1
|
Zhang L, Li Y, Hu W, Gao S, Tang Y, Sun L, Jiang N, Xiao Z, Han L, Zhou W. Computational identification of mitochondrial dysfunction biomarkers in severe SARS-CoV-2 infection: Facilitating therapeutic applications of phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155784. [PMID: 38878325 DOI: 10.1016/j.phymed.2024.155784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Currently, SARS-CoV-2 has not disappeared and continues to prevail worldwide, with the ongoing risk of mutations and the potential for severe COVID-19. The impairment of monocyte mitochondrial function caused by SARS-CoV-2, leading to a metabolic and immune dysregulation, is a crucial factor in the development of severe COVID-19. PURPOSE Discover effective phytomedicines based on mitochondrial-related biomarkers in severe SARS-CoV-2 infection. METHODS Firstly, differential gene analysis and gene set enrichment analysis (GSEA) were conducted on monocytes datasets to identify genes and pathways distinguishing severe patients from uninfected individuals. Then, GO and KEGG enrichment analysis on the differentially expressed genes (DEGs) obtained. Take the DEGs and intersect them with the MitoCarta 3.0 gene set to obtain the differentially expressed mitochondrial-related genes (DE-MRGs). Subsequently, machine learning algorithms were employed to screen potential mitochondrial dysfunction biomarkers for severe COVID-19 based on score values. ROC curves were then plotted to assess the distinguish capability of the biomarkers, followed by validation using two additional independent datasets. Next, the effects of the identified biomarkers on metabolic pathways and immune cells were explored through Gene Set Variation Analysis (GSVA) and CIBERSORT. Finally, potential nature products for severe COVID-19 were screened from the expression profile dataset based on dysregulated mitochondrial-related genes, followed by in vitro experimental validation. RESULTS There are 1812 DEGs and 17 dysregulated mitochondrial processes between severe COVID-19 patients and uninfected individuals. A total of 77 DE-MRGs were identified, and the potential biomarkers were identified as RECQL4, PYCR1, PIF1, POLQ, and GLDC. In both the training and validation sets, the area under the ROC curve (AUC) for these five biomarkers was greater than 0.9. And they did not show significant changes in mild to moderate patients (p > 0.05), indicating their ability to effectively distinguish severe COVID-19. These biomarkers exhibit a highly significant correlation with the dysregulated metabolic processes (p < 0.05) and immune cell imbalance (p < 0.05) in severe patients, as demonstrated by GSVA and CIBERSORT algorithms. Curcumin has the highest score in the predictive model based on transcriptomic data from 496 natural compounds (p = 0.02; ES = 0.90). Pre-treatment with curcumin for 8 h has been shown to alleviate mitochondrial membrane potential damage caused by the SARS-CoV-2 S1 protein (p < 0.05) and reduce elevated levels of reactive oxygen species (ROS) (p < 0.01). CONCLUSION The results of this study indicate a significant correlation between severe SARS-CoV-2 infection and mitochondrial dysfunction. The proposed mitochondrial dysfunction biomarkers identified in this study are associated with the disease progression, metabolic and immune changes in severe SARS-CoV-2 infected patients. Curcumin has a potential role in preventing severe COVID-19 by protecting mitochondrial function. Our findings provide new strategies for predicting the prognosis and enabling early intervention in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lihui Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yuehan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Wanting Hu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Shengqiao Gao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yiran Tang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Lei Sun
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Lu Han
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
2
|
Martins DJ, Di Lazzaro Filho R, Bertola DR, Hoch NC. Rothmund-Thomson syndrome, a disorder far from solved. FRONTIERS IN AGING 2023; 4:1296409. [PMID: 38021400 PMCID: PMC10676203 DOI: 10.3389/fragi.2023.1296409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Di Lazzaro Filho
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Dasa Genômica/Genera, Genômica, São Paulo, Brazil
| | - Debora Romeo Bertola
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Children’s Institute, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Nícolas Carlos Hoch
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Hong WF, Liu MY, Liang L, Zhang Y, Li ZJ, Han K, Du SS, Chen YJ, Ma LH. Molecular Characteristics of T Cell-Mediated Tumor Killing in Hepatocellular Carcinoma. Front Immunol 2022; 13:868480. [PMID: 35572523 PMCID: PMC9100886 DOI: 10.3389/fimmu.2022.868480] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although checkpoint blockade is a promising approach for the treatment of hepatocellular carcinoma (HCC), subsets of patients expected to show a response have not been established. As T cell-mediated tumor killing (TTK) is the fundamental principle of immune checkpoint inhibitor therapy, we established subtypes based on genes related to the sensitivity to TKK and evaluated their prognostic value for HCC immunotherapies. METHODS Genes regulating the sensitivity of tumor cells to T cell-mediated killing (referred to as GSTTKs) showing differential expression in HCC and correlations with prognosis were identified by high-throughput screening assays. Unsupervised clustering was applied to classify patients with HCC into subtypes based on the GSTTKs. The tumor microenvironment, metabolic properties, and genetic variation were compared among the subgroups. A scoring algorithm based on the prognostic GSTTKs, referred to as the TCscore, was developed, and its clinical and predictive value for the response to immunotherapy were evaluated. RESULTS In total, 18 out of 641 GSTTKs simultaneously showed differential expression in HCC and were correlated with prognosis. Based on the 18 GSTTKs, patients were clustered into two subgroups, which reflected distinct TTK patterns in HCC. Tumor-infiltrating immune cells, immune-related gene expression, glycolipid metabolism, somatic mutations, and signaling pathways differed between the two subgroups. The TCscore effectively distinguished between populations with different responses to chemotherapeutics or immunotherapy and overall survival. CONCLUSIONS TTK patterns played a nonnegligible role in formation of TME diversity and metabolic complexity. Evaluating the TTK patterns of individual tumor will contribute to enhancing our cognition of TME characterization, reflects differences in the functionality of T cells in HCC and guiding more effective therapy strategies.
Collapse
Affiliation(s)
- Wei-feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mou-yuan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zong-juan Li
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keqi Han
- Department of Oncology, Luodian Hospital Affiliated to Shanghai University, Shanghai, China
| | - Shi-suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li-heng Ma, ; Yan-jie Chen, ; Shi-suo Du,
| | - Yan-jie Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li-heng Ma, ; Yan-jie Chen, ; Shi-suo Du,
| | - Li-heng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Li-heng Ma, ; Yan-jie Chen, ; Shi-suo Du,
| |
Collapse
|
4
|
Xu X, Chang CW, Li M, Liu C, Liu Y. Molecular Mechanisms of the RECQ4 Pathogenic Mutations. Front Mol Biosci 2021; 8:791194. [PMID: 34869606 PMCID: PMC8637615 DOI: 10.3389/fmolb.2021.791194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022] Open
Abstract
The human RECQ4 gene encodes an ATP-dependent DNA helicase that contains a conserved superfamily II helicase domain located at the center of the polypeptide. RECQ4 is one of the five RECQ homologs in human cells, and its helicase domain is flanked by the unique amino and carboxyl termini with sequences distinct from other members of the RECQ helicases. Since the identification of the RECQ4 gene in 1998, multiple RECQ4 mutations have been linked to the pathogenesis of three clinical diseases, which are Rothmund-Thomson syndrome, Baller-Gerold syndrome, and RAPADILINO. Patients with these diseases show various developmental abnormalities. In addition, a subset of RECQ4 mutations are associated with high cancer risks, especially for osteosarcoma and/or lymphoma at early ages. The discovery of clinically relevant RECQ4 mutations leads to intriguing questions: how is the RECQ4 helicase responsible for preventing multiple clinical syndromes? What are the mechanisms by which the RECQ4 disease mutations cause tissue abnormalities and drive cancer formation? Furthermore, RECQ4 is highly overexpressed in many cancer types, raising the question whether RECQ4 acts not only as a tumor suppressor but also an oncogene that can be a potential new therapeutic target. Defining the molecular dysfunctions of different RECQ4 disease mutations is imperative to improving our understanding of the complexity of RECQ4 clinical phenotypes and the dynamic roles of RECQ4 in cancer development and prevention. We will review recent progress in examining the molecular and biochemical properties of the different domains of the RECQ4 protein. We will shed light on how the dynamic roles of RECQ4 in human cells may contribute to the complexity of RECQ4 clinical phenotypes.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Chou-Wei Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Min Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
5
|
Jewell BE, Xu A, Zhu D, Huang MF, Lu L, Liu M, Underwood EL, Park JH, Fan H, Gingold JA, Zhou R, Tu J, Huo Z, Liu Y, Jin W, Chen YH, Xu Y, Chen SH, Rainusso N, Berg NK, Bazer DA, Vellano C, Jones P, Eltzschig HK, Zhao Z, Kaipparettu BA, Zhao R, Wang LL, Lee DF. Patient-derived iPSCs link elevated mitochondrial respiratory complex I function to osteosarcoma in Rothmund-Thomson syndrome. PLoS Genet 2021; 17:e1009971. [PMID: 34965247 PMCID: PMC8716051 DOI: 10.1371/journal.pgen.1009971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.
Collapse
Affiliation(s)
- Brittany E. Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Linchao Lu
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Mo Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Erica L. Underwood
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Julian A. Gingold
- Department of Obstetrics & Gynecology and Women’s Health, Einstein/Montefiore Medical Center, New York City, New York, United States of America
| | - Ruoji Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jian Tu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zijun Huo
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ying Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Weidong Jin
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Yi-Hung Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yitian Xu
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Shu-Hsia Chen
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Nathaniel K. Berg
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Danielle A. Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Christopher Vellano
- TRACTION Platform, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Philip Jones
- TRACTION Platform, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Holger K. Eltzschig
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lisa L. Wang
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
6
|
Luong TT, Bernstein KA. Role and Regulation of the RECQL4 Family during Genomic Integrity Maintenance. Genes (Basel) 2021; 12:1919. [PMID: 34946868 PMCID: PMC8701316 DOI: 10.3390/genes12121919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
RECQL4 is a member of the evolutionarily conserved RecQ family of 3' to 5' DNA helicases. RECQL4 is critical for maintaining genomic stability through its functions in DNA repair, recombination, and replication. Unlike many DNA repair proteins, RECQL4 has unique functions in many of the central DNA repair pathways such as replication, telomere, double-strand break repair, base excision repair, mitochondrial maintenance, nucleotide excision repair, and crosslink repair. Consistent with these diverse roles, mutations in RECQL4 are associated with three distinct genetic diseases, which are characterized by developmental defects and/or cancer predisposition. In this review, we provide an overview of the roles and regulation of RECQL4 during maintenance of genome homeostasis.
Collapse
Affiliation(s)
| | - Kara A. Bernstein
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|
7
|
Ye Y, Yu F, Li Z, Xie Y, Yu X. RNA binding protein serine/arginine splicing factor 1 promotes the proliferation, migration and invasion of hepatocellular carcinoma by interacting with RecQ protein-like 4 mRNA. Bioengineered 2021; 12:6144-6154. [PMID: 34486474 PMCID: PMC8806490 DOI: 10.1080/21655979.2021.1972785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abnormally high expression of RecQ protein-like 4 (RECQL4) has been observed in many cancers, including hepatocellular carcinoma (HCC). We aimed to explore the effects of RECQL4 on HCC progression and the possible mechanisms. RECQL4 expression in HCC tissues and its correlation with the prognosis of HCC patients were analyzed using GEPIA2 and UALCAN databases. After detecting RECQL4 levels in several human HC cell lines, RECQL4 was silenced by siRNA transfection. Cell viability, migration and invasion were tested with CCK-8, wound healing and transwell assays. The levels of epithelial–mesenchymal transition (EMT) proteins were evaluated by western blotting. The ENCORI database was adopted for the analysis of the correlation between RECQL4 and serine/arginine splicing factor 1 (SRSF1) in HCC tissues. RNA immunoprecipitation and actinomycin D addition assay were employed to evaluate the combination of these two genes. SRSF1 was overexpressed to assess the biological function of HCC cells with RECQL4 silencing. Results suggested that RECQL4 was overexpressed in HCC tissues and cell lines, which was related to poor prognosis of HCC patients. RECQL4 loss-of-function repressed the proliferation, migration, invasion and EMT of HCC cells. RECQL4 was positively correlated with SRSF1 in HCC tissues. Moreover, SRSF1 was confirmed as an RNA binding protein of RECQL4. Further experiments found that SRSF1 knockdown reduced the stability of RECQL4 mRNA. Rescue assays indicated that SRSF1 overexpression crippled the braking effects of RECQL4 knockdown on the progression of HCC cells. Collectively, SRSF1 can bind to RECQL4 mRNA and enhance its stability, thereby promoting the progression of HCC.
Collapse
Affiliation(s)
- Ying Ye
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Feng Yu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhao Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yaping Xie
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohong Yu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Balajee AS. Human RecQL4 as a Novel Molecular Target for Cancer Therapy. Cytogenet Genome Res 2021; 161:305-327. [PMID: 34474412 DOI: 10.1159/000516568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Human RecQ helicases play diverse roles in the maintenance of genomic stability. Inactivating mutations in 3 of the 5 human RecQ helicases are responsible for the pathogenesis of Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). WS, BS, and RTS patients are at increased risk for developing many age-associated diseases including cancer. Mutations in RecQL1 and RecQL5 have not yet been associated with any human diseases so far. In terms of disease outcome, RecQL4 deserves special attention because mutations in RecQL4 result in 3 autosomal recessive syndromes (RTS type II, RAPADILINO, and BGS). RecQL4, like other human RecQ helicases, has been demonstrated to play a crucial role in the maintenance of genomic stability through participation in diverse DNA metabolic activities. Increased incidence of osteosarcoma in RecQL4-mutated RTS patients and elevated expression of RecQL4 in sporadic cancers including osteosarcoma suggest that loss or gain of RecQL4 expression is linked with cancer susceptibility. In this review, current and future perspectives are discussed on the potential use of RecQL4 as a novel cancer therapeutic target.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| |
Collapse
|
9
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Rothmund-Thomson Syndrome-Like RECQL4 Truncating Mutations Cause a Haploinsufficient Low-Bone-Mass Phenotype in Mice. Mol Cell Biol 2021; 41:e0059020. [PMID: 33361189 PMCID: PMC8088275 DOI: 10.1128/mcb.00590-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rothmund-Thomson syndrome (RTS) is an autosomal recessive disorder characterized by defects in the skeletal system, such as bone hypoplasia, short stature, low bone mass, and an increased incidence of osteosarcoma. RTS type 2 patients have germ line compound biallelic protein-truncating mutations of RECQL4. As existing murine models employ Recql4 null alleles, we have attempted to more accurately model RTS by generating mice with patient-mimicking truncating Recql4 mutations. Truncating mutations impaired the stability and subcellular localization of RECQL4 and resulted in homozygous embryonic lethality and a haploinsufficient low-bone mass phenotype. Combination of a truncating mutation with a conditional Recql4 null allele demonstrated that the skeletal defects were intrinsic to the osteoblast lineage. However, the truncating mutations did not promote tumorigenesis. We utilized murine Recql4 null cells to assess the impact of human RECQL4 mutations using an in vitro complementation assay. While some mutations created unstable protein products, others altered subcellular localization of the protein. Interestingly, the severity of the phenotypes correlated with the extent of protein truncation. Collectively, our results reveal that truncating RECQL4 mutations in mice lead to an osteoporosis-like phenotype through defects in early osteoblast progenitors and identify RECQL4 gene dosage as a novel regulator of bone mass.
Collapse
|
11
|
Chang CW, Xu X, Li M, Xin D, Ding L, Wang YT, Liu Y. Pathogenic mutations reveal a role of RECQ4 in mitochondrial RNA:DNA hybrid formation and resolution. Sci Rep 2020; 10:17033. [PMID: 33046774 PMCID: PMC7552406 DOI: 10.1038/s41598-020-74095-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/21/2020] [Indexed: 11/09/2022] Open
Abstract
The synthesis of mitochondrial DNA (mtDNA) is a complex process that involves the formation and resolution of unusual nucleic acid structures, such as RNA:DNA hybrids. However, little is known about the enzymes that regulate these processes. RECQ4 is a DNA replication factor important for mtDNA maintenance, and here, we unveil a role of human RECQ4 in regulating the formation and resolution of mitochondrial RNA:DNA hybrids. Mitochondrial membrane protein p32 can block mtDNA synthesis by restricting RECQ4 mitochondrial localization via protein–protein interaction. We found that the interaction with p32 was disrupted not only by the previously reported cancer-associated RECQ4 mutation, del(A420-A463), but also by a clinical mutation of the adjacent residue, P466L. Surprisingly, although P466L mutant was present in the mitochondria at greater levels, unlike del(A420-A463) mutant, it failed to enhance mtDNA synthesis due to the accumulation of RNA:DNA hybrids throughout the mtDNA. Biochemical analysis revealed that P466L mutation enhanced RECQ4 annealing activity to generate RNA:DNA hybrids at the same time reduced its unwinding activity to resolve this structure. Hence, P466L mutation led to a reduced efficiency in completing mtDNA synthesis due to unresolved RNA:DNA hybrids across mtDNA.
Collapse
Affiliation(s)
- Chou-Wei Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Xiaohua Xu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Min Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Di Xin
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA
| | - Lin Ding
- J. Craig Venter Institute, San Diego, CA, 92037, USA
| | - Ya-Ting Wang
- Memorial Sloan Kettering, New York, NY, 10065, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, 91010-3000, USA.
| |
Collapse
|
12
|
Duan S, Han X, Akbari M, Croteau DL, Rasmussen LJ, Bohr VA. Interaction between RECQL4 and OGG1 promotes repair of oxidative base lesion 8-oxoG and is regulated by SIRT1 deacetylase. Nucleic Acids Res 2020; 48:6530-6546. [PMID: 32432680 PMCID: PMC7337523 DOI: 10.1093/nar/gkaa392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
OGG1 initiated base excision repair (BER) is the major pathway for repair of oxidative DNA base damage 8-oxoguanine (8-oxoG). Here, we report that RECQL4 DNA helicase, deficient in the cancer-prone and premature aging Rothmund-Thomson syndrome, physically and functionally interacts with OGG1. RECQL4 promotes catalytic activity of OGG1 and RECQL4 deficiency results in defective 8-oxoG repair and increased genomic 8-oxoG. Furthermore, we show that acute oxidative stress leads to increased RECQL4 acetylation and its interaction with OGG1. The NAD+-dependent protein SIRT1 deacetylates RECQL4 in vitro and in cells thereby controlling the interaction between OGG1 and RECQL4 after DNA repair and maintaining RECQL4 in a low acetylated state. Collectively, we find that RECQL4 is involved in 8-oxoG repair through interaction with OGG1, and that SIRT1 indirectly modulates BER of 8-oxoG by controlling RECQL4–OGG1 interaction.
Collapse
Affiliation(s)
- Shunlei Duan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Xuerui Han
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mansour Akbari
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| |
Collapse
|
13
|
Peter B, Falkenberg M. TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes (Basel) 2020; 11:genes11040408. [PMID: 32283748 PMCID: PMC7231222 DOI: 10.3390/genes11040408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian mitochondria contain a circular genome (mtDNA) which encodes subunits of the oxidative phosphorylation machinery. The replication and maintenance of mtDNA is carried out by a set of nuclear-encoded factors—of which, helicases form an important group. The TWINKLE helicase is the main helicase in mitochondria and is the only helicase required for mtDNA replication. Mutations in TWINKLE cause a number of human disorders associated with mitochondrial dysfunction, neurodegeneration and premature ageing. In addition, a number of other helicases with a putative role in mitochondria have been identified. In this review, we discuss our current knowledge of TWINKLE structure and function and its role in diseases of mtDNA maintenance. We also briefly discuss other potential mitochondrial helicases and postulate on their role(s) in mitochondria.
Collapse
|
14
|
Lu L, Jin W, Wang LL. RECQ DNA Helicases and Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:37-54. [PMID: 32767233 DOI: 10.1007/978-3-030-43085-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RECQ family of DNA helicases is a conserved group of enzymes that plays an important role in maintaining genomic stability. Humans possess five RECQ helicase genes, and mutations in three of them - BLM, WRN, and RECQL4 - are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. These syndromes share overlapping clinical features, and importantly they are all associated with an increased risk of cancer. Patients with RTS have the highest specific risk of developing osteosarcoma compared to all other cancer predisposition syndromes; therefore, RTS serves as a relevant model to study the pathogenesis and molecular genetics of osteosarcoma. The "tumor suppressor" function of the RECQ helicases continues to be an area of active investigation. This chapter will focus primarily on the known cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways will provide insight into avenues for novel cancer therapies in the future.
Collapse
Affiliation(s)
- Linchao Lu
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Weidong Jin
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lisa L Wang
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Billard P, Poncet DA. Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. Int J Mol Sci 2019; 20:ijms20194959. [PMID: 31597307 PMCID: PMC6801922 DOI: 10.3390/ijms20194959] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022] Open
Abstract
Senescence is defined as a stress-induced durable cell cycle arrest. We herein revisit the origin of two of these stresses, namely mitochondrial metabolic compromise, associated with reactive oxygen species (ROS) production, and replicative senescence, activated by extreme telomere shortening. We discuss how replication stress-induced DNA damage of telomeric DNA (telDNA) and mitochondrial DNA (mtDNA) can be considered a common origin of senescence in vitro, with consequences on ageing in vivo. Unexpectedly, mtDNA and telDNA share common features indicative of a high degree of replicative stress, such as G-quadruplexes, D-loops, RNA:DNA heteroduplexes, epigenetic marks, or supercoiling. To avoid these stresses, both compartments use similar enzymatic strategies involving, for instance, endonucleases, topoisomerases, helicases, or primases. Surprisingly, many of these replication helpers are active at both telDNA and mtDNA (e.g., RNAse H1, FEN1, DNA2, RecQ helicases, Top2α, Top2β, TOP3A, DNMT1/3a/3b, SIRT1). In addition, specialized telomeric proteins, such as TERT (telomerase reverse transcriptase) and TERC (telomerase RNA component), or TIN2 (shelterin complex), shuttle from telomeres to mitochondria, and, by doing so, modulate mitochondrial metabolism and the production of ROS, in a feedback manner. Hence, mitochondria and telomeres use common weapons and cooperate to resist/prevent replication stresses, otherwise producing common consequences, namely senescence and ageing.
Collapse
Affiliation(s)
- Pauline Billard
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Institut de Biopathologie moléculaire, Centre de Bio-Pathologie Est, Groupement hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Delphine A Poncet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Institut de Biopathologie moléculaire, Centre de Bio-Pathologie Est, Groupement hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France.
| |
Collapse
|
16
|
Baratang NV, Jimenez Cruz DA, Ajeawung NF, Nguyen TTM, Pacheco-Cuéllar G, Campeau PM. Inherited glycophosphatidylinositol deficiency variant database and analysis of pathogenic variants. Mol Genet Genomic Med 2019; 7:e00743. [PMID: 31127708 PMCID: PMC6625143 DOI: 10.1002/mgg3.743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Background Glycophosphatidylinositol‐anchored proteins (GPI‐APs) mediate several physiological processes such as embryogenesis and neurogenesis. Germline variants in genes involved in their synthesis can disrupt normal development and result in a variety of clinical phenotypes. With the advent of new sequencing technologies, more cases are identified, leading to a rapidly growing number of reported genetic variants. With this number expected to rise with increased accessibility to molecular tests, an accurate and up‐to‐date database is needed to keep track of the information and help interpret results. Methods We therefore developed an online resource (www.gpibiosynthesis.org) which compiles all published pathogenic variants in GPI biosynthesis genes which are deposited in the LOVD database. It contains 276 individuals and 192 unique public variants; 92% of which are predicted as damaging by bioinformatics tools. Results A significant proportion of recorded variants was substitution variants (81%) and resulted mainly in missense and frameshift alterations. Interestingly, five patients (2%) had deleterious mutations in untranslated regions. CADD score analysis placed 97% of variants in the top 1% of deleterious variants in the human genome. In genome aggregation database, the gene with the highest frequency of reported pathogenic variants is PIGL, with a carrier rate of 1/937. Conclusion We thus present the GPI biosynthesis database and review the molecular genetics of published variants in GPI‐anchor biosynthesis genes.
Collapse
Affiliation(s)
- Nissan Vida Baratang
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Thi Tuyet Mai Nguyen
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | | | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Fang H, Niu K, Mo D, Zhu Y, Tan Q, Wei D, Li Y, Chen Z, Yang S, Balajee AS, Zhao Y. RecQL4-Aurora B kinase axis is essential for cellular proliferation, cell cycle progression, and mitotic integrity. Oncogenesis 2018; 7:68. [PMID: 30206236 PMCID: PMC6134139 DOI: 10.1038/s41389-018-0080-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/06/2018] [Accepted: 04/28/2018] [Indexed: 01/22/2023] Open
Abstract
Human RecQL4 helicase plays critical roles in the maintenance of genomic stability. Mutations in RecQL4 helicase results in three clinically related autosomal recessive disorders: Rothmund–Thomson syndrome (RTS), RAPADILINO, and Baller–Gerold syndrome. In addition to several premature aging features, RTS patients are characterized by aneuploidy involving either loss or gain of a single chromosome. Chromosome mosaicism and isochromosomes involving chromosomes 2, 7, and 8 have been reported in RecQL4-deficient RTS patients, but the precise role of RecQL4 in chromosome segregation/stability remains to be elucidated. Here, we demonstrate that RecQL4 physically and functionally interacts with Aurora B kinase (AURKB) and stabilizes its expression by inhibiting its ubiquitination process. Our study indicates that the N-terminus of RecQL4 interacts with the catalytic domain of AURKB. Strikingly, RecQL4 suppression reduces the expression of AURKB leading to mitotic irregularities and apoptotic cell death. RecQL4 suppression increases the proportion of cells at the G2/M phase followed by an extensive cell death, presumably owing to the accumulation of mitotic irregularities. Both these defects (accumulation of cells at G2/M phase and an improper mitotic exit to sub-G1) are complemented by the ectopic expression of AURKB. Finally, evidence is provided for the requirement of both human telomerase reverse transcriptase and RecQL4 for stable immortalization and longevity of RTS fibroblasts. Collectively, our study suggests that the RecQL4–AURKB axis is essential for cellular proliferation, cell cycle progression, and mitotic stability in human cells.
Collapse
Affiliation(s)
- Hongbo Fang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kaifeng Niu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongliang Mo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuqi Zhu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qunsong Tan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Di Wei
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yueyang Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zixiang Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuchen Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Adayabalam S Balajee
- Cytogenetics Biodosimetry Laboratory, REACTS, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
| | - Yongliang Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
19
|
Chen H, Yuan K, Wang X, Wang H, Wu Q, Wu X, Peng J. Overexpression of RECQL4 is associated with poor prognosis in patients with gastric cancer. Oncol Lett 2018; 16:5419-5425. [PMID: 30250613 DOI: 10.3892/ol.2018.9318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the expression, clinical association, and prognosis of RecQ protein-like 4 (RECQL4) protein in human gastric cancers (GCs). The expression levels and prognostic value of RECQL4 were initially predicted by using bioinformatics. GC specimens and matched normal gastric tissues were evaluated by immunohistochemistry (IHC), and patient clinicopathological parameters and survival times were analyzed. Multivariate Cox analysis was used to determine the prognostic role of RECQL4 expression. The Oncomine database predicted that RECQL4 mRNA expression levels were significantly increased in GCs as compared with those in normal gastric tissues (P<0.05) and that patients with increased RECQL4 mRNA expression levels had significantly lower overall survival (OS) (P<0.001). The results of IHC showed that the positive rate of RECQL4 in the GC samples was significantly higher than that in the normal gastric mucosa specimens (P<0.05). RECQL4 expression was positively associated with depth of invasion and TNM (P<0.05). High RECQL4 expression in GC samples was significantly associated with poor OS (P=0.024). Positive RECQL4 expression, depth of invasion, lymphatic invasion, and TNM staging were independent factors for predicting worse OS rates by using multivariate analysis. Compared with expression levels in normal gastric tissues, RECQL4 was significantly overexpressed in GC samples, and increased RECQL4 expression was an independent predictor of poor prognosis in GC patients.
Collapse
Affiliation(s)
- Honglei Chen
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Kaitao Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu, Guangzhou, Guangdong 510080, P.R. China
| | - Xinyou Wang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Huashe Wang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Qiuning Wu
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Junsheng Peng
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
20
|
Colombo EA, Locatelli A, Cubells Sánchez L, Romeo S, Elcioglu NH, Maystadt I, Esteve Martínez A, Sironi A, Fontana L, Finelli P, Gervasini C, Pecile V, Larizza L. Rothmund-Thomson Syndrome: Insights from New Patients on the Genetic Variability Underpinning Clinical Presentation and Cancer Outcome. Int J Mol Sci 2018; 19:E1103. [PMID: 29642415 PMCID: PMC5979380 DOI: 10.3390/ijms19041103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022] Open
Abstract
Biallelic mutations in RECQL4 gene, a caretaker of the genome, cause Rothmund-Thomson type-II syndrome (RTS-II) and confer increased cancer risk if they damage the helicase domain. We describe five families exemplifying clinical and allelic heterogeneity of RTS-II, and report the effect of pathogenic RECQL4 variants by in silico predictions and transcripts analyses. Complete phenotype of patients #39 and #42 whose affected siblings developed osteosarcoma correlates with their c.[1048_1049del], c.[1878+32_1878+55del] and c.[1568G>C;1573delT], c.[3021_3022del] variants which damage the helicase domain. Literature survey highlights enrichment of these variants affecting the helicase domain in patients with cancer outcome raising the issue of strict oncological surveillance. Conversely, patients #29 and #19 have a mild phenotype and carry, respectively, the unreported homozygous c.3265G>T and c.3054A>G variants, both sparing the helicase domain. Finally, despite matching several criteria for RTS clinical diagnosis, patient #38 is heterozygous for c.2412_2414del; no pathogenic CNVs out of those evidenced by high-resolution CGH-array, emerged as contributors to her phenotype.
Collapse
Affiliation(s)
- Elisa A Colombo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Andrea Locatelli
- UO Dermatologia e Venereologia, Asst Papa Giovanni XXIII, 24127 Bergamo, Italy.
| | - Laura Cubells Sánchez
- Department of Dermatology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain.
| | - Sara Romeo
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK.
- MRC London Institute of Medical Sciences, Imperial College London, W12 0NN London, UK.
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, 34890 Istanbul, Turkey.
- Department of Pediatrics, Eastern Mediterranean University, Mersin 10 Cyprus, Turkey.
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041 Charleroi (Gosselies), Belgium.
| | - Altea Esteve Martínez
- Department of Dermatology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain.
| | - Alessandra Sironi
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy.
| | - Laura Fontana
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy.
| | - Cristina Gervasini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Vanna Pecile
- Institute for Maternal and Child Health, Foundation IRCCS Burlo Garofolo Institute, 34137 Trieste, Italy.
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy.
| |
Collapse
|
21
|
RecQ and Fe-S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochem Soc Trans 2017; 46:77-95. [PMID: 29273621 DOI: 10.1042/bst20170044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
Helicases are molecular motors that play central roles in nucleic acid metabolism. Mutations in genes encoding DNA helicases of the RecQ and iron-sulfur (Fe-S) helicase families are linked to hereditary disorders characterized by chromosomal instabilities, highlighting the importance of these enzymes. Moreover, mono-allelic RecQ and Fe-S helicase mutations are associated with a broad spectrum of cancers. This review will discuss and contrast the specialized molecular functions and biological roles of RecQ and Fe-S helicases in DNA repair, the replication stress response, and the regulation of gene expression, laying a foundation for continued research in these important areas of study.
Collapse
|
22
|
Mo D, Zhao Y, Balajee AS. Human RecQL4 helicase plays multifaceted roles in the genomic stability of normal and cancer cells. Cancer Lett 2017; 413:1-10. [PMID: 29080750 DOI: 10.1016/j.canlet.2017.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Human RecQ helicases that share homology with E. coli RecQ helicase play critical roles in diverse biological activities such as DNA replication, transcription, recombination and repair. Mutations in three of the five human RecQ helicases (RecQ1, WRN, BLM, RecQL4 and RecQ5) result in autosomal recessive syndromes characterized by accelerated aging symptoms and cancer incidence. Mutational inactivation of Werner (WRN) and Bloom (BLM) genes results in Werner syndrome (WS) and Bloom syndrome (BS) respectively. However, mutations in RecQL4 result in three human disorders: (I) Rothmund-Thomson syndrome (RTS), (II) RAPADILINO and (III) Baller-Gerold syndrome (BGS). Cells from WS, BS and RTS are characterized by a unique chromosomal anomaly indicating that each of the RecQ helicases performs specialized function(s) in a non-redundant manner. Elucidating the biological functions of RecQ helicases will enable us to understand not only the aging process but also to determine the cause for age-associated human diseases. Recent biochemical and molecular studies have given new insights into the multifaceted roles of RecQL4 that range from genomic stability to carcinogenesis and beyond. This review summarizes some of the existing and emerging knowledge on diverse biological functions of RecQL4 and its significance as a potential molecular target for cancer therapy.
Collapse
Affiliation(s)
- Dongliang Mo
- Chinese Academy of Science, Beijing Institute of Genomics, Beijing CN 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongliang Zhao
- Chinese Academy of Science, Beijing Institute of Genomics, Beijing CN 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA.
| |
Collapse
|
23
|
Wu R, Tan Q, Niu K, Zhu Y, Wei D, Zhao Y, Fang H. MMS19 localizes to mitochondria and protects the mitochondrial genome from oxidative damage. Biochem Cell Biol 2017; 96:44-49. [PMID: 29035693 DOI: 10.1139/bcb-2017-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MMS19 localizes to the cytoplasmic and nuclear compartments involved in transcription and nucleotide excision repair (NER). However, whether MMS19 localizes to mitochondria, where it plays a role in maintaining mitochondrial genome stability, remains unknown. In this study, we provide the first evidence that MMS19 is localized in the inner membrane of mitochondria and participates in mtDNA oxidative damage repair. MMS19 knockdown led to mitochondrial dysfunctions including decreased mtDNA copy number, diminished mtDNA repair capacity, and elevated levels of mtDNA common deletion after oxidative stress. Immunoprecipitation - mass spectrometry analysis identified that MMS19 interacts with ANT2, a protein associated with mitochondrial ATP metabolism. ANT2 knockdown also resulted in a decreased mtDNA repair capacity after oxidative damage. Our findings suggest that MMS19 plays an essential role in maintaining mitochondrial genome stability.
Collapse
Affiliation(s)
- Rui Wu
- a Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunsong Tan
- a Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Niu
- a Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Zhu
- a Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wei
- a Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongliang Zhao
- a Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Fang
- a Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Crouch JD, Brosh RM. Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism. Free Radic Biol Med 2017; 107:245-257. [PMID: 27884703 PMCID: PMC5440220 DOI: 10.1016/j.freeradbiomed.2016.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.
Collapse
Affiliation(s)
- Jack D Crouch
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
25
|
Lu L, Jin W, Wang LL. Aging in Rothmund-Thomson syndrome and related RECQL4 genetic disorders. Ageing Res Rev 2017; 33:30-35. [PMID: 27287744 DOI: 10.1016/j.arr.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/21/2023]
Abstract
Rothmund-Thomson Syndrome (RTS) is a rare autosomal recessive disease which manifests several clinical features of accelerated aging. These findings include atrophic skin and pigment changes, alopecia, osteopenia, cataracts, and an increased incidence of cancer for patients carrying RECQL4 germline mutations. Mutations in RECQL4 are responsible for the majority of cases of RTS. RECQL4 belongs to RECQ DNA helicase family which has been shown to participate in many aspects of DNA metabolism. In the past several years, accumulated evidence indicates that RECQL4 is important not only in cancer development but also in the aging process. In this review, based on recent research data, we summarize the common aging findings in RTS patients and propose possible mechanisms to explain the aging features in these patients.
Collapse
Affiliation(s)
- Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, 1102 Bates Avenue, Suite 1200, Houston, TX 77030, USA
| | - Weidong Jin
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, 1102 Bates Avenue, Suite 1200, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, 1102 Bates Avenue, Suite 1200, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Lionaki E, Gkikas I, Tavernarakis N. Differential Protein Distribution between the Nucleus and Mitochondria: Implications in Aging. Front Genet 2016; 7:162. [PMID: 27695477 PMCID: PMC5025450 DOI: 10.3389/fgene.2016.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
The coordination of nuclear and mitochondrial genomes plays a pivotal role in maintenance of mitochondrial biogenesis and functionality during stress and aging. Environmental and cellular inputs signal to nucleus and/or mitochondria to trigger interorganellar compensatory responses. Loss of this tightly orchestrated coordination results in loss of cellular homeostasis and underlies various pathologies and age-related diseases. Several signaling cascades that govern interorganellar communication have been revealed up to now, and have been classified as part of the anterograde (nucleus to mitochondria) or retrograde (mitochondrial to nucleus) response. Many of these molecular pathways rely on the dual distribution of nuclear or mitochondrial components under basal or stress conditions. These dually localized components usually engage in specific tasks in their primary organelle of function, whilst upon cellular stimuli, they appear in the other organelle where they engage in the same or a different task, triggering a compensatory stress response. In this review, we focus on protein factors distributed between the nucleus and mitochondria and activated to exert their functions upon basal or stress conditions. We further discuss implications of bi-organellar targeting in the context of aging.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of CreteHeraklion, Greece
| |
Collapse
|
27
|
Velma V, Dasari SR, Tchounwou PB. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights 2016; 11:113-21. [PMID: 27594783 PMCID: PMC4998075 DOI: 10.4137/bmi.s39445] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Venkatramreddy Velma
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Shaloam R Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| |
Collapse
|
28
|
Abstract
RecQL4, one of the 5 human RecQ helicases, is a key mediator of genomic stability and its deficiency can cause premature aging phenotypes. Here, by using CRISPR/Cas and RNAi technology, we demonstrated that autophagy level was elevated in both RecQL4 knockdown and knockout cells compared with those of the control cells. Surprisingly, mitochondrial content was increased and LC3 co-localization with mitochondria was partially lost in RecQL4 knockout cells compared with the control cells, suggesting that RecQL4 deficiency impaired mitophagic processes in U2OS cells. Furthermore, we found that knockout of RecQL4 destabilized PINK1. In addition, RecQL4 knockout cells were more susceptible to apoptosis under mitochondrial stress than the control cells. In conclusion, our findings indicated a novel role of RecQL4 in the regulation of autophagy/mitophagy in U2OS cells.
Collapse
Affiliation(s)
- Yangmiao Duan
- a Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Fang
- a Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Uittenbogaard M, Chiaramello A. Novel subcellular localization of the DNA helicase Twinkle at the kinetochore complex during mitosis in neuronal-like progenitor cells. Histochem Cell Biol 2015; 145:275-86. [PMID: 26678504 DOI: 10.1007/s00418-015-1388-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
Abstract
During mitosis, the kinetochore, a multi-protein structure located on the centromeric DNA, is responsible for proper segregation of the replicated genome. More specifically, the outer kinetochore complex component Ndc80/Hec1 plays a critical role in regulating microtubule attachment to the spindle for accurate sister chromatid segregation. In addition, DNA helicases play a key contribution for precise and complete disjunction of sister chromatids held together through double-stranded DNA catenations until anaphase. In this study, we focused our attention on the nuclear-encoded DNA helicase Twinkle, which functions as an essential helicase for replication of mitochondrial DNA. It regulates the copy number of the mitochondrial genome, while maintaining its integrity, two processes essential for mitochondrial biogenesis and bioenergetic functions. Although the majority of the Twinkle protein is imported into mitochondria, a small fraction remains cytosolic with an unknown function. In this study, we report a novel expression pattern of Twinkle during chromosomal segregation at distinct mitotic phases. By immunofluorescence microscopy, we found that Twinkle protein colocalizes with the outer kinetochore protein HEC1 as early as prophase until late anaphase in neuronal-like progenitor cells. Thus, our collective results have revealed an unexpected cell cycle-regulated expression pattern of the DNA helicase Twinkle, known for its role in mtDNA replication. Therefore, its recruitment to the kinetochore suggests an evolutionary conserved function for both mitochondrial and nuclear genomic inheritance.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, 2300 I Street N.W., Washington, DC, 20037, USA
| | - Anne Chiaramello
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, 2300 I Street N.W., Washington, DC, 20037, USA.
| |
Collapse
|
30
|
Monaghan RM, Whitmarsh AJ. Mitochondrial Proteins Moonlighting in the Nucleus. Trends Biochem Sci 2015; 40:728-735. [DOI: 10.1016/j.tibs.2015.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
|
31
|
Ding L, Liu Y. Borrowing nuclear DNA helicases to protect mitochondrial DNA. Int J Mol Sci 2015; 16:10870-87. [PMID: 25984607 PMCID: PMC4463680 DOI: 10.3390/ijms160510870] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 01/20/2023] Open
Abstract
In normal cells, mitochondria are the primary organelles that generate energy, which is critical for cellular metabolism. Mitochondrial dysfunction, caused by mitochondrial DNA (mtDNA) mutations or an abnormal mtDNA copy number, is linked to a range of human diseases, including Alzheimer's disease, premature aging and cancer. mtDNA resides in the mitochondrial lumen, and its duplication requires the mtDNA replicative helicase, Twinkle. In addition to Twinkle, many DNA helicases, which are encoded by the nuclear genome and are crucial for nuclear genome integrity, are transported into the mitochondrion to also function in mtDNA replication and repair. To date, these helicases include RecQ-like helicase 4 (RECQ4), petite integration frequency 1 (PIF1), DNA replication helicase/nuclease 2 (DNA2) and suppressor of var1 3-like protein 1 (SUV3). Although the nuclear functions of some of these DNA helicases have been extensively studied, the regulation of their mitochondrial transport and the mechanisms by which they contribute to mtDNA synthesis and maintenance remain largely unknown. In this review, we attempt to summarize recent research progress on the role of mammalian DNA helicases in mitochondrial genome maintenance and the effects on mitochondria-associated diseases.
Collapse
Affiliation(s)
- Lin Ding
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| | - Yilun Liu
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
32
|
Liu J, Fang H, Chi Z, Wu Z, Wei D, Mo D, Niu K, Balajee AS, Hei TK, Nie L, Zhao Y. XPD localizes in mitochondria and protects the mitochondrial genome from oxidative DNA damage. Nucleic Acids Res 2015; 43:5476-88. [PMID: 25969448 PMCID: PMC4477675 DOI: 10.1093/nar/gkv472] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/28/2015] [Indexed: 01/12/2023] Open
Abstract
Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Fang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfen Chi
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zan Wu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wei
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Hebei North University, Zhangjiakou 075000, China
| | - Dongliang Mo
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Niu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adayabalam S Balajee
- REAC/TS, Oak Ridge Associated Universities, Oak Ridge Institute of Science and Engineering, Oak Ridge, TN 37830, USA
| | - Tom K Hei
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Linghu Nie
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongliang Zhao
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Keller H, Kiosze K, Sachsenweger J, Haumann S, Ohlenschläger O, Nuutinen T, Syväoja JE, Görlach M, Grosse F, Pospiech H. The intrinsically disordered amino-terminal region of human RecQL4: multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Res 2014; 42:12614-27. [PMID: 25336622 PMCID: PMC4227796 DOI: 10.1093/nar/gku993] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/20/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023] Open
Abstract
Human RecQL4 belongs to the ubiquitous RecQ helicase family. Its N-terminal region represents the only homologue of the essential DNA replication initiation factor Sld2 of Saccharomyces cerevisiae, and also participates in the vertebrate initiation of DNA replication. Here, we utilized a random screen to identify N-terminal fragments of human RecQL4 that could be stably expressed in and purified from Escherichia coli. Biophysical characterization of these fragments revealed that the Sld2 homologous RecQL4 N-terminal domain carries large intrinsically disordered regions. The N-terminal fragments were sufficient for the strong annealing activity of RecQL4. Moreover, this activity appeared to be the basis for an ATP-independent strand exchange activity. Both activities relied on multiple DNA-binding sites with affinities to single-stranded, double-stranded and Y-structured DNA. Finally, we found a remarkable affinity of the N-terminus for guanine quadruplex (G4) DNA, exceeding the affinities for other DNA structures by at least 60-fold. Together, these findings suggest that the DNA interactions mediated by the N-terminal region of human RecQL4 represent a central function at the replication fork. The presented data may also provide a mechanistic explanation for the role of elements with a G4-forming propensity identified in the vicinity of vertebrate origins of DNA replication.
Collapse
Affiliation(s)
- Heidi Keller
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Kristin Kiosze
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Juliane Sachsenweger
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Sebastian Haumann
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Oliver Ohlenschläger
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Tarmo Nuutinen
- Department of Biology, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland
| | - Juhani E Syväoja
- Institute of Biomedicine, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Matthias Görlach
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Frank Grosse
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany Center for Molecular Biomedicine, Friedrich-Schiller University, Jena, Germany
| | - Helmut Pospiech
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany Faculty of Biochemistry and Molecular Medicine, PO Box 5000, FI-90014 University of Oulu, Finland
| |
Collapse
|
34
|
Wang JT, Xu X, Alontaga AY, Chen Y, Liu Y. Impaired p32 regulation caused by the lymphoma-prone RECQ4 mutation drives mitochondrial dysfunction. Cell Rep 2014; 7:848-58. [PMID: 24746816 DOI: 10.1016/j.celrep.2014.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 01/06/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes proteins that are important for ATP biogenesis. Therefore, changes in mtDNA copy number will have profound consequences on cell survival and proliferation. RECQ4 DNA helicase participates in both nuclear DNA and mtDNA synthesis. However, the mechanism that balances the distribution of RECQ4 in the nucleus and mitochondria is unknown. Here, we show that RECQ4 forms protein complexes with Protein Phosphatase 2A (PP2A), nucleophosmin (NPM), and mitochondrial p32 in different cellular compartments. Critically, the interaction with p32 negatively controls the transport of both RECQ4 and its chromatin-associated replication factor, MCM10, from the nucleus to mitochondria. Amino acids that are deleted in the most common cancer-associated RECQ4 mutation are required for the interaction with p32. Hence, this RECQ4 mutant, which is no longer regulated by p32 and is enriched in the mitochondria, interacts with the mitochondrial replication helicase PEO1 and induces abnormally high levels of mtDNA synthesis.
Collapse
Affiliation(s)
- Jiin-Tarng Wang
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | - Xiaohua Xu
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | - Aileen Y Alontaga
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | - Yuan Chen
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | - Yilun Liu
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
35
|
Abstract
The RECQ family of DNA helicases is a conserved group of enzymes that are important for maintaining genomic integrity. In humans, there are five RECQ helicase genes, and mutations in three of them-BLM, WRN, and RECQL4-are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. Importantly all three diseases are cancer predisposition syndromes. Patients with RTS are highly and uniquely susceptible to developing osteosarcoma; thus, RTS provides a good model to study the pathogenesis of osteosarcoma. The "tumor suppressor" role of RECQL4 and the other RECQ helicases is an area of active investigation. This chapter reviews what is currently known about the cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways may provide insight into avenues for novel cancer therapies in the future.
Collapse
|
36
|
Gupta S, De S, Srivastava V, Hussain M, Kumari J, Muniyappa K, Sengupta S. RECQL4 and p53 potentiate the activity of polymerase γ and maintain the integrity of the human mitochondrial genome. Carcinogenesis 2013; 35:34-45. [PMID: 24067899 DOI: 10.1093/carcin/bgt315] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (PolγA/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of PolγA. Kinetic constants for interactions between PolγA-RECQL4, PolγA-p53 and PolγB-p53 indicate that RECQL4 and p53 are accessory factors for PolγA-PolγB and PolγA-DNA interactions. RECQL4 enhances the binding of PolγA to DNA, thereby potentiating the exonuclease and polymerization activities of PolγA/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. SUMMARY The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.
Collapse
Affiliation(s)
- Shruti Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | | | | | | | | | | | | |
Collapse
|