1
|
Yang X, Wang Y, Rovella V, Candi E, Jia W, Bernassola F, Bove P, Piacentini M, Scimeca M, Sica G, Tisone G, Mauriello A, Wei L, Melino G, Shi Y. Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies. Biol Direct 2023; 18:40. [PMID: 37464416 PMCID: PMC10353240 DOI: 10.1186/s13062-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Ying Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233 China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
2
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
3
|
Zhang Y, Zhou L, Fu Q, Liu Z. ANKRD1 activates the Wnt signaling pathway by modulating CAV3 expression and thus promotes BMSC osteogenic differentiation and bone formation in ovariectomized mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166693. [PMID: 36958710 DOI: 10.1016/j.bbadis.2023.166693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are considered promising materials for treating bone diseases such as osteoporosis (OP). This research explored the functions and molecular mechanism of ankyrin repeat domain 1 (ANKRD1) in BMSC osteogenesis. An OP model in mice was established by bilateral ovariectomy. Manipulation of ANKRD1 expression in BMSCs or femurs was achieved by lentivirus infection. Increased ANKRD1 expression was observed in BMSCs during osteogenic induction. Silencing of ANKRD1 impaired the osteogenesis of BMSCs, as shown by the decreased alkaline phosphatase (ALP) activity, osteogenic gene (Runx2, Col1a1, Bglap, and Spp1) expression, and mineralized formation. ANKRD1-mediated promotion of osteogenesis was also reproduced in mouse MC3T3-E1 preosteoblastic cells. Activation of Wnt/β-catenin signaling, a well-known osteogenic stimulus, was also impaired in ANKRD1-silenced BMSCs. Overexpression of ANKRD1 resulted in the opposite effects on osteogenesis and Wnt/β-catenin signaling. Mechanistic studies revealed that ANKRD1 modulated caveolin-3 (CAV3) expression by reducing CAV3 ubiquitination, and the knockdown of CAV3 impaired the functions of ANKRD1. Additionally, a very low level of ANKRD1 was observed in the BMSCs from OP mice. Rescue of ANKRD1 significantly restored osteogenic differentiation and Wnt signaling activation in BMSCs from ovariectomized mice. The results of micro-CT, H&E staining, and IHC staining showed that ANKRD1 also promoted bone formation and Wnt activation and ameliorated pathological alterations in the femurs of OP mice. Collectively, this study demonstrated that ANKRD1 plays an important role in regulating the osteogenic differentiation of BMSCs and is a promising target for the treatment of OP and other bone diseases.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
4
|
de Souza W, Gemini-Piperni S, Grenho L, Rocha LA, Granjeiro JM, Melo SA, Fernandes MH, Ribeiro AR. Titanium dioxide nanoparticles affect osteoblast-derived exosome cargos and impair osteogenic differentiation of human mesenchymal stem cells. Biomater Sci 2023; 11:2427-2444. [PMID: 36756939 DOI: 10.1039/d2bm01854c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Titanium (Ti) and its alloys are the most widely used metallic biomaterials in total joint replacement; however, increasing evidence supports the degradation of its surface due to corrosion and wear processes releasing debris (ions, and micro and nanoparticles) and contribute to particle-induced osteolysis and implant loosening. Cell-to-cell communication involving several cell types is one of the major biological processes occurring during bone healing and regeneration at the implant-bone interface. In addition to the internal response of cells to the uptake and intracellular localization of wear debris, a red flag is the ability of titanium dioxide nanoparticles (mimicking wear debris) to alter cellular communication with the tissue background, disturbing the balance between osseous tissue integrity and bone regenerative processes. This study aims to understand whether titanium dioxide nanoparticles (TiO2 NPs) alter osteoblast-derived exosome (Exo) biogenesis and whether exosomal protein cargos affect the communication of osteoblasts with human mesenchymal stem/stromal cells (HMSCs). Osteoblasts are derived from mesenchymal stem cells coexisting in the bone microenvironment during development and remodelling. We observed that TiO2 NPs stimulate immature osteoblast- and mature osteoblast-derived Exo secretion that present a distinct proteomic cargo. Functional tests confirmed that Exos derived from both osteoblasts decrease the osteogenic differentiation of HMSCs. These findings are clinically relevant since wear debris alter extracellular communication in the bone periprosthetic niche, contributing to particle-induced osteolysis and consequent prosthetic joint failure.
Collapse
Affiliation(s)
- Wanderson de Souza
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - S Gemini-Piperni
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil.,Lab∈n Group, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Liliana Grenho
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.,LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Luís A Rocha
- Physics Department, Paulista State University, São Paulo, Brazil.,IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - José M Granjeiro
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil.,Dental School, Fluminense Federal University, Niterói, Brazil
| | - Sonia A Melo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Maria H Fernandes
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.,LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Ana R Ribeiro
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,NanoSafety group, International Iberian Nanotechnology Laboratory - INL, 4715-330, Braga, Portugal.
| |
Collapse
|
5
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
6
|
Leng S, Liu L, Xu W, Yang F, Du J, Ye L, Huang D, Zhang L. Inflammation down regulates stromal cell-derived factor 1α in the early phase of pulpitis. Cytokine 2022; 158:155983. [PMID: 35930964 DOI: 10.1016/j.cyto.2022.155983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
The key to prevent pulp necrosis in the early stage of pulpitis is to promote tissue repair, which begins with cell migration. Stromal cell-derived factor 1α (SDF-1α) has been proven to promote cell migration. Related research has so far concentrated on the biological effects of SDF-1α while its expression in pulpitis is still unclear. We investigated the effect of inflammation on SDF-1α in dental pulp and the underlying regulatory mechanisms. First, rat pulpitis models were established by exposing pulp. SDF-1α was decreased on the 3rd day but increased on the 7th day. Next, lipopolysaccharide from Porphyromonas gingivalis (Pg.LPS) was applied to dental pulp cells (DPCs). Within 24 h, SDF-1α decreased, but after 48 h, it steadily increased. Similarly, SDF-1α expression in human chronic pulpitis tissues was also increased. To investigate the effect of altered SDF-1α on DPC migration, cell supernatants collected following Pg.LPS treatment were utilized to stimulate DPCs, and the number of migrated cells was correlated with changes in SDF-1α secretion. Finally, we explored the regulatory mechanisms of SDF-1α down-regulation in the early phase of pulpitis. Within 24 h, JNK/c-Jun pathway was activated in DPC inflammation. When JNK pathway was suppressed, SDF-1α rose. Furthermore, tumor necrosis factor receptor 2 (TNFR2) and apoptosis signal-regulated kinase-interacting protein 1 (AIP1) were up-regulated. Knockdown of them abolished Pg.LPS-induced activation of JNK and c-Jun(Ser63) and significantly enhanced SDF-1α. Our findings indicated that in the early phase of pulpitis, inflammation suppressed SDF-1α by up-regulating TNFR2 and AIP1, which activated JNK/c-Jun(Ser63) pathway.
Collapse
Affiliation(s)
- Sha Leng
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Liu
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhe Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Du
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lan Zhang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Shibli JA, Nagay BE, Suárez LJ, Urdániga Hung C, Bertolini M, Barão VAR, Souza JGS. Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application. Tissue Eng Part C Methods 2022; 28:179-192. [PMID: 35166162 DOI: 10.1089/ten.tec.2022.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The use of tissue engineering to restore and to build new bone tissue is under active research at present. The following review summarizes the latest studies and clinical trials related to the use of osteogenic cells, biomaterials, and scaffolds to regenerate bone defects in the human jaws. Bone tissue engineering (BTE) combined with scaffolds have provided a range of advantages not only to transport the target cells to their desired destination but also to support the early phases of the mineralization process. The mechanical, chemical, and physical properties of scaffolds have been evaluated as they affect the quantity of bone regeneration, particularly in the oral cavity. This review also highlighted the mechanisms underlying bone homeostasis, including the key transcription factors and signaling pathways responsible for regulating the differentiation of osteoblast lineage. Furthering understanding of the mechanisms of cellular signaling in skeletal remodeling with the use of mesenchymal stem cells and the proper scaffold properties are key-factors to enable the incorporation of new and effective treatment methods into clinical practice for bone tissue regeneration using BTE. Impact Statement The use of mesenchymal stem cells able to differentiate in osteoblast lineage for bone tissue engineering (BTE) remains a major challenge. Viable cells and signaling pathways play an essential role in bone repair and regeneration of critical size defects. Recent advances in scaffolds and biological factors such as growth factors (e.g., cytokines and hormones) controlling the osteogenic signaling cascade are now becoming new players affecting the osteogenic potential of cells. Such techniques will significantly impact the maxillofacial bone tissue replacement, repair, and regeneration for patients without having to rely on donor banks or other surgical sites.
Collapse
Affiliation(s)
- Jamil Awad Shibli
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Lina J Suárez
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Celeste Urdániga Hung
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes Claros, Brazil
| |
Collapse
|
8
|
Xu J, Xu D, Yu Z, Fu Z, Lv Z, Meng L, Zhao X. Exosomal miR-150 partially attenuated acute lung injury by mediating microvascular endothelial cells and MAPK pathway. Biosci Rep 2022; 42:BSR20203363. [PMID: 34750610 PMCID: PMC8703023 DOI: 10.1042/bsr20203363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/12/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates. Currently, there is no effective treatment to complement mechanical ventilation. Exosomes and microRNAs (miRNAs) are promising agents for the management of this disease. METHODS Exosomes were isolated from mouse bone marrow stromal stem cells (BMSCs). The levels of two miRNAs, miR-542-3P and miR-150, in exosomes were determined using RT-PCR, and miR-150 was selected for further study. ALI model was established in mice using lipopolysaccharides, and then, they were treated with saline, exosomes, miRNA agomirs, or miRNA antagomirs. The concentrations of TNF-α, IL-6, and IL-1β and the number of neutrophils and macrophages in the bronchoalveolar lavage fluid were measured. The wet/dry weight ratio of the lung tissue was calculated, and tissue pathology and apoptosis were observed using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. CD34 and VE-cadherin expression was detected using immunofluorescence. Proteins associated with apoptosis and MAPK signaling were detected using Western blotting, and miR-150 expression in lung tissue was evaluated using RT-PCR. RESULTS We successfully isolated BMSCs and exosomes and showed that the level of miR-150 was significantly higher than that of miR-542-3p. Exosomes and miR-150 reduced inflammation and lung edema while maintaining the integrity of the alveolar structure. They also mitigated microvascular endothelial cell injury by regulating the caspase-3, Bax/Bcl-2, and MAPK signaling. CONCLUSIONS Exosomal miR-150 attenuates lipopolysaccharide-induced ALI through the MAPK pathway.
Collapse
Affiliation(s)
- Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhaohui Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Lv
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Meng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Shen F, Shi Y. Recent Advances in Single-Cell View of Mesenchymal Stem Cell in Osteogenesis. Front Cell Dev Biol 2022; 9:809918. [PMID: 35071243 PMCID: PMC8766509 DOI: 10.3389/fcell.2021.809918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoblasts continuously replenished by osteoblast progenitor cells form the basis of bone development, maintenance, and regeneration. Mesenchymal stem cells (MSCs) from various tissues can differentiate into the progenitor cell of osteogenic lineage and serve as the main source of osteoblasts. They also respond flexibly to regenerative and anabolic signals emitted by the surrounding microenvironment, thereby maintaining bone homeostasis and participating in bone remodeling. However, MSCs exhibit heterogeneity at multiple levels including different tissue sources and subpopulations which exhibit diversified gene expression and differentiation capacity, and surface markers used to predict cell differentiation potential remain to be further elucidated. The rapid advancement of lineage tracing methods and single-cell technology has made substantial progress in the characterization of osteogenic stem/progenitor cell populations in MSCs. Here, we reviewed the research progress of scRNA-seq technology in the identification of osteogenic markers and differentiation pathways, MSC-related new insights drawn from single-cell technology combined with experimental technology, and recent findings regarding the interaction between stem cell fate and niche in homeostasis and pathological process.
Collapse
Affiliation(s)
- Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Eisa NH, Sudharsan PT, Herrero SM, Herberg SA, Volkman BF, Aguilar-Pérez A, Kondrikov D, Elmansi AM, Reitman C, Shi X, Fulzele S, McGee-Lawrence ME, Isales CM, Hamrick MW, Johnson MH, Chen J, Hill WD. Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression. Bone 2021; 153:116154. [PMID: 34403754 PMCID: PMC8935397 DOI: 10.1016/j.bone.2021.116154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Nada H Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Periyasamy T Sudharsan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sergio Mas Herrero
- Universitat de Barcelona, Unitat Farmacologia, Dpt. Fonaments Clínics, 08036 Barcelona, Spain
| | - Samuel A Herberg
- Departments of Ophthalmology and Visual Sciences, and Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Alexandra Aguilar-Pérez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Charles Reitman
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America
| | - Xingming Shi
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Carlos M Isales
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Maribeth H Johnson
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Jie Chen
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
11
|
Potter ML, Smith K, Vyavahare S, Kumar S, Periyasamy-Thandavan S, Hamrick M, Isales CM, Hill WD, Fulzele S. Characterization of Differentially Expressed miRNAs by CXCL12/SDF-1 in Human Bone Marrow Stromal Cells. Biomol Concepts 2021; 12:132-143. [PMID: 34648701 DOI: 10.1515/bmc-2021-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
Stromal cell-derived factor 1 (SDF-1) is known to influence bone marrow stromal cell (BMSC) migration, osteogenic differentiation, and fracture healing. We hypothesize that SDF-1 mediates some of its effects on BMSCs through epigenetic regulation, specifically via microRNAs (miRNAs). MiRNAs are small non-coding RNAs that target specific mRNA and prevent their translation. We performed global miRNA analysis and determined several miRNAs were differentially expressed in response to SDF-1 treatment. Gene Expression Omnibus (GEO) dataset analysis showed that these miRNAs play an important role in osteogenic differentiation and fracture healing. KEGG and GO analysis indicated that SDF-1 dependent miRNAs changes affect multiple cellular pathways, including fatty acid biosynthesis, thyroid hormone signaling, and mucin-type O-glycan biosynthesis pathways. Furthermore, bioinformatics analysis showed several miRNAs target genes related to stem cell migration and differentiation. This study's findings indicated that SDF-1 induces some of its effects on BMSCs function through miRNA regulation.
Collapse
Affiliation(s)
| | - Kathryn Smith
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA
| | - Sagar Vyavahare
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA
| | | | - Mark Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA.,Department of Cell Biology and Anatomy, Augusta University, Augusta, GA.,Institute of Healthy Aging, Augusta University, Augusta, GA
| | - Carlos M Isales
- Institute of Healthy Aging, Augusta University, Augusta, GA.,Departments of Medicine, Augusta University, Augusta, GA
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403.,Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA.,Department of Cell Biology and Anatomy, Augusta University, Augusta, GA.,Institute of Healthy Aging, Augusta University, Augusta, GA.,Departments of Medicine, Augusta University, Augusta, GA.,Department of Orthopedics, Augusta University, Augusta, GA
| |
Collapse
|
12
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
13
|
Kynurenine induces an age-related phenotype in bone marrow stromal cells. Mech Ageing Dev 2021; 195:111464. [PMID: 33631183 DOI: 10.1016/j.mad.2021.111464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 01/02/2023]
Abstract
Advanced age is one of the important contributing factors for musculoskeletal deterioration. Although the exact mechanism behind this degeneration is unknown, it has been previously established that nutritional signaling plays a vital role in musculoskeletal pathophysiology. Our group established the vital role of the essential amino acid, tryptophan, in aging musculoskeletal health. With advanced age, inflammatory factors activate indoleamine 2,3-dioxygenase (IDO1) and accumulate excessive intermediate tryptophan metabolites such as Kynurenine (KYN). With age, Kynurenine accumulates and suppresses osteogenic differentiation, impairs autophagy, promotes early senescence, and alters cellular bioenergetics of bone marrow stem cells. Recent studies have shown that Kynurenine negatively impacts bone marrow stromal cells (BMSCs) and, consequently, promotes bone loss. Overall, understanding the mechanism behind BMSCs losing their ability for osteogenic differentiation can provide insight into the prevention of osteoporosis and the development of targeted therapies. Therefore, in this article, we review Kynurenine and how it plays a vital role in BMSC dysfunction and bone loss with age.
Collapse
|
14
|
Primary Cilia as a Biomarker in Mesenchymal Stem Cells Senescence: Influencing Osteoblastic Differentiation Potency Associated with Hedgehog Signaling Regulation. Stem Cells Int 2021; 2021:8850114. [PMID: 33574852 PMCID: PMC7857927 DOI: 10.1155/2021/8850114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bone tissue engineering-based therapy for bone lesions requires the expansion of seeding cells, such as autologous mesenchymal stem cells (MSCs). A major obstacle to this process is the loss of the phenotype and differentiation capacity of MSCs subjected to passage. Recent studies have suggested that primary cilia, primordial organelles that transduce multiple signals, particularly hedgehog signals, play a role in senescence. Therefore, we explored the relationships among senescence, primary cilia, and hedgehog signaling in MSCs. Ageing of MSCs by expansion in vitro was accompanied by increased cell doubling time. The osteogenic capacity of aged MSCs at passage 4 was compromised compared to that of primary cells. P4 MSCs exhibited reductions in the frequency and length of primary cilia associated with decreased intensity of Arl13b staining on cilia. Senescence also resulted in downregulation of the expression of hedgehog components and CDKN2A. Suppression of ciliogenesis reduced the gene expression of both Gli1, a key molecule in the hedgehog signaling pathway and ALP, a marker of osteoblastic differentiation. This study demonstrated that the senescence of MSCs induced the loss of osteoblastic differentiation potency and inactivated hedgehog signaling associated with attenuated ciliogenesis, indicating that primary cilia play a mediating role in and are biomarkers of MSC senescence; thus, future antisenescence strategies involving manipulation of primary cilia could be developed.
Collapse
|
15
|
Verheijen N, Suttorp CM, van Rheden REM, Regan RF, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. CXCL12-CXCR4 Interplay Facilitates Palatal Osteogenesis in Mice. Front Cell Dev Biol 2020; 8:771. [PMID: 32974338 PMCID: PMC7471603 DOI: 10.3389/fcell.2020.00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Cranial neural crest cells (CNCCs), identified by expression of transcription factor Sox9, migrate to the first branchial arch and undergo proliferation and differentiation to form the cartilage and bone structures of the orofacial region, including the palatal bone. Sox9 promotes osteogenic differentiation and stimulates CXCL12-CXCR4 chemokine-receptor signaling, which elevates alkaline phosphatase (ALP)-activity in osteoblasts to initiate bone mineralization. Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion. Since we earlier demonstrated chemokine-receptor mediated signaling by the MES, we hypothesized that chemokine CXCL12 is expressed by the disintegrating MES to promote the formation of an osteogenic center by CXCR4-positive osteoblasts. Disturbed migration of CNCCs by excess oxidative and inflammatory stress is associated with increased risk of cleft lip and palate (CLP). The cytoprotective heme oxygenase (HO) enzymes are powerful guardians harnessing injurious oxidative and inflammatory stressors and enhances osteogenic ALP-activity. By contrast, abrogation of HO-1 or HO-2 expression promotes pregnancy pathologies. We postulate that Sox9, CXCR4, and HO-1 are expressed in the ALP-activity positive osteogenic regions within the CNCCs-derived palatal mesenchyme. To investigate these hypotheses, we studied expression of Sox9, CXCL12, CXCR4, and HO-1 in relation to palatal osteogenesis between E15 and E16 using (immuno)histochemical staining of coronal palatal sections in wild-type (wt) mice. In addition, the effects of abrogated HO-2 expression in HO-2 KO mice and inhibited HO-1 and HO-2 activity by administrating HO-enzyme activity inhibitor SnMP at E11 in wt mice were investigated at E15 or E16 following palatal fusion. Overexpression of Sox9, CXCL12, CXCR4, and HO-1 was detected in the ALP-activity positive osteogenic regions within the palatal mesenchyme. Overexpression of Sox9 and CXCL12 by the disintegrating MES was detected. Neither palatal fusion nor MES disintegration seemed affected by either HO-2 abrogation or inhibition of HO-activity. Sox9 progenitors seem important to maintain the CXCR4-positive osteoblast pool to drive osteogenesis. Sox9 expression may facilitate MES disintegration and palatal fusion by promoting epithelial-to-mesenchymal transformation (EMT). CXCL12 expression by the MES and the palatal mesenchyme may promote osteogenic differentiation to create osteogenic centers. This study provides novel evidence that CXCL12-CXCR4 interplay facilitates palatal osteogenesis and palatal fusion in mice.
Collapse
Affiliation(s)
- Nanne Verheijen
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christiaan M Suttorp
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - René E M van Rheden
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria P A C Helmich
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland.,Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Frank A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
16
|
Periyasamy-Thandavan S, Burke J, Mendhe B, Kondrikova G, Kolhe R, Hunter M, Isales CM, Hamrick MW, Hill WD, Fulzele S. MicroRNA-141-3p Negatively Modulates SDF-1 Expression in Age-Dependent Pathophysiology of Human and Murine Bone Marrow Stromal Cells. J Gerontol A Biol Sci Med Sci 2020; 74:1368-1374. [PMID: 31505568 DOI: 10.1093/gerona/gly186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1 or CXCL12) is a cytokine secreted by cells including bone marrow stromal cells (BMSCs). SDF-1 plays a vital role in BMSC migration, survival, and differentiation. Our group previously reported the role of SDF-1 in osteogenic differentiation in vitro and bone formation in vivo; however, our understanding of the post-transcriptional regulatory mechanism of SDF-1 remains poor. MicroRNAs are small noncoding RNAs that post-transcriptionally regulate the messenger RNAs (mRNAs) of protein-coding genes. In this study, we aimed to investigate the impact of miR-141-3p on SDF-1 expression in BMSCs and its importance in the aging bone marrow (BM) microenvironment. Our data demonstrated that murine and human BMSCs expressed miR-141-3p that repressed SDF-1 gene expression at the functional level (luciferase reporter assay) by targeting the 3'-untranslated region of mRNA. We also found that transfection of miR-141-3p decreased osteogenic markers in human BMSCs. Our results demonstrate that miR-141-3p expression increases with age, while SDF-1 decreases in both the human and mouse BM niche. Taken together, these results support that miR-141-3p is a novel regulator of SDF-1 in bone cells and plays an important role in the age-dependent pathophysiology of murine and human BM niche.
Collapse
Affiliation(s)
| | - John Burke
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Georgia
| | - Bharati Mendhe
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Georgia
| | - Monte Hunter
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Georgia
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Georgia.,Center for Healthy Aging, Medical College of Georgia, Augusta University, Georgia
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia.,Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Georgia.,Center for Healthy Aging, Medical College of Georgia, Augusta University, Georgia
| | - William D Hill
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia.,Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Georgia.,Center for Healthy Aging, Medical College of Georgia, Augusta University, Georgia.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sadanand Fulzele
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia.,Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Georgia.,Center for Healthy Aging, Medical College of Georgia, Augusta University, Georgia
| |
Collapse
|
17
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
18
|
Brylka LJ, Schinke T. Chemokines in Physiological and Pathological Bone Remodeling. Front Immunol 2019; 10:2182. [PMID: 31572390 PMCID: PMC6753917 DOI: 10.3389/fimmu.2019.02182] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The bone matrix is constantly remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. These two cell types are fundamentally different in terms of progenitor cells, mode of action and regulation by specific molecules, acting either systemically or locally. Importantly, there is increasing evidence for an impact of cell types or molecules of the adaptive and innate immune system on bone remodeling. Understanding these influences is the major goal of a novel research area termed osteoimmunology, which is of key relevance in the context of inflammation-induced bone loss, skeletal metastases, and diseases of impaired bone remodeling, such as osteoporosis. This review article aims at summarizing the current knowledge on one particular aspect of osteoimmunology, namely the impact of chemokines on skeletal cells in order to regulate bone remodeling under physiological and pathological conditions. Chemokines have key roles in the adaptive immune system by controlling migration, localization, and function of immune cells during inflammation. The vast majority of chemokines are divided into two subgroups based on the pattern of cysteine residues. More specifically, there are 27 known C-C-chemokines, binding to 10 different C-C receptors, and 17 known C-X-C-chemokines binding to seven different C-X-C receptors. Three additional chemokines do not fall into this category, and only one of them, i.e., CX3CL1, has been shown to influence bone remodeling cell types. There is a large amount of published studies demonstrating specific effects of certain chemokines on differentiation and function of osteoclasts and/or osteoblasts. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption through autocrine and paracrine mechanisms. In vivo evidence from mouse deficiency models strongly supports the role of certain chemokine signaling pathways in bone remodeling. We will summarize these data in the present review with a special focus on the most established subsets of chemokines. In combination with the other review articles of this issue, the knowledge presented here confirms that there is a physiologically relevant crosstalk between the innate immune system and bone remodeling cell types, whose molecular understanding is of high clinical relevance.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Li X, Wu J, Liu S, Zhang K, Miao X, Li J, Shi Z, Gao Y. miR-384-5p Targets Gli2 and Negatively Regulates Age-Related Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev 2019; 28:791-798. [PMID: 30950325 DOI: 10.1089/scd.2019.0044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aberrant microRNA expression correlates with age-related osteoporosis, which impairs bone formation by regulating osteoblastic activity, thus leading to age-related bone loss. In this study, we observed that miR-384-5p was significantly upregulated in bone marrow mesenchymal stem cells (BMSCs) from aged rats compared with BMSCs from young rats. In vitro functional assays revealed that overexpression of miR-384-5p in young BMSCs inhibited osteogenic differentiation and accelerated senescence, whereas knockdown of miR-384-5p in aged BMSCs had the opposite effects. Furthermore, we demonstrated that miR-384-5p inhibited the expression of Gli2 at both the mRNA and protein levels by directly binding to the 3' untranslated region of Gli2 mRNA. The osteogenic capacity of Gli2-knockdown BMSCs was rejuvenated by miR-384-5p inhibition. Finally, in vivo assays showed that the inhibition of miR-384-5p prevented bone loss and increased the osteogenic capacity in aged rats. Overall, our study suggests that miR-384-5p functions as a negative regulator of osteogenesis, indicating that the inhibition of miR-384-5p may be a therapeutic strategy against age-related bone loss.
Collapse
Affiliation(s)
- Xiaoming Li
- 1 Department of Orthopedic, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Jinhui Wu
- 2 Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Shu Liu
- 1 Department of Orthopedic, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Ke Zhang
- 2 Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Xiong Miao
- 1 Department of Orthopedic, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Jingfeng Li
- 1 Department of Orthopedic, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Zhicai Shi
- 1 Department of Orthopedic, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Yang Gao
- 3 Department of Orthopedics, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| |
Collapse
|
20
|
Wang J, Zhao B, Yang S, Wang D, Xu H, Teng M. Scutellarin enhances osteoblast proliferation and function via NF-κB-mediated CXCR4 induction. Gene 2018; 676:29-36. [DOI: 10.1016/j.gene.2018.06.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
|
21
|
Gong ZM, Tang ZY, Sun XL. LncRNA PRNCR1 regulates CXCR4 expression to affect osteogenic differentiation and contribute to osteolysis after hip replacement. Gene 2018; 673:251-261. [DOI: 10.1016/j.gene.2018.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/13/2018] [Indexed: 01/05/2023]
|
22
|
Neri M, Sansone L, Pietrasanta L, Kisialiou A, Cabano E, Martini M, Russo MA, Ugolini D, Tafani M, Bonassi S. Gene and protein expression of CXCR4 in adult and elderly patients with chronic rhinitis, pharyngitis or sinusitis undergoing thermal water nasal inhalations. IMMUNITY & AGEING 2018; 15:10. [PMID: 29497453 PMCID: PMC5828426 DOI: 10.1186/s12979-018-0114-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/06/2018] [Indexed: 01/01/2023]
Abstract
Background Chronic rhinitis, pharyngitis and sinusitis are common health problems with a significant impact on public health, and are suspected to be influenced by ageing factors. Nasal inhalation with thermal water may be used to reduce symptoms, inflammation and drug intake. A pre-post clinical study was conducted in 183 consecutive adult and elderly patients with chronic rhinitis, pharyngitis or sinusitis, to evaluate whether thermal water nasal inhalations could improve their symptoms, clinical signs and rhinomanometry measurements, and influence inflammatory biomarkers levels in nasal epithelial cells. Results Participants profile revealed that they were aged on average (mean age and SD 60.6 ± 15.2 years, median 65, range 20–86, 86 aged ≤ 65 years (47%), 96 aged > 65 years (53%)) and extremely concerned about wellbeing. Older age was associated with better compliance to inhalation treatment. Total symptom and clinical evaluation scores were significantly ameliorated after treatment (p < 0.001), with no substantial difference according to age, while rhinomanometry results were inconsistent. Persistence of symptom improvement was confirmed at phone follow up 1 year later (n = 74). The training set of 48 inflammatory genes (40 patients) revealed a strong increase of CXCR4 gene expression after nasal inhalations, confirmed both in the validation set (143 patients; 1.2 ± 0.68 vs 3.3 ± 1.2; p < 0.0001) and by evaluation of CXCR4 protein expression (40 patients; 1.0 ± 0.39 vs 2.6 ± 0.66; p < 0.0001). CXCR4 expression was consistently changed in patients with rhinitis, pharyngitis or sinusitis. The increase was smaller in current smokers compared to non-smokers. Results were substantially unchanged when comparing aged subjects (≥ 65 years) or the eldest quartile (≥ 71 years) to the others. Other genes showed weaker variations (e.g. FLT1 was reduced only in patients with sinusitis). Conclusions These results confirm the clinical impact of thermal water nasal inhalations on upper respiratory diseases both in adults and elders, and emphasize the role of genes activating tissue repair and inflammatory pathways. Future studies should evaluate CXCR4 as possible therapeutic target or response predictor in patients with chronic rhinitis, pharyngitis or sinusitis. Trial registration Communication to Italian Ministry of Health - ICPOM 000461. Registered 10/11/2014. Electronic supplementary material The online version of this article (10.1186/s12979-018-0114-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica Neri
- 1Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Luigi Sansone
- 2Department of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy.,3Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Pietrasanta
- Terme di Genova, Genoa, Italy.,Terme di Acqui, AcquiTerme (AL), Italy
| | - Aliaksei Kisialiou
- 1Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy
| | | | - Marina Martini
- Terme di Genova, Genoa, Italy.,Terme di Acqui, AcquiTerme (AL), Italy
| | | | | | - Marco Tafani
- 2Department of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy.,3Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Bonassi
- 1Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy.,9Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
23
|
|
24
|
Liu Q, Zhang X, Jiao Y, Liu X, Wang Y, Li SL, Zhang W, Chen FM, Ding Y, Jiang C, Jin Z. In vitro cell behaviors of bone mesenchymal stem cells derived from normal and postmenopausal osteoporotic rats. Int J Mol Med 2017; 41:669-678. [PMID: 29207050 PMCID: PMC5752170 DOI: 10.3892/ijmm.2017.3280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
Postmenopausal osteoporosis (PMO) increases bone fragility and the risk of fractures, and impairs the healing procedure of bone defects in aged women. The stromal cell-derived factor-1α (SDF-1α)/CXC chemokine receptor type 4 (CXCR4) axis helps to maintain the biological and physiological functions of bone marrow mesenchymal stem cells (BMSCs) and increase the homing efficiency of BMSCs. The present study aimed to provide insights into the possible association between migration and osteogenic ability and the SDF-1α/CXCR4 axis in BMSCs derived from a rat model of PMO. In order to do this, the general and SDF-1α/CXCR4-associated biological characteristics as well as associated molecular mechanisms in BMSCs isolated from a PMO rat model (OVX-BMSCs) and normal rats (Sham-BMSCs) were investigated and compared. In comparison with Sham-BMSCs, OVX-BMSCs exhibited an impaired osteogenic ability, but a stronger adipogenic activity as well as a higher proliferative ability. In addition, OVX-BMSCs presented a lower chemotactic activity towards SDF-1α, lower expression levels of CXCR4 and reduced levels of phosphorylated AKT (p-AKT). Therefore, the lower expression levels of CXCR4 and p-AKT may be responsible for the impaired osteogenic ability and lower chemotactic activity towards SDF-1α of OVX-BMSCs.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoxia Zhang
- Department of Stomatology, Xi'an Medical College, Xi'an, Shaanxi 710309, P.R. China
| | - Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing 100700, P.R. China
| | - Xin Liu
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Song-Lun Li
- Medical Service Management Office, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Zhang
- Research Center of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yin Ding
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chuan Jiang
- Department of Stomatology, The People's Hospital of Tongchuan, Tongchuan 727000, P.R. China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
25
|
Apple DM, Kokovay E. Vascular niche contribution to age-associated neural stem cell dysfunction. Am J Physiol Heart Circ Physiol 2017; 313:H896-H902. [PMID: 28801522 PMCID: PMC5792207 DOI: 10.1152/ajpheart.00154.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 01/15/2023]
Abstract
Neural stem cells (NSCs) persist throughout life in the dentate gyrus and the ventricular-subventricular zone, where they continuously provide new neurons and some glia. These cells are found in specialized niches that regulate quiescence, activation, differentiation, and cell fate choice. A key aspect of the regulatory niche is the vascular plexus, which modulates NSC behavior during tissue homeostasis and regeneration. During aging, NSCs become depleted and dysfunctional, resulting in reduced neurogenesis and poor brain repair. In this review, we discuss the emerging evidence that changes in the vascular niche both structurally and functionally contribute to reduced neurogenesis during aging and how this might contribute to reduced plasticity and repair in the aged brain.
Collapse
Affiliation(s)
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Anontio, Texas
| |
Collapse
|
26
|
Chen Q, Zhou H, Hu P. Stemness distinctions between the ectomesenchymal stem cells from neonatal and adult mice. Acta Histochem 2017; 119:822-830. [PMID: 29107325 DOI: 10.1016/j.acthis.2017.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022]
Abstract
Ectomesenchymal stem cells (EMSCs), a type of adult stem cells derived from cranial neural crest, can be non-invasively harvested from respiratory mucosa and play vital roles in therapies based on their stemness. However, whether donor age has any impact on the stemness of EMSCs remains elusive and is essential for EMSCs-based therapies. To address this, we first cultivated EMSCs from neonatal mice aged 1 week and adult mice aged 3 months or 6 months, and then compared their morphology, proliferative capacity, and pluripotency through various induced differentiation assays. The results showed that neonatal EMSCs were fibroblast-like, more regular compared to adult EMSCs; the proliferative capacity of neonatal EMSCs was higher than that of adult EMSCs. More importantly, after neural, adipogenic, chondrogenic, and osteogenic differentiation, neonatal EMSCs differentiated into respective cell types significantly better than adult EMSCs. Notably, EMSCs from mice aged 3 months differentiated into mesodermal lineages better than those from 6 months old mice after induction. Collectively, these results suggest donor ages have significant impact on the EMSCs from respiratory mucosa.
Collapse
Affiliation(s)
- Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huangao Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Pingping Hu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
27
|
Strong AL, Jones RB, Glowacki J, Boue SM, Burow ME, Bunnell BA. Glycinol enhances osteogenic differentiation and attenuates the effects of age on mesenchymal stem cells. Regen Med 2017; 12:513-524. [PMID: 28718749 DOI: 10.2217/rme-2016-0148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM Phytoestrogens, such as glycinol, have recently gained significant attention as an alternative therapy for osteoporosis due to their structural similarity to estradiol and their bone-generating potential. METHODS The osteogenic effects of glycinol were investigated in human bone marrow mesenchymal stem cells (BMSCs) derived from older (>50 years old) and younger subjects (<25 years old). RESULTS BMSCs isolated from older donors demonstrated reduced osteogenesis. 17β-estradiol and glycinol exposure rescued the age-related reduction in osteogenic differentiation of BMSCs. These results correlated with the induction of osteogenic genes and estrogen receptor-α (ER-α) following glycinol treatment. ER antagonist studies further support that glycinol promotes osteogenesis through ER signaling. CONCLUSION The results from these studies support investigating glycinol as a potential preventive or treatment for osteoporosis.
Collapse
Affiliation(s)
- Amy L Strong
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Robert B Jones
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen M Boue
- Southern Regional Research Center, US Department of Agriculture, 1100 Robert E Lee Blvd, New Orleans, LA, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
28
|
Carbone LD, Bůžková P, Fink HA, Robbins JA, Bethel M, Hamrick MW, Hill WD. Association of Plasma SDF-1 with Bone Mineral Density, Body Composition, and Hip Fractures in Older Adults: The Cardiovascular Health Study. Calcif Tissue Int 2017; 100:599-608. [PMID: 28246930 PMCID: PMC5649737 DOI: 10.1007/s00223-017-0245-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
Aging is associated with an increase in circulating inflammatory factors. One, the cytokine stromal cell-derived factor 1 (SDF-1 or CXCL12), is critical to stem cell mobilization, migration, and homing as well as to bone marrow stem cell (BMSC), osteoblast, and osteoclast function. SDF-1 has pleiotropic roles in bone formation and BMSC differentiation into osteoblasts/osteocytes, and in osteoprogenitor cell survival. The objective of this study was to examine the association of plasma SDF-1 in participants in the cardiovascular health study (CHS) with bone mineral density (BMD), body composition, and incident hip fractures. In 1536 CHS participants, SDF-1 plasma levels were significantly associated with increasing age (p < 0.01) and male gender (p = 0.04), but not with race (p = 0.63). In multivariable-adjusted models, higher SDF-1 levels were associated with lower total hip BMD (p = 0.02). However, there was no significant association of SDF-1 with hip fractures (p = 0.53). In summary, circulating plasma levels of SDF-1 are associated with increasing age and independently associated with lower total hip BMD in both men and women. These findings suggest that SDF-1 levels are linked to bone homeostasis.
Collapse
Affiliation(s)
- Laura D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Howard A Fink
- Veterans Affairs Health Care System, Geriatric Research Education & Clinical Center, Minneapolis, MN, USA
- Veterans Affairs Health Care System, Center for Chronic Disease Outcomes Research, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - John A Robbins
- Department of Medicine, University of California - Davis, Sacramento, CA, USA
| | - Monique Bethel
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - Mark W Hamrick
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Department of Orthopaedic Surgery, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Sanders Research Building, CB1119 1459 Laney-Walker Blvd., Augusta, Georgia, 30912-2000, USA
| | - William D Hill
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA.
- Department of Orthopaedic Surgery, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA.
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University (formerly Georgia Regents University and Georgia Health Sciences University), Sanders Research Building, CB1119 1459 Laney-Walker Blvd., Augusta, Georgia, 30912-2000, USA.
| |
Collapse
|
29
|
Shi J, Sun J, Zhang W, Liang H, Shi Q, Li X, Chen Y, Zhuang Y, Dai J. Demineralized Bone Matrix Scaffolds Modified by CBD-SDF-1α Promote Bone Regeneration via Recruiting Endogenous Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27511-27522. [PMID: 27686136 DOI: 10.1021/acsami.6b08685] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The reconstruction of bone usually depends on substitute transplantation, which has drawbacks including the limited bone substitutes available, comorbidity, immune rejection, and limited endogenous bone regeneration. Here, we constructed a functionalized bone substitute by combining application of the demineralized bone matrix (DBM) and collagen-binding stromal-cell-derived factor-1α (CBD-SDF-1α). DBM was a poriferous and biodegradable bone substitute, derived from bovine bone and consisting mainly of collagen. CBD-SDF-1α could bind to collagen and be controllably released from the DBM to mobilize stem cells. In a rat femur defect model, CBD-SDF-1α-modified DBM scaffolds could efficiently mobilize CD34+ and c-kit+ endogenous stem cells homing to the injured site at 3 days after implantation. According to the data from micro-CT, CBD-SDF-1α-modified DBM scaffolds could help the bone defects rejoin with mineralization accumulated and bone volume expanded. Interestingly, osteoprotegerin (OPG) and osteopontin (OPN) were highly expressed in CBD-SDF-1α group at an early time after implantation, while osteocalcin (OCN) was more expanded. H&E and Masson's trichrome staining showed that the CBD-SDF-1α-modified DBM scaffold group had more osteoblasts and that the bone defect rejoined earlier. The ultimate strength of the regenerated bone was investigated by three-point bending, showing that the CBD-SDF-1α group had superior strength. In conclusion, CBD-SDF-1α-modified DBM scaffolds could promote bone regeneration by recruiting endogenous stem cells.
Collapse
Affiliation(s)
- Jiajia Shi
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China , Hefei 230026, China
| | - Jie Sun
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Wen Zhang
- Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University , Suzhou 215007, China
| | - Hui Liang
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Qin Shi
- Orthopedic Department, First Affiliated Hospital of Soochow University , Suzhou 215006, China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
30
|
Masters AR, Haynes L, Su DM, Palmer DB. Immune senescence: significance of the stromal microenvironment. Clin Exp Immunol 2016; 187:6-15. [PMID: 27529161 DOI: 10.1111/cei.12851] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
The immune system undergoes age-associated changes known as immunosenescence, resulting in increased susceptibility to infections, cancers and autoimmunity in the aged. The basis of our understanding of immunosenescence has been derived primarily from studies examining intrinsic defects within many of the cells of the immune system. While these studies have provided insight into the mechanisms of immunosenescence, a picture is now emerging that the stromal microenvironment within lymphoid organs also contributes significantly to the age-associated decline of immune function. These extrinsic defects appear to impact the functional activity of immune cells and may offer a potential target to recover immune activity. Indeed, rejuvenation studies which have targeted the stromal niche have restored immune function in aged successfully, highlighting the impact of the microenvironment towards the aetiology of immunosenescence.
Collapse
Affiliation(s)
- A R Masters
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - L Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - D-M Su
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - D B Palmer
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, UK
| |
Collapse
|
31
|
Lynch K, Pei M. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis 2015; 10:289-98. [PMID: 25482504 DOI: 10.4161/15476278.2014.970089] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. (1) ). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain "stemness" of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition.
Collapse
Key Words
- ACAN, aggrecan
- ADSC, adipose derived mesenchymal stem cell
- ALP, alkaline phosphatase
- BMSC, bone marrow derived mesenchymal stem cell
- CBFA1, core binding factor α 1
- CFU-OB, colony forming unit of osteoblasts
- COL2A1, collagen type 2 alpha1
- DECM, decellularized extracellular matrix
- ECM, extracellular matrix
- ESC, embryonic stem cell
- FGF2, fibroblast growth factor basic
- GAG, glycosaminoglycan
- HGF, hepatocyte growth factor
- HSC, haematopoietic stem cell
- IGF-I, insulin-like growth factor I
- LOXL1, lysyl oxidase-like 1
- LPL, lipopolysaccharide
- LV, left ventricle
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cell
- ON, osteonectin
- PPARG, peroxisome proliferator active receptor gamma
- ROS, reactive oxygen species
- RUNX2, runt-related transcription factor 2
- SD, Sprague-Dawley
- SDSC, synovium derived stem cell
- SIS-ECM, small intestinal submucosa extracellular matrix
- SOX9, SRY (sex determining region-Y)-box 9
- SPARC, secreted protein, acidic and rich in cysteine
- TGFβ, transforming growth factor β
- TIMP, tissue inhibitor of metalloproteinases
- UDSC, umbilical cord derived mesenchymal stem cell
- VEGF, vascular endothelial growth factor
- aging
- differentiation
- extracellular matrix
- mRNA, mRNA
- mesenchymal stem cells
- miRNA, micro-RNA
- microenvironment
- proliferation
- tissue engineering
Collapse
Affiliation(s)
- Kevin Lynch
- a Stem Cell and Tissue Engineering Laboratory; Department of Orthopaedics ; West Virginia University ; Morgantown , WV USA
| | | |
Collapse
|
32
|
Periyasamy-Thandavan S, Herberg S, Arounleut P, Upadhyay S, Dukes A, Davis C, Johnson M, McGee-Lawrence M, Hamrick MW, Isales CM, Hill WD. Caloric restriction and the adipokine leptin alter the SDF-1 signaling axis in bone marrow and in bone marrow derived mesenchymal stem cells. Mol Cell Endocrinol 2015; 410:64-72. [PMID: 25779533 PMCID: PMC4706462 DOI: 10.1016/j.mce.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/27/2015] [Accepted: 03/01/2015] [Indexed: 12/24/2022]
Abstract
Growing evidence suggests that the chemokine stromal cell-derived factor-1 (SDF-1) is essential in regulating bone marrow (BM) derived mesenchymal stromal/stem cell (BMSC) survival, and differentiation to either a pro-osteogenic or pro-adipogenic fate. This study investigates the effects of caloric restriction (CR) and leptin on the SDF-1/CXCR4 axis in bone and BM tissues in the context of age-associated bone loss. For in vivo studies, we collected bone, BM cells and BM interstitial fluid from 12 and 20 month-old C57Bl6 mice fed ad-libitum (AL), and 20-month-old mice on long-term CR with, or without, intraperitoneal injection of leptin for 10 days (10 mg/kg). To mimic conditions of CR in vitro, 18 month murine BMSCs were treated with (1) control (Ctrl): normal proliferation medium, (2) nutrient restriction (NR): low glucose, low serum medium, or (3) NR + leptin: NR medium + 100 ng/ml leptin for 6-48 h. In BMSCs both protein and mRNA expression of SDF-1 and CXCR4 were increased by CR and CR + leptin. In contrast, the alternate SDF-1 receptor CXCR7 was decreased, suggesting a nutrient signaling mediated change in SDF-1 axis signaling in BMSCs. However, in bone SDF-1, CXCR4 and 7 gene expression increase with age and this is reversed with CR, while addition of leptin returns this to the "aged" level. Histologically bone formation was lower in the calorically restricted mice and BM adipogenesis increased, both effects were reversed with the 10 day leptin treatment. This suggests that in bone CR and leptin alter the nutrient signaling pathways in different ways to affect the local action of the osteogenic cytokine SDF-1. Studies focusing on the molecular interaction between nutrient signaling by CR, leptin and SDF-1 axis may help to address age-related musculoskeletal changes.
Collapse
Affiliation(s)
| | | | - Phonepasong Arounleut
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Sunil Upadhyay
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Amy Dukes
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Colleen Davis
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Maribeth Johnson
- Department of Biostatistics, Georgia Regents University, Augusta, GA, USA
| | - Meghan McGee-Lawrence
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA; Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Mark W Hamrick
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA; Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, USA
| | - Carlos M Isales
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, USA; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA
| | - William D Hill
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA; Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
33
|
Berendsen AD, Olsen BR. Regulation of adipogenesis and osteogenesis in mesenchymal stem cells by vascular endothelial growth factor A. J Intern Med 2015; 277:674-80. [PMID: 25779338 DOI: 10.1111/joim.12364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms by which bone marrow mesenchymal stem cells (BMSCs) differentiate into bone-forming osteoblasts and marrow adipocytes is crucial to develop strategies for the treatment of several bone diseases. Age-related bone loss resulting in osteopenia and osteoporosis has been associated with reduced numbers of osteoblasts and increased numbers of adipocytes, likely originating from differentiation defects in BMSCs. Although many factors involved in the complex regulation of osteoblast and adipocyte cell lineages have previously been identified, their functional interactions in the context of BMSC differentiation and maintenance of bone homeostasis during ageing are unknown. Recent discoveries have provided important new insights into the mechanisms by which the nuclear envelope protein lamin A and vascular endothelial growth factor A (VEGF) mutually control BMSC fate. Particularly interesting is the finding that VEGF in this context functions as an intracellular protein, unaffected by neutralizing antibodies, and not as a secreted growth factor. These insights may not only facilitate the identification of new targets for treating bone diseases but also lead to improved design of tissue engineering approaches aimed at stimulating bone regeneration and repair.
Collapse
Affiliation(s)
- A D Berendsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - B R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Kaku M, Akiba Y, Akiyama K, Akita D, Nishimura M. Cell-based bone regeneration for alveolar ridge augmentation--cell source, endogenous cell recruitment and immunomodulatory function. J Prosthodont Res 2015; 59:96-112. [PMID: 25749435 DOI: 10.1016/j.jpor.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
Alveolar ridge plays a pivotal role in supporting dental prosthesis particularly in edentulous and semi-dentulous patients. However the alveolar ridge undergoes atrophic change after tooth loss. The vertical and horizontal volume of the alveolar ridge restricts the design of dental prosthesis; thus, maintaining sufficient alveolar ridge volume is vital for successful oral rehabilitation. Recent progress in regenerative approaches has conferred marked benefits in prosthetic dentistry, enabling regeneration of the atrophic alveolar ridge. In order to achieve successful alveolar ridge augmentation, sufficient numbers of osteogenic cells are necessary; therefore, autologous osteoprogenitor cells are isolated, expanded in vitro, and transplanted to the specific anatomical site where the bone is required. Recent studies have gradually elucidated that transplanted osteoprogenitor cells are not only a source of bone forming osteoblasts, they appear to play multiple roles, such as recruitment of endogenous osteoprogenitor cells and immunomodulatory function, at the forefront of bone regeneration. This review focuses on the current consensus of cell-based bone augmentation therapies with emphasis on cell sources, transplanted cell survival, endogenous stem cell recruitment and immunomodulatory function of transplanted osteoprogenitor cells. Furthermore, if we were able to control the mobilization of endogenous osteoprogenitor cells, large-scale surgery may no longer be necessary. Such treatment strategy may open a new era of safer and more effective alveolar ridge augmentation treatment options.
Collapse
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yosuke Akiba
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiro Nishimura
- Department of Oral Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
35
|
Liu YC, Kao YT, Huang WK, Lin KY, Wu SC, Hsu SC, Schuyler SC, Li LY, Leigh Lu F, Lu J. CCL5/RANTES is important for inducing osteogenesis of human mesenchymal stem cells and is regulated by dexamethasone. Biosci Trends 2015; 8:138-43. [PMID: 25030847 DOI: 10.5582/bst.2014.01047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we examine the effect of chemokine (C-C motif) ligand 5 (CCL5)/Regulated on Activation Normal T cell Expressed and Secreted (RANTES), a pro-inflammatory cytokine on osteogenic differentiation of human mesenchymal stem cells (hMSCs). We found CCL5 expression was increased during osteogenic differentiation of hMSCs and CCL5 expression is dependent on the presence of dexamethasone. Knocking down endogenous CCL5 expression blocked osteogenesis, as revealed by decreasing alkaline phosphatase (ALP) activity and a reduction in the expression levels of ALP, bone sialoprotein (BSP), and osteopontin (OPN). Of note, the overexpression of CCL5 was sufficient to increase ALP expression and activity. Moreover, the down-regulation of chemokine (C-C motif) receptor 1 (CCR1), one of the CCL5 receptors, significantly decreased the osteogenesis of hMSCs. Interestingly, the down-regulation of CCR1, but not CCL5, was sufficient to affect the cell numbers during the process of osteogenesis. Our findings reveal that both CCL5 and CCR1 are required for osteogenesis of human MSCs, CCL5 is sufficient for the osteogenesis, and provide a novel link between dexamethasone and CCL5 in human osteogenesis.
Collapse
Affiliation(s)
- Yu-Chuan Liu
- Graduate Institute of Life Sciences, National Defense Medical Center
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang JW, Zhang YF, Wan CY, Sun ZY, Nie S, Jian SJ, Zhang L, Song GT, Chen Z. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration. Biomaterials 2015; 44:11-23. [PMID: 25617122 DOI: 10.1016/j.biomaterials.2014.12.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Critical morphological requirements for pulp regeneration are tissues replete with vascularisation, neuron formation, and dentin deposition. Autophagy was recently shown to be related to angiogenesis, neural differentiation, and osteogenesis. The present study aimed to investigate the involvement of autophagy in stromal cell-derived factor-1α (SDF-1α)-mediated dental pulp stem cell (DPSC) migration and pulp regeneration, and identify its presence during pulp revascularisation of pulpectomised dog teeth with complete apical closure. In vitro studies showed that SDF-1α enhanced DPSCs migration and optimised focal adhesion formation and stress fibre assembly, which were accompanied by autophagy. Moreover, autophagy inhibitors significantly suppressed, whereas autophagy activator substantially augmented SDF-1α-stimulated DPSCs migration. Furthermore, after ectopic transplantation of tooth fragment/silk fibroin scaffold with DPSCs into nude mice, pulp-like tissues with vascularity, well-organised fibrous matrix formation, and new dentin deposition along the dentinal wall were generated in SDF-1α-loaded samples accompanied by autophagy. More importantly, in a pulp revascularisation model in situ, SDF-1α-loaded silk fibroin scaffolds improved the de novo ingrowth of pulp-like tissues in pulpectomised mature dog teeth, which correlated with the punctuated LC3 and Atg5 expressions, indicating autophagy. Our findings provide novel insights into the pulp regeneration mechanism, and SDF-1α shows promise for future clinical application in pulp revascularisation.
Collapse
Affiliation(s)
- Jing-Wen Yang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Yu-Feng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Chun-Yan Wan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Zhe-Yi Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Shuai Nie
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Shu-Juan Jian
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Lu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Guang-Tai Song
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
37
|
Aino M, Nishida E, Fujieda Y, Orimoto A, Mitani A, Noguchi T, Makino H, Murakami S, Umezawa A, Yoneda T, Saito M. Isolation and characterization of the human immature osteoblast culture system from the alveolar bones of aged donors for bone regeneration therapy. Expert Opin Biol Ther 2014; 14:1731-44. [PMID: 25241883 DOI: 10.1517/14712598.2014.960387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Establishment of human osteoblast cultures that retain bone-forming capacity is one of the prerequisites for successful bone regeneration therapy. Because osteoblasts harvested from adults exhibit limited growth, the use of immature osteoblasts that can expand ex vivo should greatly facilitate bone regeneration therapy. In this study, we developed immature human osteoblasts isolated from aged alveolar bone (HAOBs). METHODS HAOBs obtained after the collagenase digestion of alveolar bones from elderly donors. Then, we assessed osteogenic ability of HAOB after treatment with recombinant human bone morphogenic protein-2 or transplantation into immunodeficient mice. In addition, we performed global gene expression analysis to identify functional marker for HAOB. RESULTS HAOBs, which can differentiate into osteoblasts and have a robust bone-forming ability, were successfully extracted from donors who were > 60 years of age. We found that the HAOBs exhibited a higher osteogenic ability compared with those of human mesenchymal stem cells and highly expressed NEBULETTE (NEBL) with osteogenic abilities. CONCLUSIONS HAOBs have properties similar to those of human immature osteoblasts and appear to be a novel material for cell-based bone regeneration therapy. Additionally, the expression level of NEBL may serve as a marker for the osteogenic ability of these cells.
Collapse
Affiliation(s)
- Makoto Aino
- Aichi-gakuin University, School of Dentistry, Department of Periodontology , Nagoya, Aichi , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ahn EH, Kim Y, Kshitiz, An SS, Afzal J, Lee S, Kwak M, Suh KY, Kim DH, Levchenko A. Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials 2013; 35:2401-2410. [PMID: 24388388 DOI: 10.1016/j.biomaterials.2013.11.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
Abstract
Adult stem cells hold great promise as a source of diverse terminally differentiated cell types for tissue engineering applications. However, due to the complexity of chemical and mechanical cues specifying differentiation outcomes, development of arbitrarily complex geometric and structural arrangements of cells, adopting multiple fates from the same initial stem cell population, has been difficult. Here, we show that the topography of the cell adhesion substratum can be an instructive cue to adult stem cells and topographical variations can strongly bias the differentiation outcome of the cells towards adipocyte or osteocyte fates. Switches in cell fate decision from adipogenic to osteogenic lineages were accompanied by changes in cytoskeletal stiffness, spanning a considerable range in the cell softness/rigidity spectrum. Our findings suggest that human mesenchymal stem cells (hMSC) can respond to the varying density of nanotopographical cues by regulating their internal cytoskeletal network and use these mechanical changes to guide them toward making cell fate decisions. We used this finding to design a complex two-dimensional pattern of co-localized cells preferentially adopting two alternative fates, thus paving the road for designing and building more complex tissue constructs with diverse biomedical applications.
Collapse
Affiliation(s)
- Eun Hyun Ahn
- Department of Pathology, University of Washington, Seattle, WA.,Department of Pathology, University of Washington, Seattle, WA
| | - Younghoon Kim
- Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD
| | - Kshitiz
- Department of Bioengineering, University of Washington, Seattle, WA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Steven S An
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD.,Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore, MD.,In Vivo Cellular and Molecular Imaging Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Junaid Afzal
- Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD
| | - Suengwon Lee
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD
| | - Moonkyu Kwak
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kahp-Yang Suh
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Deok-Ho Kim
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.,Department of Bioengineering, University of Washington, Seattle, WA
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|