels and tissue macrophages in the fetal joint tissues was consistent with their roles in the clearance of metabolic waste and extracellular matrix breakdown products arising from the rapidly remodelling knee joint tissues.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, Australia.
| | | |
Collapse
|
26
|
Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. ACTA ACUST UNITED AC 2010; 62:2004-12. [PMID: 20506365 DOI: 10.1002/art.27475] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Toll-like receptor 2 (TLR-2)/TLR-4-mediated innate immunity serves as a frontline antimicrobial host defense, but also modulates tissue remodeling and repair responses to endogenous ligands released during low-grade inflammation. We undertook the present study to assess whether the endogenous TLR-2/TLR-4 ligands low molecular weight hyaluronan (LMW-HA) and high mobility group box chromosomal protein 1 (HMGB-1), which are increased in osteoarthritic (OA) joints, drive procatabolic chondrocyte responses dependent on TLR-2 and TLR-4 signaling through the cytosolic adaptor myeloid differentiation factor 88 (MyD88). METHODS We studied mature femoral head cap cartilage explants and immature primary knee articular chondrocytes from TLR-2/TLR-4-double-knockout, MyD88-knockout, and congenic wild-type mice. Generation of nitric oxide (NO), degradation of hyaluronan, release of HMGB-1, matrix metalloproteinase 3 (MMP-3), and MMP-13, and protein expression of type X collagen were assessed by Griess reaction and Western blotting analyses. Expression of messenger RNA for type II and type X collagen, MMP-13, and RUNX-2 was examined by real-time quantitative reverse transcription-polymerase chain reaction. RESULTS Interleukin-1beta and TLR-2 and TLR-4 ligands induced both HMGB-1 release from chondrocytes and extracellular LMW-HA generation in normal chondrocytes. TLR-2/TLR-4(-/-) and MyD88(-/-) mouse cartilage explants and chondrocytes lost the capacity to mount procatabolic responses to both LMW-HA and HMGB-1, demonstrated by >95% suppression of NO production (P < 0.01), and attenuated induction of MMP-3 and MMP-13. Combined deficiency of TLR-2/TLR-4, or of MyD88 alone, also attenuated release of NO and blunted induction of MMP-3 and MMP-13 release. MyD88 was necessary for HMGB-1 and hyaluronidase 2 (which generates LMW-HA) to induce chondrocyte hypertrophy, which is implicated in OA progression. CONCLUSION MyD88-dependent TLR-2/TLR-4 signaling is essential for procatabolic responses to LMW-HA and HMGB-1, and MyD88 drives chondrocyte hypertrophy. Therefore, LMW-HA and HMGB-1 act as innate immune cytokine-like signals with the potential to modulate chondrocyte differentiation and function in OA progression.
Collapse
Affiliation(s)
- Ru Liu-Bryan
- VA Medical Center, San Diego, California 92161, USA.
| | | |
Collapse
|
27
|
Abstract
Articular cartilage extracellular matrix and cell function change with age and are considered to be the most important factors in the development and progression of osteoarthritis. The multifaceted nature of joint disease indicates that the contribution of cell death can be an important factor at early and late stages of osteoarthritis. Therefore, the pharmacologic inhibition of cell death is likely to be clinically valuable at any stage of the disease. In this article, we will discuss the close association between diverse changes in cartilage aging, how altered conditions influence chondrocyte death, and the implications of preventing cell loss to retard osteoarthritis progression and preserve tissue homeostasis.
Collapse
|
28
|
Schmitz I, Ariyoshi W, Takahashi N, Knudson CB, Knudson W. Hyaluronan oligosaccharide treatment of chondrocytes stimulates expression of both HAS-2 and MMP-3, but by different signaling pathways. Osteoarthritis Cartilage 2010; 18:447-54. [PMID: 19874928 PMCID: PMC2826598 DOI: 10.1016/j.joca.2009.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 10/06/2009] [Accepted: 10/10/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Small hyaluronan (HA) oligosaccharides displace HA from the cell surface and induce cell signaling events. In articular chondrocytes this cell signaling is mediated by the HA receptor CD44 and includes stimulation of genes involved in matrix degradation such as matrix metalloproteinases (MMPs) as well as matrix repair genes including collagen type II, aggrecan and HA synthase-2 (HAS-2). The objective of this study was to determine whether stimulation of HAS-2 and MMP-3 by HA oligosaccharides is due to the activation of a single, cascading pathway or multiple signaling pathways. METHOD Bovine articular chondrocytes were pre-treated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in HA were monitored by real time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of HAS-2 mRNA, HA ELISA and HA accumulation at the cell surface. A 1900 base pair sequence containing the proximal promoter of HAS-2 was inserted into a luciferase reporter construct, transfected into human immortalized chondrocytes and assayed in a similar fashion. RESULTS While our previous studies demonstrated that HA oligosaccharides stimulate MMP-13 activity via activation of p38 MAP kinase and NF-kappaB, inhibitors of these pathways did not affect the stimulation of HAS-2 mRNA expression. However, inhibiting the phosphatidylinositol-3-kinase pathway blocked HA oligosaccharide-mediated stimulation of HAS-2 yet had no effect on MMP-3. Wortmannin and LY294002 also blocked HA oligosaccharide-induced serine and threonine Akt phosphorylation. Treatment of transfected immortalized chondrocytes with HA oligosaccharides resulted in stimulation of HAS-2 mRNA, activation of Akt and enhanced luciferase activity-activity that was blocked by inhibitors of Akt phosphorylation. CONCLUSIONS Changes in chondrocyte-matrix interactions by HA oligosaccharides induce altered matrix metabolism by the activation of least two distinct signaling pathways.
Collapse
Affiliation(s)
- Ian Schmitz
- Department of Biochemistry, Rush Medical College, Rush University Medical Center, 1735 West Harrison Avenue, Chicago, Illinois 60612
| | - Wataru Ariyoshi
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354
| | - Nobunori Takahashi
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354
| | - Cheryl B. Knudson
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354
| | - Warren Knudson
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354,Address all correspondence and reprint requests to: Warren Knudson, Ph.D., Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, 600 Moye Boulevard, Greenville, North Carolina 27834-4354, 252-744-3483 office, 252-744-2850 fax,
| |
Collapse
|
29
|
Serum hyaluronic acid as a potential marker with a predictive value for further radiographic progression of hand osteoarthritis. Osteoarthritis Cartilage 2009; 17:1615-9. [PMID: 19577671 DOI: 10.1016/j.joca.2009.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/09/2009] [Accepted: 06/13/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare serum levels of hyaluronic acid (HA) between patients with erosive and non-erosive hand osteoarthritis (HOA), and investigate its association with morphological changes and radiographic progression over 2 years. METHODS Fifty-five women with erosive and 33 women with non-erosive HOA were included in this study. All underwent clinical examination, which included assessment of pain, swelling, deformity and deviation of small hand joints and completed health assessment questionnaires. Serum levels of HA were measured by ELISA. Three-phase bone scintigraphy was performed at baseline. Radiographs of both hands were performed at baseline and after 2 years and scored according Kallman grading scale. RESULTS Serum levels of HA were significantly higher in patients with erosive than with non-erosive HOA (P<0.01). It correlated significantly with the number of hand joints with deviations and deformities. HA adjusted for age and disease duration significantly correlated with radiographs at baseline and after 2 years in all patients with HOA (r=0.560 and r=0.542, P<0.01 for both correlations). Although there was an association between HA and radiographic score in erosive disease, after adjustment for confounders it remained no longer significant. HA adjusted for confounders correlated significantly with the late phase in all patients with HOA (r=0.412, P<0.01) and in patients with erosive disease (r=0.320, P<0.05). CONCLUSION HA is increased in patients with erosive HOA and could be proposed as a surrogate marker with a predictive value for further radiographic progression of HOA in general. Further investigation is necessary to confirm these results.
Collapse
|
30
|
Gao F, Liu Y, He Y, Yang C, Wang Y, Shi X, Wei G. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol 2009; 29:107-16. [PMID: 19913615 DOI: 10.1016/j.matbio.2009.11.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022]
Abstract
The biological roles of hyaluronan (HA) fragments in angiogenesis acceleration have been investigated recently. Studies have confirmed that oligosaccharides of HA (o-HA) are capable of stimulating neovascularization in vitro and promoting blood flow or angiogenesis in animal models. However, few laboratories have studied the function of o-HA as an exogenous treatment in injured tissue repair in vivo. It is thought that o-HA may lose its activities when used topically in vivo due to its small size, which may be absorbed quickly by the surrounding tissues. In this study, we prepared a special slow-releasing gel that contains a mixture of defined size of o-HA and studied the healing effects of o-HA by topical application to an acute wound model. We report that o-HA complex promotes the repair of tissue injury of a murine excisional dermal wound. The therapy by o-HA was compared with high molecular weight HA (HMW-HA) and the known angiogenesis stimulator, VEGF. At days 6 to 8 after treatment, significant differences were seen in wound closure rates between o-HA and control or HMW-HA groups, in which o-HA showed an increased wound recovery. Histological analysis revealed that increased neo-blood and lymph vessels were formed in wounded tissues treated by o-HA. In addition, treatments of wounds with o-HA resulted in more granulation production, collagen deposition, and fibroblast proliferation. Analysis of gene expression by real-time RT-PCR demonstrated a significant up-regulation of some cytokines or adhesion molecules in o-HA-treated wounds, which corresponds with the increased granulation tissue in these wounds. Our findings suggested that o-HA therapy may be useful in acute wound repair.
Collapse
Affiliation(s)
- Feng Gao
- Department of Molecular Biology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, PR China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Andhare RA, Takahashi N, Knudson W, Knudson CB. Hyaluronan promotes the chondrocyte response to BMP-7. Osteoarthritis Cartilage 2009; 17:906-16. [PMID: 19195913 PMCID: PMC2855217 DOI: 10.1016/j.joca.2008.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocytes exhibit specific responses to bone morphogenetic proteins (BMPs) and transforming growth factor-betas (TGF-betas). The bioactivity of these growth factors is regulated by numerous mediators. In our previous study, Smad1 was found to interact with the cytoplasmic domain of the hyaluronan receptor CD44. The purpose of this study was to determine the ability of hyaluronan in the pericellular matrix to modulate the chondrocyte responses to BMP-7 or TGF-beta1. EXPERIMENTAL DESIGN Nuclear translocation of Smad1, Smad2 and Smad4 was studied in bovine articular chondrocytes in response to BMP-7 and TGF-beta1. The effects of matrix disruption by hyaluronidase treatment and the initiation of matrix repair by the addition of hyaluronan on the nuclear translocation of Smad proteins, Smad1 phosphorylation and luciferase expression by a CD44 reporter construct in response to BMP-7 were also studied. RESULTS The disruption of the hyaluronan-dependent pericellular matrix of chondrocytes resulted in diminished nuclear translocation of endogenous Smad1 and Smad4 in response to BMP-7; however, the nuclear translocation of Smad2 and Smad4 in these matrix-depleted chondrocytes in response to TGF-beta1 was not diminished. Incubation of the matrix-depleted chondrocytes with exogenous hyaluronan restored Smad1 and Smad4 nuclear translocation and increased pCD44(499)-Luc luciferase expression in response to BMP-7. Both exogenous hyaluronan and matrix re-growth enhanced by hyaluronan synthase-2 (HAS2) transfection restored Smad1 phosphorylation. CONCLUSIONS Disruption of hyaluronan-CD44 interactions has little effect on the TGF-beta responses; however, re-establishing CD44-hyaluronan ligation promotes a robust cellular response to BMP-7 by articular chondrocytes. Thus, changes in cell-hyaluronan interactions may serve as a mechanism to modulate cellular responsiveness to BMP-7.
Collapse
Affiliation(s)
- R. A. Andhare
- Department of Biochemistry, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - N. Takahashi
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - W. Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - C. B. Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA,Department of Biochemistry, Rush Medical College, Rush University Medical Center, Chicago, IL, USA,Address correspondence to: C. Knudson, Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA. Tel: 1-252-744-2851; FAX: 1-252-744-2850; E-mail:
| |
Collapse
|
32
|
Chung C, Beecham M, Mauck RL, Burdick JA. The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells. Biomaterials 2009; 30:4287-96. [PMID: 19464053 DOI: 10.1016/j.biomaterials.2009.04.040] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 04/21/2009] [Indexed: 12/27/2022]
Abstract
The potential of mesenchymal stem cells (MSCs) as a viable cell source for cartilage repair hinges on the development of engineered scaffolds that support adequate cartilage tissue formation. Evolving networks (hydrogels with mesh sizes that change over time due to crosslink degradation) may provide the control needed to enhance overall tissue formation when compared to static scaffolds. In this study, MSCs were photoencapsulated in combinations of hydrolytically and enzymatically degradable hyaluronic acid (HA) hydrogels to investigate the tunability of these hydrogels and the influence of network evolution on neocartilage formation. In MSC-laden HA hydrogels, compressive mechanical properties increased when degradation complemented extracellular matrix deposition and decreased when degradation was too rapid. In addition, dynamic hydrogels that started at a higher wt% and decreased to a lower wt% were not equivalent to static hydrogels that started at the higher or lower wt%. Specifically, evolving 2 wt% hydrogels (2 wt% degrading to 1 wt%) expressed up-regulation of type II collagen and aggrecan, and exhibited increased glycosaminoglycan content over non-evolving 2 and 1 wt% hydrogels. Likewise, mechanical properties and size maintenance were superior in the dynamic system compared to the static 2 wt% and 1 wt% hydrogels, respectively. Thus, hydrogels with dynamic properties may improve engineered tissues and help translate tissue engineering technology to clinical application.
Collapse
Affiliation(s)
- Cindy Chung
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA
| | | | | | | |
Collapse
|
33
|
Gössler UR, Hörmann K. [New strategies for tissue replacement in the head and neck region]. HNO 2009; 57:100-12. [PMID: 19190887 DOI: 10.1007/s00106-008-1866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years there has been an increase in the need for tissue replacement in the head and neck region. The disadvantages of classical reconstructive procedures are donor site morbidity for autologous transplants and the immunogenity of allogenous transplants. Tissue engineering is a promising method for the generation of autologous cartilagenous transplants for plastic and reconstructive surgery for closure of large defects by the use of minimal amounts of material for reconstruction. For this purpose harvested material must be cultivated in suitable culture/carrier systems. One obstacle is the loss of phenotype and function once the cells are detached from their environment (dedifferentiation). Adult mesenchymal stem cells are a valuable cell source for tissue engineering. The underlying strategy of using stem cells is the replacement of functionally compromised cells either by in vitro expanded stem cells or activation of stem cells in the tissue. However, there are still problems regarding valuable markers for cellular differentiation and the controlled differentiation towards a specific phenotype.
Collapse
Affiliation(s)
- U R Gössler
- Universitäts-HNO-Klinik, Universitätsmedizin Mannheim, Fakultät für Medizin Mannheim, Ruprecht-Karls-Universität Heidelberg, 68135, Mannheim.
| | | |
Collapse
|
34
|
Porphyromonas gingivalis, gamma interferon, and a proapoptotic fibronectin matrix form a synergistic trio that induces c-Jun N-terminal kinase 1-mediated nitric oxide generation and cell death. Infect Immun 2008; 76:5514-23. [PMID: 18838522 DOI: 10.1128/iai.00625-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During infection and inflammation, bacterial and inflammatory proteases break down extracellular matrices into macromolecular fragments. Fibronectin fragments are associated with disease severity in arthritis and periodontitis. The mechanisms by which these fragments contribute to disease pathogenesis are unclear. One likely mechanism is that fibronectin fragments induce apoptosis of resident cells, which can be further modulated by nitric oxide. Nitric oxide levels are increased at inflammatory sites in periodontitis patients. The aim of this study was to examine whether a proapoptotic fibronectin matrix (AFn) exerts its action by inducing nitric oxide and whether priming by bacterial and inflammatory components exacerbates this mechanism. Our data demonstrate that AFn increased the levels of nitric oxide and inducible nitric oxide synthase (iNOS) dose and time dependently in periodontal ligament (PDL) cells. These effects and apoptosis were inhibited by iNOS suppression and enhanced by iNOS overexpression. Nitric oxide and iNOS induction were paralleled by increased c-Jun N-terminal kinase 1 (JNK-1) phosphorylation. JNK-1 overexpression enhanced the expression of nitric oxide and iNOS, whereas inhibiting JNK-1 by small interfering RNA or a kinase mutant reversed these findings. Priming PDL cells with Porphyromonas gingivalis, its lipopolysaccharide (LPS), or gamma interferon (IFN-gamma) further increased nitric oxide levels and apoptosis. Escherichia coli and Streptococcus mutans induced lesser effects. Gingival fibroblasts and neutrophils responded to a lesser degree to these stimuli, whereas keratinocytes were resistant to apoptosis. Thus, proapoptotic matrices trigger nitric oxide release via JNK-1, promoting further apoptosis in host cells. LPS and IFN-gamma accentuate this mechanism, suggesting that during inflammation, the affected matrices and bacterial and inflammatory components combined exert a greater pathogenic effect on host cells.
Collapse
|
35
|
Abstract
AIM Hyaluronan (HA) is involved in renomedullary water handling through its water-binding capacity. This study addressed the effect of hormones involved in regulating fluid-electrolyte homeostasis on renomedullary HA content in vivo and in vitro. METHODS The kidneys from rats treated with L-NAME, indomethacin, vasopressin (AVP) or methylprednisolone (MP) during euvolaemia or water loading were analysed for HA by RIA, ELISA and histochemical staining. HA was measured in renomedullary interstitial cells treated with AVP, angiotensin II (Ang II) or a combination of AVP and Ang II. RESULTS Baseline renal cortical and medullary HA content was unaffected by 2 h of intravenous treatment with L-NAME (NOS inhibitor) or indomethacin (cyclo-oxygenase inhibitor), whereas AVP reduced medullary HA by 33%. During 2 h of acute water loading, diuresis was accompanied by an increase in renomedullary HA (+45%), but cortical HA was unaffected. In both L-NAME- and indomethacin-treated animals, the water loading-induced increase in renomedullary HA was absent, indicating involvement of NO and prostaglandins. After 7 days of MP treatment, medullary HA was reduced by 40%, but the water loading-induced elevation in HA remained. In cultured renomedullary interstitial cells, AVP reduced the HA content in the supernatant by 63%, and simultaneous treatment with Ang II reduced the HA content even further (95%). CONCLUSION AVP reduces HA content, and NO and prostaglandins are needed for the increase in HA during water loading.
Collapse
Affiliation(s)
- L Rügheimer
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
36
|
Synthesis, characterization and chondroprotective properties of a hyaluronan thioethyl ether derivative. Biomaterials 2007; 29:1388-99. [PMID: 18158182 DOI: 10.1016/j.biomaterials.2007.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/05/2007] [Indexed: 11/27/2022]
Abstract
Hyaluronan (HA), a non-sulfated glycosaminoglycan, is widely used in the clinic for viscosurgery, viscosupplementation, and treatment of osteoarthritis. Four decades of chemical modifications of HA have generated derivatives in which the biophysical and biochemical properties, as well as the rates of enzymatic degradation in vivo have been manipulated and tailored for specific clinical needs. One earlier modification adds multiple thiol groups to HA through hydrazide linkages, leading to a readily crosslinkable material for adhesion prevention and wound healing. We now describe the synthesis and chemical characterization of a novel thioethyl ether derivative of HA, HA-sulfhydryl (HASH), with a minimal tether between the HA and the thiol group. Unlike earlier thiol-modified HA derivatives, HASH cannot be readily crosslinked to form a hydrogel using either oxidative or bivalent electrophilic conditions, thus offering a unique polymeric polythiol that remains soluble. Moreover, HASH showed no cytotoxicity towards primary human fibroblasts and reduced the apoptosis rates of primary chondrocytes exposed to hydrogen peroxide in vitro. These properties foreshadow the clinical potential of HASH to moderate inflammation and to act as a chondroprotective agent in vivo.
Collapse
|
37
|
Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007; 80:1921-43. [PMID: 17408700 DOI: 10.1016/j.lfs.2007.02.037] [Citation(s) in RCA: 439] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/04/2007] [Accepted: 02/19/2007] [Indexed: 01/09/2023]
Abstract
Hyaluronan (HA) is a multifunctional high molecular weight polysaccharide found throughout the animal kingdom, especially in the extracellular matrix (ECM) of soft connective tissues. HA is thought to participate in many biological processes, and its level is markedly elevated during embryogenesis, cell migration, wound healing, malignant transformation, and tissue turnover. The enzymes that degrade HA, hyaluronidases (HAases) are expressed both in prokaryotes and eukaryotes. These enzymes are known to be involved in physiological and pathological processes ranging from fertilization to aging. Hyaluronidase-mediated degradation of HA increases the permeability of connective tissues and decreases the viscosity of body fluids and is also involved in bacterial pathogenesis, the spread of toxins and venoms, acrosomal reaction/ovum fertilization, and cancer progression. Furthermore, these enzymes may promote direct contact between pathogens and the host cell surfaces. Depolymerization of HA also adversely affects the role of ECM and impairs its activity as a reservoir of growth factors, cytokines and various enzymes involved in signal transduction. Inhibition of HA degradation therefore may be crucial in reducing disease progression and spread of venom/toxins and bacterial pathogens. Hyaluronidase inhibitors are potent, ubiquitous regulating agents that are involved in maintaining the balance between the anabolism and catabolism of HA. Hyaluronidase inhibitors could also serve as contraceptives and anti-tumor agents and possibly have antibacterial and anti-venom/toxin activities. Additionally, these molecules can be used as pharmacological tools to study the physiological and pathophysiological role of HA and hyaluronidases.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Manasagangothri, Mysore, Karnataka State, 560007, India.
| | | |
Collapse
|
38
|
Yasuda T. Cartilage destruction by matrix degradation products. Mod Rheumatol 2006; 16:197-205. [PMID: 16906368 PMCID: PMC2780665 DOI: 10.1007/s10165-006-0490-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/15/2006] [Indexed: 02/06/2023]
Abstract
The progressive destruction of articular cartilage is one of the hallmarks of osteoarthritis and rheumatoid arthritis. Cartilage degradation is attributed to different classes of catabolic factors, including proinflammatory cytokines, aggrecanases, matrix metalloproteinases, and nitric oxide. Recently, matrix degradation products generated by excessive proteolysis in arthritis have been found to mediate cartilage destruction. These proteolytic fragments activate chondrocytes and synovial fibroblasts via specific cell surface receptors that can stimulate catabolic intracellular signaling pathways, leading to the induction of such catalysts. This review describes the catabolic activities of matrix degradation products, especially fibronectin fragments, and discusses the pathologic implication in cartilage destruction in osteoarthritis and rheumatoid arthritis. Increased levels of these degradation products, found in diseased joints, may stimulate cartilage breakdown by mechanisms of the kind demonstrated in the review.
Collapse
Affiliation(s)
- Tadashi Yasuda
- Department of Sports Medicine, Tenri University, 80 Tainosho-cho, Tenri, 632-0071, Japan.
| |
Collapse
|
39
|
Hunt ME, Brown DR. Role of sialidase in Mycoplasma alligatoris-induced pulmonary fibroblast apoptosis. Vet Microbiol 2006; 121:73-82. [PMID: 17276629 PMCID: PMC1853318 DOI: 10.1016/j.vetmic.2006.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Mycoplasma alligatoris causes acute lethal cardiopulmonary disease of susceptible hosts. A survey of its genome implicated sialidase and hyaluronidase, synergistic regulators of hyaluronan receptor CD44-mediated signal transduction leading to apoptotic cell death, as virulence factors of M. alligatoris. In this study, after the existence of a CD44 homolog in alligators was established by immunolabeling primary pulmonary fibroblasts with monoclonal antibody IM7 against murine CD44, the sialidase inhibitor 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA) was used to examine the effects of sialidase on fibroblast apoptosis following in vitro infection with M. alligatoris. While their CD44 expression remained constant, infected cells exhibited morphologic changes characteristic of apoptosis including decreased size, rounding, disordered alpha-tubulin, and nuclear disintegration compared to untreated controls. DANA was a potent, non-toxic inhibitor of the sialidase activity, equivalent to about 1mU of Clostridium perfringens Type VI sialidase, expressed by M. alligatoris in the inoculum. Although DANA did not measurably reduce the proportion of infected fibroblasts labeled by a specific ligand of activated caspases, co-incubation with DANA protected (P<0.01) fibroblasts in a concentration-dependent fashion from the M. alligatoris-induced trends toward increased apoptosis receptor CD95 expression, and increased 5-bromo-2'-deoxyuridine incorporation measured in a terminal dUTP nick end-labeling apoptosis assay. In contrast, incubation with 200-fold excess purified C. perfringens sialidase alone did not affect CD95 expression or chromatin integrity, or induce fibroblast apoptosis. From those observations we conclude that interaction of its sialidase with hyaluronidase or another virulence factor(s) is necessary to elicit the pro-apoptotic effects of M. alligatoris infection.
Collapse
Affiliation(s)
| | - Daniel R. Brown
- Address for correspondence: Daniel R. Brown, Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville FL 32610-0880, USA. Tel: +1 352 392 4700 X3975; Fax: +1 352 392 9704;
| |
Collapse
|
40
|
Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol 2006; 85:699-715. [PMID: 16822580 DOI: 10.1016/j.ejcb.2006.05.009] [Citation(s) in RCA: 800] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/05/2006] [Accepted: 05/05/2006] [Indexed: 02/08/2023] Open
Abstract
Hyaluronan is a straight chain, glycosaminoglycan polymer of the extracellular matrix composed of repeating units of the disaccharide [-D-glucuronic acid-beta1,3-N-acetyl-D-glucosamine-beta1,4-]n. Hyaluronan is synthesized in mammals by at least three synthases with products of varying chain lengths. It has an extraordinary high rate of turnover with polymers being funneled through three catabolic pathways. At the cellular level, it is degraded progressively by a series of enzymatic reactions that generate polymers of decreasing sizes. Despite their exceedingly simple primary structure, hyaluronan fragments have extraordinarily wide-ranging and often opposing biological functions. There are large hyaluronan polymers that are space-filling, anti-angiogenic, immunosuppressive, and that impede differentiation, possibly by suppressing cell-cell interactions, or ligand access to cell surface receptors. Hyaluronan chains, which can reach 2 x 10(4) kDa in size, are involved in ovulation, embryogenesis, protection of epithelial layer integrity, wound repair, and regeneration. Smaller polysaccharide fragments are inflammatory, immuno-stimulatory and angiogenic. They can also compete with larger hyaluronan polymers for receptors. Low-molecular-size polymers appear to function as endogenous "danger signals", while even smaller fragments can ameliorate these effects. Tetrasaccharides, for example, are anti-apoptotic and inducers of heat shock proteins. Various fragments trigger different signal transduction pathways. Particular hyaluronan polysaccharides are also generated by malignant cells in order to co-opt normal cellular functions. How the small hyaluronan fragments are generated is unknown, nor is it established whether the enzymes of hyaluronan synthesis and degradation are involved in maintaining proper polymer sizes and concentration. The vast range of activities of hyaluronan polymers is reviewed here, in order to determine if patterns can be detected that would provide insight into their production and regulation.
Collapse
Affiliation(s)
- Robert Stern
- Department of Pathology and UCSF Comprehensive Cancer Center, School of Medicine, University of California San Francisco, 513 Parnassus Avenue, S-564, San Francisco, CA 94143-0511, USA.
| | | | | |
Collapse
|