1
|
Alvarado-Ojeda ZA, Trejo-Moreno C, Ferat-Osorio E, Méndez-Martínez M, Fragoso G, Rosas-Salgado G. Role of Angiotensin II in Non-Alcoholic Steatosis Development. Arch Med Res 2024; 55:102986. [PMID: 38492325 DOI: 10.1016/j.arcmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Fatty liver is a multifactorial disease characterized by excessive accumulation of lipids in hepatocytes (steatosis), insulin resistance, oxidative stress, and inflammation. This disease has a major public health impact because it is the first stage of a chronic and degenerative process in the liver that can lead to steatohepatitis, cirrhosis, and liver cancer. Although this disease is mainly diagnosed in patients with obesity, type 2 diabetes mellitus, and dyslipidemia, recent evidence indicates that vasoactive hormones such as angiotensin II (ANGII) not only promote endothelial dysfunction (ED) and hypertension, but also cause fatty liver, increase adipose tissue, and develop a pro-steatotic environment characterized by a low-grade systemic pro-inflammatory and pro-oxidant state, with elevated blood lipid levels. The role of ANGII in lipid accumulation has been little studied, so this review aims to summarize existing reports on the possible mechanism of action of ANGII in inducing lipid accumulation in hepatocytes.
Collapse
Affiliation(s)
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico.
| |
Collapse
|
2
|
Yan X, Huang S, Li H, Feng Z, Kong J, Liu J. The causal effect of mTORC1-dependent circulating protein levels on nonalcoholic fatty liver disease: A Mendelian randomization study. Dig Liver Dis 2024; 56:559-564. [PMID: 37778897 DOI: 10.1016/j.dld.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The mechanistic target of rapamycin (mTOR) signal pathway plays a crucial role in the development of nonalcoholic fatty liver disease (NAFLD). However, the causal effect of mTOR downstream proteins on NAFLD remains unknown. AIMS We conducted a two-sample Mendelian randomization (MR) study to investigate whether the mTOR-dependent circulating proteins, including Eukaryotic Initiation Factor 4E Binding Proteins (eIF4EBPs), Ribosomal Protein S6K kinase 1 (RP-S6K), Eukaryotic Initiation Factor 4E (eIF4E), Eukaryotic Initiation Factor 4A (eIF4A) and Eukaryotic Initiation Factor 4 G (eIF4G), have causal effects on the risk of NAFLD. METHODS The causal estimate was evaluated with the inverse-variance weighted (IVW) method in discovery stage and validation stage. The single-nucleotide polymorphisms (SNPs) were selected to genetically predict exposures from Genome-Wide Association Studies (GWAS). Exposures with statistically significant effects in the discovery dataset would be further validated in the validation dataset. RESULTS MR study revealed that eIF4E had a causal effect on NAFLD in both discovery stage (OR = 1.339, P = 0.037) and validation stage (OR = 1.0007, P = 0.022). Sensitivity analyses confirmed robustness of the results. CONCLUSION The genetically predicted higher level of mTOR-dependent eIF4E in plasma might have a causal effect on the occurrence of NAFLD.
Collapse
Affiliation(s)
- Xiangyu Yan
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Songhan Huang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Hongxin Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zichen Feng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Junjie Kong
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of hepatobiliary surgery, Shandong Provincial Hospital affiliated to Shandong first medical university, Jinan, Shandong 250021, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of hepatobiliary surgery, Shandong Provincial Hospital affiliated to Shandong first medical university, Jinan, Shandong 250021, China.
| |
Collapse
|
3
|
Yan C, Bao J, Jin J. Exploring the interplay of gut microbiota, inflammation, and LDL-cholesterol: a multiomics Mendelian randomization analysis of their causal relationship in acute pancreatitis and non-alcoholic fatty liver disease. J Transl Med 2024; 22:179. [PMID: 38374155 PMCID: PMC10875775 DOI: 10.1186/s12967-024-04996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Acute pancreatitis and non-alcoholic fatty liver disease are both serious diseases in the digestive system. The pathogenesis of both diseases is extremely complex closely and it related to gut microbiota, inflammation, and blood fat. There is a close relationship between gut microbiota and blood lipids. METHODS In this study, we used three types of exposure: 412 gut microbiota, 731 inflammatory cells, and 91 inflammatory proteins (pqtls), with LDL-C as an intermediary and acute pancreatitis and non-alcoholic fatty liver disease as outcomes. We mainly used MR-IVW, co-localization analysis, and reverse MR analysis methods for analysis. RESULTS 7 gut microbiota, 21 inflammatory cells, and 3 inflammatory proteins can affect LDL-C levels. LDL-C is associated with acute pancreatitis and non-alcoholic fatty liver disease. CONCLUSIONS Three omics were used: 412 gut microbiota, 731 inflammatory cells, and 91 inflammatory proteins (pqtls). It explains the causal relationship between multiomics, LDL- cholesterol, acute pancreatitis, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Congzhi Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
- Wenzhou Medical University, Zhejiang, China
| | - Jingxia Bao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
- Wenzhou Medical University, Zhejiang, China
| | - Jinji Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China.
- Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
4
|
Fei X, Huang J, Li F, Wang Y, Shao Z, Dong L, Wu Y, Li B, Zhang X, Lv B, Zhao Y, Weng Q, Chen K, Zhang M, Yang S, Zhang C, Zhang M, Li W, Ying S, Sun Q, Chen Z, Shen H. The Scap-SREBP1-S1P/S2P lipogenesis signal orchestrates the homeostasis and spatiotemporal activation of NF-κB. Cell Rep 2023; 42:112586. [PMID: 37267109 DOI: 10.1016/j.celrep.2023.112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
The nuclear factor κB (NF-κB) pathway plays essential roles in innate and adaptive immunity, but little is known how NF-κB signaling is compartmentalized and spatiotemporally activated in the cytoplasm. Here, we show that the lipogenesis signal cascade Scap-SREBP1-S1P/S2P orchestrates the homeostasis and spatiotemporal activation of NF-κB. SREBP cleavage-activating protein (Scap) and sterol regulatory element-binding protein 1 (SREBP1) form a super complex with inhibitors of NF-κB α (IκBα) to associate NF-κB close to the endoplasmic reticulum (ER). Upon lipopolysaccharide (LPS) stimulation, Scap transports the complex to the Golgi apparatus, where SREBP1 is cleaved by site-1 protease (S1P)/S2P, liberating IκBα for IκB kinase (Ikk)-mediated phosphorylation and subsequent activation of NF-κB. Loss of Scap or inhibition of S1P or S2P diminishes, while SREBP1 deficiency augments, LPS-induced NF-κB activation and subsequent inflammatory responses. Our results reveal the Scap-SREBP1 complex as an additional cytoplasmic checkpoint for NF-κB homeostasis and unveil the Golgi apparatus as the optimal cellular platform for NF-κB activation, providing insights into the crosstalk between lipogenesis signaling and immunity.
Collapse
Affiliation(s)
- Xia Fei
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jiaqi Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuejue Wang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhehua Shao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lingling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Boran Li
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Baihui Lv
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kaijun Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shiyi Yang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qiming Sun
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; State Key Lab for Respiratory Diseases, National Clinical Research Centre for Respiratory Disease, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
5
|
Su P, Chen JG, Tang DH. Exercise against nonalcoholic fatty liver disease: Possible role and mechanism of lipophagy. Life Sci 2023; 327:121837. [PMID: 37301321 DOI: 10.1016/j.lfs.2023.121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. NAFLD is prevalent in about 30% of people worldwide. The lack of physical activity is considered as one of the risks for NAFLD, and approximately one-third of NAFLD patients hardly engage in physical activity. It is acknowledged that exercise is one of the optimal non-pharmacological methods for preventing and treating NAFLD. Different forms of exercise such as aerobic exercise, resistance exercise and even simply physical activity in a higher level can be beneficial in reducing liver lipid accumulation and disease progression for NAFLD patients. In NAFLD patients, exercise is helpful in lowering steatosis and enhancing liver function. The mechanisms underlying the prevention and treatment of NAFLD by exercise are various and complex. Current studies on the mechanisms have focused on the pro-lipolytic, anti-inflammatory, and antioxidant and lipophagy. Promotion of lipophagy is regarded as an important mechanism for prevention and improvement of NAFLD by exercise. Recent studies have investigated the above mechanism, yet the potential mechanism has not been completely elucidated. Thus, in this review, we cover the recent advances of exercise-promoted lipophagy in NAFLD treatment and prevention. Furthermore, given the fact that exercise activates SIRT1, we discuss the possible regulatory mechanisms of lipophagy by SIRT1 during exercise. These mechanisms need to be verified by further experimental studies.
Collapse
Affiliation(s)
- Pei Su
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Jian-Gang Chen
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Dong-Hui Tang
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| |
Collapse
|
6
|
Huang YW, Wang LT, Zhang M, Nie Y, Yang JB, Meng WL, Wang XJ, Sheng J. Caffeine can alleviate non-alcoholic fatty liver disease by augmenting LDLR expression via targeting EGFR. Food Funct 2023; 14:3269-3278. [PMID: 36916513 DOI: 10.1039/d2fo02701a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Increasing low-density lipoprotein receptor (LDLR) protein levels represents a key strategy for the prevention and treatment. Berberine can reportedly alleviate non-alcoholic fatty liver disease (NAFLD) by increasing the LDLR expression in an ERK1/2 signaling-dependent manner of NAFLD. Studies have shown that caffeine can inhibit fat deposition in the livers of mice; however, caffeine has not been reported to alleviate NAFLD by augmenting the LDLR expression via targeting EGFR. Here, an MTT assay, western blotting, RT-qPCR, immunohistochemistry, and surface plasmon resonance (SPR) analysis were used to investigate the role of caffeine in low-density lipoprotein cholesterol (LDL-C) clearance both in vitro and in vivo. In vitro, we found that caffeine could activate the EGFR-ERK1/2 signaling pathway in HepG2 cells, leading to increased LDLR mRNA and protein expression, and this effect could be inhibited by cetuximab. The SPR assay results have indicated that caffeine may increase the LDLR expression by directly binding to the EGFR extracellular domain and activating the EGFR-ERK1/2 signaling pathway. In vivo, caffeine markedly improved fatty liver and related blood indices in ApoE KO mice with high-fat-diet-induced NAFLD. Consistent with our in vitro results, we found that caffeine could also activate EGFR-ERK1/2 signaling and promote the LDLR expression in ApoE KO mice. In summary, caffeine can enhance the LDLR expression by directly binding to EGFR and activating the EGFR-ERK1/2 signaling pathway. EGFR signaling may represent a novel target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Ye-Wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Li-Tian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Meng Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yan Nie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Bo Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen-Luer Meng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China
| |
Collapse
|
7
|
Momtazi-Borojeni AA, Banach M, Ruscica M, Sahebkar A. The role of PCSK9 in NAFLD/NASH and therapeutic implications of PCSK9 inhibition. Expert Rev Clin Pharmacol 2022; 15:1199-1208. [PMID: 36193738 DOI: 10.1080/17512433.2022.2132229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION There are inconsistent findings regarding the effect of lipid-lowering agents on nonalcoholic fatty liver disease (NAFLD). Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) is an important player in cholesterol homeostasis and intracellular lipogenesis, and PCSK9 inhibitors (PCSK9-i) have been found to be efficient for pharmacological management of hyperlipidemia. AREAS COVERED Whether PCSK9 (itself) or PCSK9-i affects NAFLD is still disputed. To address this question, we review published preclinical and clinical studies providing evidence for the role of PCSK9 in and the effect of PCSK9-I on the development and pathogenesis of NAFLD. EXPERT OPINION The current evidence from a landscape of preclinical and clinical studies examining the role of PCSK9 in NAFLD shows controversial results. Preclinical studies indicate that PCSK9 associates with NAFLD and nonalcoholic steatohepatitis (NASH) progression in opposite directions. In humans, it has been concluded that the severity of hepatic steatosis affects the correlation between circulating PCSK9 and liver fat content in humans, with a possible impact of circulating PCSK9 in the early stages of NAFLD, but not in the late stages. However, data from clinical trials with PCSK9-i reassure to the safety of these agents, although real-life long-term evidence is needed.
Collapse
Affiliation(s)
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23169196. [PMID: 36012464 PMCID: PMC9409235 DOI: 10.3390/ijms23169196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) continues to rise, yet effective treatments are lacking due to the complex pathogenesis of this disease. Although recent research has provided evidence for the “multiple strikes” theory, the classic “two strikes” theory has not been overturned. Therefore, there is a crucial need to identify multiple targets in NAFLD pathogenesis for the development of diagnostic markers and targeted therapeutics. Since its discovery, the mechanistic target of rapamycin (mTOR) has been recognized as the central node of a network that regulates cell growth and development and is closely related to liver lipid metabolism and other processes. This paper will explore the mechanisms by which mTOR regulates lipid metabolism (SREBPs), insulin resistance (Foxo1, Lipin1), oxidative stress (PIG3, p53, JNK), intestinal microbiota (TLRs), autophagy, inflammation, genetic polymorphisms, and epigenetics in NAFLD. The specific influence of mTOR on NAFLD was hypothesized to be divided into micro regulation (the mechanism of mTOR’s influence on NAFLD factors) and macro mediation (the relationship between various influencing factors) to summarize the influence of mTOR on the developmental process of NAFLD, and prove the importance of mTOR as an influencing factor of NAFLD regarding multiple aspects. The effects of crosstalk between mTOR and its upstream regulators, Notch, Hedgehog, and Hippo, on the occurrence and development of NAFLD-associated hepatocellular carcinoma are also summarized. This analysis will hopefully support the development of diagnostic markers and new therapeutic targets in NAFLD.
Collapse
|
9
|
Gu J, Zhu N, Li HF, Zhao TJ, Zhang CJ, Liao DF, Qin L. Cholesterol homeostasis and cancer: a new perspective on the low-density lipoprotein receptor. Cell Oncol 2022; 45:709-728. [PMID: 35864437 DOI: 10.1007/s13402-022-00694-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disturbance of cholesterol homeostasis is considered as one of the manifestations of cancer. Cholesterol plays an essential role in the pleiotropic functions of cancer cells, including mediating membrane trafficking, intracellular signal transduction, and production of hormones and steroids. As a single transmembrane receptor, the low-density lipoprotein receptor (LDLR) can participate in intracellular cholesterol uptake and regulate cholesterol homeostasis. It has recently been found that LDLR is aberrantly expressed in a broad range of cancers, including colon cancer, prostate cancer, lung cancer, breast cancer and liver cancer. LDLR has also been found to be involved in various signaling pathways, such as the MAPK, NF-κB and PI3K/Akt signaling pathways, which affect cancer cells and their surrounding microenvironment. Moreover, LDLR may serve as an independent prognostic factor for lung cancer, breast cancer and pancreatic cancer, and is closely related to the survival of cancer patients. However, the role of LDLR in some cancers, such as prostate cancer, remains controversial. This may be due to the lack of normal feedback regulation of LDLR expression in cancer cells and the severe imbalance between LDLR-mediated cholesterol uptake and de novo biosynthesis of cholesterol. CONCLUSIONS The imbalance of cholesterol homeostasis caused by abnormal LDLR expression provides new therapeutic opportunities for cancer. LDLR interferes with the occurrence and development of cancer by modulating cholesterol homeostasis and may become a novel target for the development of anti-cancer drugs. Herein, we systematically review the contribution of LDLR to cancer progression, especially its dysregulation and underlying mechanism in various malignancies. Besides, potential targeting and immunotherapeutic options are proposed.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tan-Jun Zhao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duan-Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
10
|
Metwally M, Berg T, Tsochatzis EA, Eslam M. Translation Reprogramming as a Novel Therapeutic Target in MAFLD. Adv Biol (Weinh) 2022; 6:e2101298. [PMID: 35240009 DOI: 10.1002/adbi.202101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Indexed: 01/27/2023]
Abstract
Approved pharmacotherapies for metabolic-dysfunction-associated fatty liver disease (MAFLD) are lacking. Novel approaches and therapeutic targets that are likely to translate to clinical benefit are required. Targeting components of the translation machinery hold promise as a novel therapeutic approach that can overcome the well-known disease heterogeneity, as dysregulation of mRNA translation is a common feature independent of the MAFLD drivers. In this perspective, recent advances in understanding the role of mRNA translation in MAFLD are discussed, with a particular focus on the potential implications and challenges to "translate" these findings to the clinic, and an overview of similar recent efforts in other diseases is provided.
Collapse
Affiliation(s)
- Mayada Metwally
- Department of Internal Medicine, Minia University, Minia, 61111, Egypt
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, NW3 2QG, UK
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, 2145, Australia
| |
Collapse
|
11
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
12
|
Arora M, Kutinová Canová N, Farghali H. mTOR as an eligible molecular target for possible pharmacological treatment of nonalcoholic steatohepatitis. Eur J Pharmacol 2022; 921:174857. [PMID: 35219732 DOI: 10.1016/j.ejphar.2022.174857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
|
13
|
Hepatocellular BChE as a therapeutic target to ameliorate hypercholesterolemia through PRMT5 selective degradation to restore LDL receptor transcription. Life Sci 2022; 293:120336. [PMID: 35065166 DOI: 10.1016/j.lfs.2022.120336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
Abstract
AIMS Individuals with nonalcoholic hepatosteatosis (NAFLD) have a worse atherogenic lipoprotein profile and are susceptible to cardiovascular diseases. The MEK-ERK signaling cascades are central regulators of the levels of LDL receptor (LDLR), a major determinant of circulating cholesterol. It is elusive how hepatic steatosis contributes to dyslipidemia, especially hypercholesterolemia. MAIN METHODS The effects of BChE on signaling pathways were determined by immunoblotting in a BChE knockout hepatocyte cell line. DiI-LDL probe was used to explore the effect of BChE expression on LDL internalization. Co-immunoprecipitation and LC-MS were used to explore the interacting proteins with BChE. Finally, a hepatocyte-restricted BChE silencing mouse model was established by AAV8-Tbg-shRNA, and the hypercholesterolemia was induced by 65% kcal% high-fat, high-sucrose diet feeding. MAIN FINDINGS Here we demonstrate that butyrylcholinesterase (BChE) governs the LDL receptor levels and LDL uptake capacity through the MEK-ERK signaling cascades to promote Ldlr transcription. BChE interacts and co-localizes with PRMT5, a protein methylation modifier controlling the ERK signaling. PRMT5 regulates LDLR-dependent LDL uptake and is a substrate of chaperone-mediated autophagy (CMA). BChE deficiency induces the PRTM5 degradation dependent on CMA activity, possibly through facilitating the HSC70 (Heat shock cognate 71 kDa) recognition of PRMT5. Remarkably, in vivo hepatocyte-restricted BChE silencing reduces plasma cholesterol levels substantially. In contrast, the BChE knockout mice are predisposed to hypercholesterolemia. SIGNIFICANCE Taken together, these findings outline a regulatory role for the BChE-PRMT5-ERK-LDLR axis in hepatocyte cholesterol metabolism, and suggest that targeting liver BChE is an effective therapeutic strategy to treat hypercholesterolemia.
Collapse
|
14
|
Lv SL, Zeng ZF, Gan WQ, Wang WQ, Li TG, Hou YF, Yan Z, Zhang RX, Yang M. Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol Sin 2021; 42:2016-2032. [PMID: 34226664 PMCID: PMC8632984 DOI: 10.1038/s41401-021-00703-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Macrophage-mediated inflammation plays an important role in hypertensive cardiac remodeling, whereas effective pharmacological treatments targeting cardiac inflammation remain unclear. Lipoprotein-associated phospholipase A2 (Lp-PLA2) contributes to vascular inflammation-related diseases by mediating macrophage migration and activation. Darapladib, the most advanced Lp-PLA2 inhibitor, has been evaluated in phase III trials in atherosclerosis patients. However, the role of darapladib in inhibiting hypertensive cardiac fibrosis remains unknown. Using a murine angiotensin II (Ang II) infusion-induced hypertension model, we found that Pla2g7 (the gene of Lp-PLA2) was the only upregulated PLA2 gene detected in hypertensive cardiac tissue, and it was primarily localized in heart-infiltrating macrophages. As expected, darapladib significantly prevented Ang II-induced cardiac fibrosis, ventricular hypertrophy, and cardiac dysfunction, with potent abatement of macrophage infiltration and inflammatory response. RNA sequencing revealed that darapladib strongly downregulated the expression of genes and signaling pathways related to inflammation, extracellular matrix, and proliferation. Moreover, darapladib substantially reduced the Ang II infusion-induced expression of nucleotide-binding oligomerization domain-like receptor with pyrin domain 3 (NLRP3) and interleukin (IL)-1β and markedly attenuated caspase-1 activation in cardiac tissues. Furthermore, darapladib ameliorated Ang II-stimulated macrophage migration and IL-1β secretion in macrophages by blocking NLRP3 inflammasome activation. Darapladib also effectively blocked macrophage-mediated transformation of fibroblasts into myofibroblasts by inhibiting the activation of the NLRP3 inflammasome in macrophages. Overall, our study identifies a novel anti-inflammatory and anti-cardiac fibrosis role of darapladib in Lp-PLA2 inhibition, elucidating the protective effects of suppressing NLRP3 inflammasome activation. Lp-PLA2 inhibition by darapladib represents a novel therapeutic strategy for hypertensive cardiac damage treatment.
Collapse
Affiliation(s)
- Si-Lin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zi-Fan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Qiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wei-Qi Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tie-Gang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu-Fang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ri-Xin Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
15
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Flessa CM, Kyrou I, Nasiri-Ansari N, Kaltsas G, Papavassiliou AG, Kassi E, Randeva HS. Endoplasmic Reticulum Stress and Autophagy in the Pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Evidence and Perspectives. Curr Obes Rep 2021; 10:134-161. [PMID: 33751456 DOI: 10.1007/s13679-021-00431-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease with rising prevalence worldwide. Herein, we provide a comprehensive overview of the current knowledge supporting the role of ER stress and autophagy processes in NAFLD pathogenesis and progression. We also highlight the interrelation between these two pathways and the impact of ER stress and autophagy modulators on NAFLD treatment. RECENT FINDINGS The pathophysiological mechanisms involved in NAFLD progression are currently under investigation. The endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR) seem to contribute to its pathogenesis mainly due to high ER content in the liver which exerts significant metabolic functions and can be dysregulated. Furthermore, disruption of autophagy processes has also been identified in NAFLD. The crucial role of these two pathways in NAFLD is underlined by the fact that they have recently emerged as promising targets of therapeutic interventions. There is a greater need for finding the natural/chemical compounds and drugs which can modulate the ER stress pathway and autophagy for the treatment of NAFLD. Clarifying the inter-relation between these two pathways and their interaction with inflammatory and apoptotic mechanisms will allow the development of additional therapeutic options which can better target and reprogram the underlying pathophysiological pathways, aiming to attenuate NAFLD progression.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, B4 7ET, Birmingham, UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
17
|
Liu J, Feng Y, Li N, Shao QY, Zhang QY, Sun C, Xu PF, Jiang CM. Activation of the RAS contributes to peritoneal fibrosis via dysregulation of low-density lipoprotein receptor. Am J Physiol Renal Physiol 2021; 320:F273-F284. [PMID: 33427062 DOI: 10.1152/ajprenal.00149.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Peritoneal dialysis (PD)-related peritoneal fibrosis (PF) is characterized by progressive extracellular matrix (ECM) accumulation in peritoneal mesothelial cells (PMCs) during long-term use of high glucose (HG)-based dialysates. Activation of the renin-angiotensin system (RAS) has been shown to be associated with PF. The aim of this study was to explore the underlying mechanism of the RAS in HG-induced PF. We treated C57BL/6 mice and a human PMC line with HG to induce a PF model and to stimulate ECM accumulation, respectively. RAS activity was blocked using valsartan or angiotensin II (ANGII) type 1 receptor siRNA. The major findings were as follows. First, mice in the HG group exhibited increased collagen deposition and expression of ECM proteins, including α-smooth muscle actin (α-SMA) and collagen type I in the peritoneum. Consistent with the in vivo data, HG upregulated α-SMA expression in human peritoneal mesothelial cells (HPMCs) in a time- and dose-dependent manner. Second, HG stimulation led to RAS activation in HPMCs, and inactivation of RAS decreased the expression of ECM proteins in vivo and in vitro, even during HG stimulation. Finally, RAS-mediated ECM production was associated with lipid accumulation in HPMCs and depended on the dysregulation of the low-density lipoprotein receptor (LDLr) pathway. HG-stimulated HPMCs showed increased coexpression of LDLr and α-SMA, whereas blockade of RAS activity reversed the effect. Furthermore, inhibition of LDLr signaling decreased α-SMA and collagen type I expression in HPMCs when treated with HG and ANG II. In conclusion, increased intracellular RAS activity impaired lipid homeostasis and induced ECM accumulation in HPMCs by disrupting the LDLr pathway, which contributed to PF.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yuan Feng
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Nan Li
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qiu-Yuan Shao
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qing-Yan Zhang
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Cheng Sun
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng-Fei Xu
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chun-Ming Jiang
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
18
|
Busuioc RM, Covic A, Kanbay M, Banach M, Burlacu A, Mircescu G. Protein convertase subtilisin/kexin type 9 biology in nephrotic syndrome: implications for use as therapy. Nephrol Dial Transplant 2020; 35:1663-1674. [PMID: 31157893 DOI: 10.1093/ndt/gfz108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 01/12/2023] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) levels almost constantly increased in patients with nephrotic syndrome (NS). Protein convertase subtilisin/kexin type 9 (PCSK9) [accelerates LDL-receptor (LDL-R) degradation] is overexpressed by liver cells in NS. Their levels, correlated inversely to LDL-R expression and directly to LDL-C, seem to play a central role in hypercholesterolaemia in NS. Hypersynthesis resulting from sterol regulatory element-binding protein dysfunction, hyperactivity induced by c-inhibitor of apoptosis protein expressed in response to stimulation by tumour necrosis factor-α produced by damaged podocytes and hypo-clearance are the main possible mechanisms. Increased LDL-C may damage all kidney cell populations (podocytes, mesangial and tubular cells) in a similar manner. Intracellular cholesterol accumulation produces oxidative stress, foam cell formation and apoptosis, all favoured by local inflammation. The cumulative effect of cellular lesions is worsened proteinuria and kidney function loss. Accordingly, NS patients should be considered high risk and treated by lowering LDL-C. However, there is still not enough evidence determining whether lipid-lowering agents are helpful in managing dyslipidaemia in NS. Based on good efficacy and safety proved in the general population, therapeutic modulation of PCSK9 via antibody therapy might be a reasonable solution. This article explores the established and forthcoming evidence implicating PCSK9 in LDL-C dysregulation in NS.
Collapse
Affiliation(s)
| | - Adrian Covic
- "Gr. T. Popa," University of Medicine and Pharmacy, Iasi, Romania.,Nephrology Clinic, Dialysis and Renal Transplant Center - 'C.I. Parhon' University Hospital Iasi, Romania
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Alexandru Burlacu
- "Gr. T. Popa," University of Medicine and Pharmacy, Iasi, Romania.,Head of Department of Interventional Cardiology - Cardiovascular Diseases Institute Iasi, Romania
| | - Gabriel Mircescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
19
|
Ao N, Ma Z, Yang J, Jin S, Zhang K, Luo E, Du J. Liraglutide ameliorates lipotoxicity-induced inflammation through the mTORC1 signalling pathway. Peptides 2020; 133:170375. [PMID: 32771373 DOI: 10.1016/j.peptides.2020.170375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Lipotoxicity has been implicated in many disease processes, and prolonged exposure to high lipid levels often leads to the activation of a variety of abnormal signals, which in turn leads to the induction of inflammation. The aim of our study was to explore the correlation between mammalian target of rapamycin (mTOR) and inflammation by studying high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats and palmitate (PA)-induced inflammation (lipotoxicity) in HepG2 cells. In addition, we investigated whether the glucagon-like peptide-1 (GLP-1) analogue liraglutide can protect rats and HepG2 cells from lipotoxicity. Our results showed that an HFD and PA significantly increased inflammation by activating the mTORC1 pathway in vitro and in vivo. Treatment with rapamycin (an mTOR inhibitor) inhibited some effects of PA on inflammation. Furthermore, we observed that liraglutide inhibited PA-induced inflammation by inactivating mTORC1 signalling molecules. Overall, our findings demonstrated that mTORC1 signalling pathways were involved primarily in high lipid level-induced inflammation. Importantly, liraglutide may protect against lipotoxicity-induced inflammation by regulating mTORC1-dependent pathways.
Collapse
Affiliation(s)
- Na Ao
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuoqi Ma
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Keying Zhang
- Department of Endocrinology, the Fifth People's Hospital of Shenyang, Shenyang, China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| | - Jian Du
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
He B, Moreau R. R-α-Lipoic Acid and 4-Phenylbutyric Acid Have Distinct Hypolipidemic Mechanisms in Hepatic Cells. Biomedicines 2020; 8:biomedicines8080289. [PMID: 32824248 PMCID: PMC7460023 DOI: 10.3390/biomedicines8080289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
The constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1) leads to the overproduction of apoB-containing triacylglycerol-rich lipoproteins in HepG2 cells. R-α-lipoic acid (LA) and 4-phenylbutyric acid (PBA) have hypolipidemic function but their mechanisms of action are not well understood. Here, we reported that LA and PBA regulate hepatocellular lipid metabolism via distinct mechanisms. The use of SQ22536, an inhibitor of adenylyl cyclase, revealed cAMP’s involvement in the upregulation of CPT1A expression by LA but not by PBA. LA decreased the secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the culture media of hepatic cells and increased the abundance of LDL receptor (LDLR) in cellular extracts in part through transcriptional upregulation. Although PBA induced LDLR gene expression, it did not translate into more LDLR proteins. PBA regulated cellular lipid homeostasis through the induction of CPT1A and INSIG2 expression via an epigenetic mechanism involving the acetylation of histone H3, histone H4, and CBP-p300 at the CPT1A and INSIG2 promoters.
Collapse
|
21
|
Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Sun S, Yang J, Xie W, Peng T, Lv Y. Complicated trafficking behaviors involved in paradoxical regulation of sortilin in lipid metabolism. J Cell Physiol 2019; 235:3258-3269. [PMID: 31608989 DOI: 10.1002/jcp.29292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
This review aims to summarize and discuss the most recent advances in our understanding of the underlying mechanisms of the paradoxical effects of sortilin on lipid metabolism. The vacuolar protein sorting 10 protein (Vps10p) domain in the sortilin protein is responsible for substrate binding. Its cytoplasmic tail interacts with adaptor molecules, and modifications can determine whether sortilin trafficking occurs via the anterograde or retrograde pathway. The complicated trafficking behaviors likely contribute to the paradoxical roles of sortilin in lipid metabolism. The anterograde pathway of sortilin trafficking in hepatocytes, enterocytes, and peripheral cells likely causes an increase in plasma lipid levels, while the retrograde pathway leads to the opposite effect. Hepatocyte sortilin functions via the anterograde or retrograde pathway in a complicated and paradoxical manner to regulate apoB-containing lipoprotein metabolism. Clarifying the regulatory mechanisms underlying the trafficking behaviors of sortilin is necessary and may lead to artificial sortilin intervention as a potential therapeutic strategy for lipid disorder diseases. Conclusively, the paradoxical regulation of sortilin in lipid metabolism is likely due to its complicated trafficking behaviors.
Collapse
Affiliation(s)
- Sha Sun
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang City, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang City, China
| |
Collapse
|
23
|
Liu J, Zhu W, Jiang CM, Feng Y, Xia YY, Zhang QY, Zhang M. Activation of the mTORC1 pathway by inflammation contributes to vascular calcification in patients with end-stage renal disease. J Nephrol 2018; 32:101-110. [PMID: 29761287 DOI: 10.1007/s40620-018-0486-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic inflammation plays an important role in the progression of vascular calcification (VC). This study was designed to explore the effects and underlying mechanisms of inflammation on VC in the radial arteries of patients with end-stage renal disease (ESRD) with arteriovenostomy. METHODS Forty-eight ESRD patients were divided into control (n = 25) and inflammation groups (n = 23) according to plasma C-reactive protein (CRP) level. Surgically removed tissues from the radial arteries of patients receiving arteriovenostomy were used in this study. Alizarin Red S staining was used to examine calcium deposition. The expression of inflammation markers, bone structure-associated proteins and mammalian target of rapamycin complex1 (mTORC1) pathway-related proteins was assessed by immunohistochemical staining. RESULTS The expression of tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) was increased in the radial arteries of the inflammation group. Additionally, Alizarin Red S staining revealed a marked increase in calcium deposition in the inflammation group compared to controls. Further analysis by immunohistochemical staining demonstrated that the deposition was correlated with the increased expression of bone-associated proteins such as bone morphogenetic proteins-2 (BMP-2) and osteocalcin and collagen I, which suggested that inflammation induces osteogenic differentiation in vascular tissues and that osteogenic cells are the main cellular components involved in VC. Interestingly, there was a parallel increase in the expression of phosphorylated mTOR (p-mTOR) and pribosomal protein S6 kinase 1 (p-S6K1) in the inflammation group. Furthermore, mTORC1 pathway-related proteins were significantly associated with the enhanced expression of bone formation biomarkers. CONCLUSIONS Inflammation contributed to VC in the radial arteries of ESRD patients via the induction of osteogenic differentiation in vessel walls, which could be regulated by the activation of the mTORC1 pathway.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Zhu
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Chun Ming Jiang
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yuan Feng
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yang Yang Xia
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Yan Zhang
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Miao Zhang
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
24
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
25
|
Digenic mutations on SCAP and AGXT2 predispose to premature myocardial infarction. Oncotarget 2017; 8:100141-100149. [PMID: 29245966 PMCID: PMC5725008 DOI: 10.18632/oncotarget.22045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/18/2017] [Indexed: 01/03/2023] Open
Abstract
Genetic factors play a vital role in the pathogenesis of premature myocardial infarction (PMI). However, current studies explained only small amounts of genetic risk in MI. In this study, we started from a PMI pedigree with three MI patients occurred at the age of 43, 45 and 53 respectively. Sanger sequencing revealed 6 LDLR mutation carriers in the family, but only one was diagnosed with PMI, indicating that the LDLR mutation may not be the reason for PMI. Upon exome-sequencing and bioinformatics analysis, two variants in SCAP and AGXT2 were identified as potential causative mutation for PMI. Further observation revealed that only patients that meet the diagnosis of PMI harbored two variants meantime, while other MI patients or members with no MI carried no more than one of the variants. Screening of the two genes in an independent PMI population identified another variant on SCAP (c.1403 T>C, p.Val468Ala), which was absent in 28, 000 east-Asian population. Further, the two variants on SCAP and AGXT2 were introduced into H293T and EA. hy926 cell lines respectively utilizing CRISPR-Cas9. Functional study revealed that the SCAP mutation impaired SCAP-SREBP feedback mechanism which may lead to a “constitutive activation” effect of cholesterol synthesis related genes, while the AGXT2 mutation reduced its aminotransferase activity leading to a down-regulation of NO production by ADMA accumulation. This study indicates that SCAP and AGXT2 are potential causative genes for PMI. Digenic mutation carriers may manifest a more severe phenotype, namely premature MI.
Collapse
|
26
|
Wang X. Down-regulation of lncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway. J Cell Biochem 2017; 119:1567-1574. [PMID: 28771824 DOI: 10.1002/jcb.26317] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
Without effective medical interventions for complete reverse of NAFLD, it needs to urgently explore the underlying molecular mechanisms of non-alcoholic fatty liver disease (NAFLD) to offer a novel therapeutic strategy for people suffering from NAFLD. Sprague-Dawley (SD) rats were used to establish the NAFLD animal model. Lipofectamine 2000 was used to silence or over-express NEAT1. The expression of NEAT1 and the mRNA levels of ACC and FAS were determined by qRT-PCR. Western blot assays were performed to detect the expression of ACC and FAS at protein levels and the related protein levels of mTOR/S6K1 signaling pathway. The levels of liver triglyceride (TG), serum total cholesterol (TC), ALT, and AST were assessed by an automatic biochemistry analyzer. The levels of liver TG and serum cholesterol were obviously up-regulated in NAFLD rat model. The level of NEAT1 expression and the mRNA levels of ACC and FAS were obviously enhanced in NAFLD model both in vivo and in vitro. Knockdown of NEAT1 could also reduce the elevation of ACC and FAS induced by FFA in liver cells. Moreover, inhibition of mTOR/S6K1 pathway presented with the same effect with knockdown of NEAT1 on the expression of ACC and FAS mRNA levels. The injection of si-NEAT1 lentivirus was performed to treat NAFLD of rats and the obvious efficacy for NAFLD rats was achieved. In a word, the down-regulated level of NEAT1 could remit the non-alcoholic fatty liver disease through mTOR/S6K1 signaling pathway in rats.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Wiciński M, Żak J, Malinowski B, Popek G, Grześk G. PCSK9 signaling pathways and their potential importance in clinical practice. EPMA J 2017; 8:391-402. [PMID: 29209441 PMCID: PMC5700013 DOI: 10.1007/s13167-017-0106-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Abstract
In the following review, authors described the structure and biochemical pathways of PCSK9, its involvement in LDL metabolism, as well as significances of proprotein convertase subtilisin/kexin type 9 targeted treatment. PCSK9 is a proprotein convertase, which plays a crucial role in LDL receptor metabolism. Transcription and translation of PCSK9 is controlled by different nuclear factors, such as, SREBP and HNF1α. This review focuses on interactions between PCSK9 and LDL receptor, VLDLR, ApoER2, CD36, CD81, and others. The role of PCSK9 in the inflammatory process is presented and its influence on cytokine profile (IL-1, IL-6, IL-10, TNF) in atherosclerotic plaque. Cholesterol metabolism converges also with diabetes by mTORC1 pathways. PCSK9 can be altered by oncologic pathways with utilization of kinases, such as Akt, JNK, and JAK/STAT. Finally, the article shows that blocking PCSK9 has proapoptotic capabilities. Administration of monoclonal antibodies against PCSK9 reduced mortality rate and cardiovascular events in randomized trials. On the other hand, immunogenicity of new drugs may play a crucial role in their efficiency. Bococizumab ended its career following SPIRE-1,2 outcome. PCSK9 inhibitors have enormous potential, which had been reflected by introducing them (as a new class of drugs reducing LDL concentration cholesterol) into New Lipid Guidelines from Rome 2016. Discoveries in drugs development are focused on blocking PCSK9 on different levels. For example, silencing messenger RNA (mRNA of PCSK9) is a new alternative against hypercholesterolemia. Peptides mimicking EGF-A domain of the LDL receptor are gaining significance and hopefully they will soon join others. The significance of PCSK9 has just been uncovered and further data is still required to understand their activity.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Jarosław Żak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Gabriela Popek
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Grzegorz Grześk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
28
|
Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells. Mediators Inflamm 2017; 2017:9891673. [PMID: 28553017 PMCID: PMC5434471 DOI: 10.1155/2017/9891673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS) of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI) model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR-) mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1β, TNFα, and IL8, and anti-inflammatory cytokines such as IL10 and TGFβ of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae-induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae, which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.
Collapse
|
29
|
Scott Kiss R, Sniderman A. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. J Biomed Res 2017; 31:95-107. [PMID: 28808191 PMCID: PMC5445212 DOI: 10.7555/jbr.31.20160139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Allan Sniderman
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
30
|
Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017; 38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular quality control and energy-providing process that is under strict control by intra- and extracellular stimuli. Recently, there has been an exponential increase in autophagy research and its implications for mammalian physiology. Autophagy deregulation is now being implicated in many human diseases, and its modulation has shown promising results in several preclinical studies. However, despite the initial discovery of autophagy as a hormone-regulated process by De Duve in the early 1960s, endocrine regulation of autophagy still remains poorly understood. In this review, we provide a critical summary of our present understanding of the basic mechanism of autophagy, its regulation by endocrine hormones, and its contribution to endocrine and metabolic homeostasis under physiological and pathological settings. Understanding the cross-regulation of hormones and autophagy on endocrine cell signaling and function will provide new insight into mammalian physiology as well as promote the development of new therapeutic strategies involving modulation of autophagy in endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Brijesh K Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| |
Collapse
|
31
|
Simha V, Qin S, Shah P, Smith BH, Kremers WK, Kushwaha S, Wang L, Pereira NL. Sirolimus Therapy Is Associated with Elevation in Circulating PCSK9 Levels in Cardiac Transplant Patients. J Cardiovasc Transl Res 2016; 10:9-15. [PMID: 28028691 DOI: 10.1007/s12265-016-9719-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022]
Abstract
Sirolimus used in transplantation is often associated with hypercholesterolemia. We measured serum lipid and PCSK9 levels in 51 heart transplant recipients who had their immunosuppressive therapy switched from calcineurin inhibitors to sirolimus. The switch resulted in a 23% increase in LDL cholesterol, and 46% increase in triglycerides and PCSK9 levels increased from 316 ± 105 ng/mL to 343 ± 107 ng/mL (p = 0.04), however the change in PCSK9 levels did not correlate with an increase in lipid levels (p = 0.2). To investigate the mechanism for the variability in the change in PCSK9 levels, lymphoblastoid cell lines were incubated with both sirolimus and everolimus, resulting in a 2-3 fold increase in PCSK9 expression and protein levels in mTOR inhibitor sensitive but not in mTOR inhibitor resistant cell lines. This first in human study demonstrates that sirolimus therapy is associated with elevation in PCSK9 levels which is not associated with sirolimus-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Vinaya Simha
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Sisi Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Pankaj Shah
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Byron H Smith
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Walter K Kremers
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Sudhir Kushwaha
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Naveen L Pereira
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Huang H, Zheng F, Dong X, Wu F, Wu T, Li H. Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro. Exp Ther Med 2016; 13:254-262. [PMID: 28123498 DOI: 10.3892/etm.2016.3913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
Previous studies have suggested that tubular epithelial-mesenchymal transition (EMT) is an important event in renal tubulointerstitial fibrosis, which is a clinical characteristic of diabetic nephropathy. The present study aimed to investigate the effect of allicin, the major biological active component of garlic, on the EMT of a human renal proximal tubular epithelial cell line (HK-2) cultured under high glucose concentrations. HK-2 cells were exposed for 48 h to 5.5 or 25 mmol/l D-glucose, 25 mmol/l D-glucose plus allicin (2.5, 5, 10 or 20 µg/ml) or 25 mmol/l D-glucose plus 20 µmol/l PD98059, a selective inhibitor of the mitogen activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway. The EMT of HK-2 cells was assessed by analyzing the protein expression of E-cadherin, α-smooth muscle actin (α-SMA), vimentin and collagen I via immunocytochemistry. In addition, reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the expression levels of transforming growth factor (TGF)-β1 and phosphorylated (p)-ERK1/2. Marked morphological changes were observed in HK-2 cells cultured under high glucose conditions, and these changes were abrogated by simultaneous incubation with allicin and PD98059. The expression levels of α-SMA, vimentin and collagen I were significantly increased in HK-2 cells cultured under high glucose conditions, as compared with those cultured under normal glucose conditions (P<0.01). Conversely, the expression levels of E-cadherin were significantly decreased upon stimulation with high glucose (P<0.01). Furthermore, the expression levels of TGF-β1 and p-ERK1/2 were significantly upregulated in HK-2 cells cultured under high glucose conditions, as compared with those cultured under normal glucose conditions (P<0.05). Allicin partially reversed the high-glucose-induced increase in α-SMA, vimentin and collagen I expression (P<0.01 at 20 µg/ml), increased the expression of E-cadherin, and significantly downregulated the high glucose-induced expression of TGF-β1 and p-ERK1/2 in a dose-dependent manner (P<0.05). The results of the present study suggested that high glucose concentrations induced the EMT of HK-2 cells, and that allicin was able to inhibit the EMT, potentially via regulation of the ERK1/2-TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Hong Huang
- Department of Endocrinology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Fenping Zheng
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xuehong Dong
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Fang Wu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Tianfeng Wu
- Department of Endocrinology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
33
|
Wu Y, Ma KL, Zhang Y, Wen Y, Wang GH, Hu ZB, Liu L, Lu J, Chen PP, Ruan XZ, Liu BC. Lipid disorder and intrahepatic renin-angiotensin system activation synergistically contribute to non-alcoholic fatty liver disease. Liver Int 2016; 36:1525-34. [PMID: 27028410 DOI: 10.1111/liv.13131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/19/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND This study aimed to investigate the possible synergistic effects of lipid disorder with renin-angiotensin system (RAS) activation in non-alcoholic fatty liver disease (NAFLD). METHODS Apolipoprotein E gene-knockout mice, angiotensin II (Ang II) type 1 receptor (AT1) gene-knockout mice and human hepatoblastoma cell line (HepG2) were used for experiments. Lipid accumulation was examined by Filipin staining and intracellular cholesterol quantitative assay. The gene and protein expression of molecules involved in RAS and low-density lipoprotein receptor (LDLr) pathway was examined by real-time PCR, immunofluorescent staining and Western blot. RESULTS There was significantly increased expression of RAS components and extracellular matrix (ECM) in livers of high-fat-diet-fed apolipoprotein E gene-knockout mice compared with controls. Upregulation of RAS components was positively associated with increased plasma levels of lipid profile. The in vitro study further confirmed that cholesterol loading increased supernatant renin activity and Ang II level of HepG2 cells, accompanied by increased ECM production that was positively associated with increased expression of intracellular RAS components. Interestingly, Ang II treatment increased lipid accumulation in livers of C57BL/6 mice and HepG2 cells. Furthermore, Ang II treatment increased gene and protein expression of sterol regulatory element-binding protein (SREBP) cleavage activating protein (SCAP), SREBP-2 and LDLr, which were mediated by enhanced SCAP/SREBP-2 complex translocation from endoplasmic reticulum to Golgi. However, LDLr pathway was accordingly downregulated in livers of AT1 gene-knockout C57BL/6 mice or in HepG2 cells treated by telmisartan. CONCLUSION These findings demonstrate that lipid disorder and intrahepatic RAS activation synergistically accelerate NAFLD progression.
Collapse
Affiliation(s)
- Yu Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Kun L Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China.
| | - Yang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Gui H Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Ze B Hu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Liang Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Jian Lu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Pei P Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Xiong Z Ruan
- Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, London, UK
| | - Bi C Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| |
Collapse
|
34
|
Morgan A, Mooney K, Wilkinson S, Pickles N, Mc Auley M. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Res Rev 2016; 27:108-124. [PMID: 27045039 DOI: 10.1016/j.arr.2016.03.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.
Collapse
|
35
|
Zhang Y, Ma KL, Ruan XZ, Liu BC. Dysregulation of the Low-Density Lipoprotein Receptor Pathway Is Involved in Lipid Disorder-Mediated Organ Injury. Int J Biol Sci 2016; 12:569-79. [PMID: 27019638 PMCID: PMC4807419 DOI: 10.7150/ijbs.14027] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) pathway is a negative feedback system that plays important roles in the regulation of plasma and intracellular cholesterol homeostasis. To maintain a cholesterol homeostasis, LDLR expression is tightly regulated by sterol regulatory element-binding protein-2 (SREBP-2) and SREBP cleavage-activating protein (SCAP) in transcriptional level and by proprotein convertase subtilisin/kexin type 9 (PCSK9) in posttranscriptional level. The dysregulation of LDLR expression results in abnormal lipid accumulation in cells and tissues, such as vascular smooth muscle cells, hepatic cells, renal mesangial cells, renal tubular cells and podocytes. It has been demonstrated that inflammation, renin-angiotensin system (RAS) activation, and hyperglycemia induce the disruption of LDLR pathway, which might contribute to lipid disorder-mediated organ injury (atherosclerosis, non-alcoholic fatty liver disease, kidney fibrosis, etc). The mammalian target of rapamycin (mTOR) pathway is a critical mediator in the disruption of LDLR pathway caused by pathogenic factors. The mTOR complex1 activation upregulates LDLR expression at the transcriptional and posttranscriptional levels, consequently resulting in lipid deposition. This paper mainly reviews the mechanisms for the dysregulation of LDLR pathway and its roles in lipid disorder-mediated organ injury under various pathogenic conditions. Understanding these mechanisms leading to the abnormality of LDLR expression contributes to find potential new drug targets in lipid disorder-mediated diseases.
Collapse
|
36
|
Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov 2016; 15:249-74. [PMID: 26794269 DOI: 10.1038/nrd.2015.3] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease - the most common chronic liver disease - encompasses a histological spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Over the next decade, NASH is projected to be the most common indication for liver transplantation. The absence of an effective pharmacological therapy for NASH is a major incentive for research into novel therapeutic approaches for this condition. The current focus areas for research include the modulation of nuclear transcription factors; agents that target lipotoxicity and oxidative stress; and the modulation of cellular energy homeostasis, metabolism and the inflammatory response. Strategies to enhance resolution of inflammation and fibrosis also show promise to reverse the advanced stages of liver disease.
Collapse
Affiliation(s)
- Giovanni Musso
- Gradenigo Hospital, Corso Regina Margherita 8, 10132 Turin, Italy
| | - Maurizio Cassader
- Department of Medical Sciences, University of Turin, Corso A.M. Dogliotti 14, 10126, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Corso A.M. Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|
37
|
Wu T, Yao C, Tsang F, Huang L, Zhang W, Jiang J, Mao Y, Shao Y, Kong B, Singh P, Fu Z. Facilitated physiological adaptation to prolonged circadian disruption through dietary supplementation with essence of chicken. Chronobiol Int 2015; 32:1458-68. [DOI: 10.3109/07420528.2015.1105252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Ding LH, Liu D, Xu M, Wu M, Liu H, Tang RN, Ma KL, Chen PS, Liu BC. TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria. Int J Biochem Cell Biol 2015; 69:114-20. [PMID: 26485683 DOI: 10.1016/j.biocel.2015.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 01/04/2023]
Abstract
Proteinuria is an important risk factor for chronic kidney diseases (CKD). Several studies have suggested that proteinuria initiates tubulointerstitial inflammation, while the mechanisms have not been fully understood. In this study, we hypothesized whether the activation of the TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation induced by proteinuria. We observed expression of TLR2, MyD88, NF-κB, as well as TNF-α and IL-6 detected by immunohistostaining, Western blotting and real-time PCR in albumin-overloaded (AO) nephropathy rats. In vitro, we observed these markers in HK-2 cells stimulated by albumin. We used TLR2 siRNA or the NF-κB inhibitor BAY 11-7082 to observe the influence of TNF-α and IL-6 expression caused by albumin overload. Finally, we studied these markers in non-IgA mesangioproliferative glomerulonephritis (MsPGN) patients with different levels of proteinuria. It was demonstrated that expression of TLR2, MyD88 and NF-κB were significantly increased in AO rats and in non-IgA MsPGN patients with high levels of proteinuria, and TNF-α and IL-6 expressions were increased after NF-κB activation. Furthermore, TNF-α and IL-6 expression was positively correlated with the level of proteinuria. Albumin-overload induced TNF-α and IL-6 secretions by the TLR2-MyD88-NF-κB pathway activation, which could be attenuated by the TLR2 siRNA or BAY 11-7082 in HK-2 cells. In summary, we demonstrated that proteinuria may exhibit an endogenous danger-associated molecular pattern (DAMP) that induces tubulointerstitial inflammation via the TLR2-MyD88-NF-κB pathway activation.
Collapse
Affiliation(s)
- Li-Hong Ding
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Xu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ping-Sheng Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|