1
|
D'Artista L, Seehawer M. Cell Death and Survival Mechanisms in Cholangiocarcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00278-5. [PMID: 39103094 DOI: 10.1016/j.ajpath.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024]
Abstract
Cholangiocarcinoma (CCA) and other liver cancer subtypes often develop in damaged organs. Physiological agents or extrinsic factors, like toxins, can induce cell death in such tissues, triggering compensatory proliferation and inflammation. Depending on extracellular and intracellular factors, different mechanisms, like apoptosis, necroptosis, ferroptosis, or autophagy, can be triggered. Each of them can lead to protumorigenic or anti-tumorigenic events within a cell or through regulation of the microenvironment. However, the exact role of each cell death mechanism in CCA onset, progression, and treatment is not well known. Here, we summarize current knowledge of different cell death mechanisms in patients with CCA and preclinical CCA research. We discuss cell death-related drugs with relevance to CCA treatment and how they could be used in the future to improve targeted CCA therapy.
Collapse
Affiliation(s)
- Luana D'Artista
- Center of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
4
|
Caligiuri A, Becatti M, Porro N, Borghi S, Marra F, Pastore M, Taddei N, Fiorillo C, Gentilini A. Oxidative Stress and Redox-Dependent Pathways in Cholangiocarcinoma. Antioxidants (Basel) 2023; 13:28. [PMID: 38247453 PMCID: PMC10812651 DOI: 10.3390/antiox13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Nunzia Porro
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| |
Collapse
|
5
|
Jain S, Rana M. From the discovery of helminths to the discovery of their carcinogenic potential. Parasitol Res 2023; 123:47. [PMID: 38095695 DOI: 10.1007/s00436-023-08022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Cancer involves a major aberration in the normal behaviour of cells, making them divide continuously, which interferes with the normal physiology of the body. The link between helminths and their cancer-inducing potential has been proposed in the last century. The exact pathway is still not clear but chronic inflammation in response to the deposited eggs, immune response against soluble egg antigens, and co-infection with a third party (a bacteria, a virus, or infection leading to a change in microbiome) seems to be the reasons for cancer induction. This review looks into the historical outlook on helminths along with their epidemiology, morphology, and life cycle. It then focuses on providing correlations between helminth infection and molecular mechanism of carcinogenesis by elaborating upon epidemiological, clinical, and surgical studies. While the cancer-inducing potential has been convincingly established only for a few helminths and studies point out towards possible cancer-inducing ability of the rest of the helminths elucidated in this work, however, more insights into the immunobiology of helminths as well as infected patients are required to conclusively comment upon this ability of the latter.
Collapse
Affiliation(s)
- Sidhant Jain
- Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, Haryana, India.
| | - Meenakshi Rana
- Dyal Singh College, University of Delhi, Lodhi Road, Pragati Vihaar, New Delhi, India
| |
Collapse
|
6
|
Platinum nanoparticles Protect Against Lipopolysaccharide-Induced Inflammation in Microglial BV-2 Cells via Decreased Oxidative Damage and Increased Phagocytosis. Neurochem Res 2021; 46:3325-3341. [PMID: 34432181 DOI: 10.1007/s11064-021-03434-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Neuroinflammation and oxidative stress cooperate to compromise the function of the central nervous system (CNS). Colloidal platinum nanoparticles (Pt NPs) are ideal candidates for reducing the deleterious effects of neuroinflammation since they act as free radical scavengers. Here we evaluated the effects of Pt NPs on several markers of lipopolysaccharide (LPS)-induced inflammation in cultured BV-2 microglial cells. BV-2 cells were treated with increased dilutions (1-100 ppm) of Colloidal Pt and/or LPS (1-10 µg/mL) at different exposure times. Three different protocols of exposure were used combining Pt NPs and LPS: (a) conditioning-protective effect (pre-post-treat), (b) therapeutic effect (co-treat) and (c) conditioning-therapeutic effect (pre-co-treat). After exposure to LPS for 24 h, cells were used for assessment of cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) activity, apoptosis and caspase-3 levels, cell proliferation, mitochondrial membrane potential, inducible nitric oxide (iNOS) activity, pro-inflammatory cytokine (IL-1β, TNF-α and IL-6) levels, and phagocytic activity. Low concentrations (below or equal to 10 ppm) of Colloidal Pt prevented or ameliorated the LPS-induced increase in ROS formation, loss of mitochondrial membrane potential, induction of apoptosis, increase in LDH release, increase in pro-inflammatory cytokines and iNOS, inhibition of phagocytosis linked to microglial persistence in the M1 phase phenotype, loss of cell adhesion, differentiation and/or proliferation, as well as loss of cell viability. These protective effects were evident when cells were preconditioned with Pt NPs prior to LPS treatment. Collectively, the findings demonstrate that at low concentrations, Pt NPs can regulate the function and phenotype of BV-2 cells, activating protective mechanisms to maintain the microglial homeostasis and reduce inflammatory events triggered by the inflammatory insults induced by LPS. These preventive/protective effects on the LPS pro-inflammatory model are linked to the antioxidant properties and phagocytic activity of these NPs.
Collapse
|
7
|
Ahn CS, Kim JG, Kang I, Kong Y. Omega-Class Glutathione Transferases of Carcinogenic Liver Fluke, Clonorchis sinensis, Modulate Apoptosis and Differentiation of Host Cholangiocytes. Antioxidants (Basel) 2021; 10:antiox10071017. [PMID: 34202740 PMCID: PMC8300630 DOI: 10.3390/antiox10071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
The small liver fluke Clonorchis sinensis causes hepatobiliary ductal infections in humans. Clonorchiasis is characterized histopathologically by ductal dysplasia, hyperplasia and metaplasia, which closely resembles cholangiocarcinoma (CCA). The disruption of programmed cell death is critical for malignant transformation, while molecular events underlying these phenomena have poorly been understood in clonorchiasis-related CCA tumorigenesis. We incorporated recombinant C. sinensis omega-class glutathione transferase (rCsGSTo) 1 or 2 into human intrahepatic biliary epithelial cells (HIBECs) and analyzed pathophysiological alterations of HIBECs upon the application of oxidative stress. rCsGSTos partially but significantly rescued HIBECs from cell death by inhibiting oxidative stress-induced apoptosis (p < 0.01). rCsGSTos modulated transcriptional levels of numerous genes. We analyzed 13 genes involved in programmed cell death (the upregulation of five antiapoptotic and two apoptotic genes, and the downregulation of one antiapoptotic and five apoptotic genes) and 11 genes associated with cell differentiation (the increase in seven and decrease in four genes) that showed significant modifications (p < 0.05). The induction profiles of the mRNA and proteins of these differentially regulated genes correlated well with each other, and mostly favored apoptotic suppression and/or cell differentiation. We detected increased active, phosphorylated forms of Src, PI3K/Akt, NF-κB p65, MKK3/6 and p38 MAPK, but not JNK and ERK1/2. CsGSTos were localized in the C. sinensis-infected rat cholangiocytes, where cytokeratin 19 was distributed. Our results demonstrated that CsGSTos excreted to the biliary lumen are internalized and accumulated in the host cholangiocytes. When cholangiocytes underwent oxidative stressful condition, CsGSTos appeared to be critically involved in both antiapoptotic process and the differentiation of host cholangiocytes through the regulation of target genes following the activation of responsible signal molecules.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
- Correspondence: ; Tel.: +82-31-290-6251; Fax: +82-290-6269
| |
Collapse
|
8
|
Porras-Silesky C, Mejías-Alpízar MJ, Mora J, Baneth G, Rojas A. Spirocerca lupi Proteomics and Its Role in Cancer Development: An Overview of Spirocercosis-Induced Sarcomas and Revision of Helminth-Induced Carcinomas. Pathogens 2021; 10:pathogens10020124. [PMID: 33530324 PMCID: PMC7911836 DOI: 10.3390/pathogens10020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Spirocerca lupi is a parasitic nematode of canids that induces a myriad of clinical manifestations in its host and, in 25% of infections, leads to the formation of sarcomas. The description of the protein composition of the excretory and secretory products (Sl-ESP) of S. lupi has shed light on its possible interactions with the host environment, including migration within the host and mechanisms of immunomodulation. Despite this, the process by which S. lupi induces cancer in the dog remains poorly understood, and some hypotheses have arisen regarding these possible mechanisms. In this review, we discuss the role of specific ESP from the carcinogenic helminths Clonorchis sinensis, Opisthorchis viverrini and Schistosoma haematobium in inducing chronic inflammation and cancer in their host’s tissues. The parasitic worms Taenia solium, Echinococcus granulosus, Heterakis gallinarum, Trichuris muris and Strongyloides stercoralis, which have less-characterized mechanisms of cancer induction, are also analyzed. Based on the pathological findings in spirocercosis and the mechanisms by which other parasitic helminths induce cancer, we propose that the sustained inflammatory response in the dog´s tissues produced in response to the release of Sl-ESP homologous to those of other carcinogenic worms may lead to the malignant process in infected dogs.
Collapse
Affiliation(s)
- Catalina Porras-Silesky
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - María José Mejías-Alpízar
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - Gad Baneth
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
- Correspondence: ; Tel.: +506-2511-8644
| |
Collapse
|
9
|
Thanaphongdecha P, Karinshak SE, Ittiprasert W, Mann VH, Chamgramol Y, Pairojkul C, Fox JG, Suttiprapa S, Sripa B, Brindley PJ. Infection with Helicobacter pylori Induces Epithelial to Mesenchymal Transition in Human Cholangiocytes. Pathogens 2020; 9:E971. [PMID: 33233485 PMCID: PMC7700263 DOI: 10.3390/pathogens9110971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023] Open
Abstract
Recent reports suggest that the East Asian liver fluke infection, caused by Opisthorchis viverrini, which is implicated in opisthorchiasis-associated cholangiocarcinoma, serves as a reservoir of Helicobacter pylori. The opisthorchiasis-affected cholangiocytes that line the intrahepatic biliary tract are considered to be the cell of origin of this malignancy. Here, we investigated interactions in vitro among human cholangiocytes, Helicobacter pylori strain NCTC 11637, and the congeneric bacillus, Helicobacter bilis. Exposure to increasing numbers of H. pylori at 0, 1, 10, 100 bacilli per cholangiocyte of the H69 cell line induced phenotypic changes including the profusion of thread-like filopodia and a loss of cell-cell contact, in a dose-dependent fashion. In parallel, following exposure to H. pylori, changes were evident in levels of mRNA expression of epithelial to mesenchymal transition (EMT)-encoding factors including snail, slug, vimentin, matrix metalloprotease, zinc finger E-box-binding homeobox, and the cancer stem cell marker CD44. Analysis to quantify cellular proliferation, migration, and invasion in real-time by both H69 cholangiocytes and CC-LP-1 line of cholangiocarcinoma cells using the xCELLigence approach and Matrigel matrix revealed that exposure to 10 H. pylori bacilli per cell stimulated migration and invasion by the cholangiocytes. In addition, 10 bacilli of H. pylori stimulated contact-independent colony establishment in soft agar. These findings support the hypothesis that infection by H. pylori contributes to the malignant transformation of the biliary epithelium.
Collapse
Affiliation(s)
- Prissadee Thanaphongdecha
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shannon E. Karinshak
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Wannaporn Ittiprasert
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Victoria H. Mann
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Yaovalux Chamgramol
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Sutas Suttiprapa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Paul J. Brindley
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| |
Collapse
|
10
|
Shi Y, Yu K, Liang A, Huang Y, Ou F, Wei H, Wan X, Yang Y, Zhang W, Jiang Z. Identification and Analysis of the Tegument Protein and Excretory-Secretory Products of the Carcinogenic Liver Fluke Clonorchis sinensis. Front Microbiol 2020; 11:555730. [PMID: 33072014 PMCID: PMC7538622 DOI: 10.3389/fmicb.2020.555730] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Liver fluke proteins, including excretory-secretory products (ESPs) and tegument proteins, are critical for the pathogenesis, nutrient metabolism, etiology and immune response of liver cancer. To understand the functions of various proteins in Clonorchis sinensis physiology and human clonorchiasis, the ESPs and tegument proteins of C. sinensis were identified. Supernatants containing ESPs from adult C. sinensis after culture for 6 h were harvested and concentrated. The tegument was detached using a freeze/thaw method and successively extracted using various extraction buffers. The outer surface proteins of C. sinensis were labeled with biotin, and the biotinylated proteins were purified. The ESP, tegument and labeled outer surface proteins were identified and analyzed by high-resolution LC-MS/MS. The identified proteins were compared with those of other flukes, and the protein functions associated with pathogenesis, carcinogenesis and potential vaccine antigens and drug targets were predicted and analyzed. A total of 175 proteins were identified after the 6-h culture of C. sinensis ESPs. A total of 352 tegument proteins were identified through sequential solubilization of the isolated teguments, and a subset of these proteins were localized to the surface membrane of the tegument by labeling with biotin. Thirty identified proteins, including annexins, actin and tetraspanins, were identified as potential immunomodulators and promising vaccine antigens. Interestingly, among the 352 tegument proteins, as many as 155 were enzymes, and most were oxidoreductases, hydrolases or transferases. A comparison of the outer surface proteins of C. sinensis with those of other flukes indicated that flukes have some common outer surface proteins, such as actin, tetraspanin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and annexin. Granulin, thioredoxin peroxiredoxin, carbonyl reductase 1 and cystatin were identified in the C. sinensis proteome and predicted to be related to liver disease and cancer. The analysis of the C. sinensis proteome could contribute to a more in-depth understanding of complex parasite-host relationships, improve the diagnosis of clonorchiasis and benefit research on the pathogenesis and development of novel interventions, drugs and vaccines to control C. sinensis infection.
Collapse
Affiliation(s)
- Yunliang Shi
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China.,Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Anli Liang
- Xiangsihu College of Guangxi University for Nationalities, Nanning, China
| | - Yan Huang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Fangqi Ou
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Haiyan Wei
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Xiaoling Wan
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Yichao Yang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhihua Jiang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| |
Collapse
|
11
|
Salao K, Spofford EM, Price C, Mairiang E, Suttiprapa S, Wright HL, Sripa B, Edwards SW. Enhanced neutrophil functions during Opisthorchis viverrini infections and correlation with advanced periductal fibrosis. Int J Parasitol 2020; 50:145-152. [PMID: 32006550 DOI: 10.1016/j.ijpara.2019.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022]
Abstract
Millions of people are infected with the liver fluke, Opisthorchis viverrini (OV), but only ~25% of those infected develop liver disease and even fewer develop cholangiocarcinoma. The reasons for these differential outcomes following infection are unknown but it has been proposed that differential immune responses to the parasite may play a role. We therefore measured granulocyte (neutrophil) function in OV-infected individuals, with and without advanced periductal fibrosis, to determine if these cells have a "pro-inflammatory" phenotype that may contribute to liver disease post-infection. A case-controlled study (n = 54 in each cohort) from endemic OV-infected areas of northeastern Thailand measured neutrophil functions in whole blood from non-infected (healthy controls) and OV-infected individuals with and without APF. We measured reactive oxygen species production, phagocytosis, receptor expression and apoptosis. Secreted products from OV cultures (obtained after in vitro culture of parasites) stimulated reactive oxygen species production in non-infected healthy controls, but levels were two-fold greater after OV infection (P < 0.0001); neutrophil reactive oxygen species production in individuals with APF was double that observed in those without APF (P < 0.0001). OV-infected neutrophils had elevated CD11b expression and greater phagocytic capacity, which was even three-fold higher in those with advanced periductal fibrosis (P < 0.0001). This "activated" phenotype of circulating neutrophils was further confirmed by the observation that isolated neutrophils had delayed apoptosis ex vivo. We believe this is the first study to show that circulating blood neutrophil function is enhanced following OV infection and is more activated in those with advanced periductal fibrosis. We propose that this activated phenotype could contribute to the pathology of liver disease. These data support the hypothesis of an activated innate inflammatory phenotype following OV infection and provide the first evidence for involvement of neutrophils in disease pathology.
Collapse
Affiliation(s)
- Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Edward M Spofford
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Charlotte Price
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Eimorn Mairiang
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Helen L Wright
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 7ZB, UK
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Steven W Edwards
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
12
|
Ta BTT, Nguyen DL, Jala I, Dontumprai R, Plumworasawat S, Aighewi O, Ong E, Shawley A, Potriquet J, Saichua P, van Diepen A, Sripa B, Hokke CH, Suttiprapa S. Identification, recombinant protein production, and functional analysis of a M60-like metallopeptidase, secreted by the liver fluke Opisthorchis viverrini. Parasitol Int 2019; 75:102050. [PMID: 31901435 DOI: 10.1016/j.parint.2019.102050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
The carcinogenic liver fluke Opisthorchis viverrini (O. viverrini) is endemic in Thailand and neighboring countries including Laos PDR, Vietnam and Cambodia. Infections with O. viverrini lead to hepatobiliary abnormalities including bile duct cancer-cholangiocarcinoma (CCA). Despite decades of extensive studies, the underlying mechanisms of how this parasite survives in the bile duct and causes disease are still unclear. Therefore, this study aims to identify and characterize the most abundant protein secreted by the parasite. Proteomics and bioinformatics analysis revealed that the most abundant secretory protein is a metallopeptidase, named Ov-M60-like-1. This protein contains an N-terminal carbohydrate-binding domain and a C-terminal M60-like domain with a zinc metallopeptidase HEXXH motif. Further analysis by mass spectrometry revealed that Ov-M60-like-1 is N-glycosylated. Recombinant Ov-M60-like-1 (rOv-M60-like-1) expressed in Escherichia coli (E. coli) was able to digest bovine submaxillary mucin (BSM). The mucinase activity was inhibited by the ion chelating agent EDTA, confirming its metallopeptidase identity. The enzyme was active at temperatures ranging 25-37 °C in a broad pH range (pH 2-10). The identification of Ov-M60-like-1 mucinase as the major secretory protein of O. viverrini worms warrants further research into the role of this glycoprotein in the pathology induced by this carcinogenic worm.
Collapse
Affiliation(s)
- Binh T T Ta
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Isabelle Jala
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rieofarng Dontumprai
- Department of Microbiology, Faculty of Science, Mahidol University - RAMA VI, Bangkok 10400, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Omorose Aighewi
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Emily Ong
- Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Audrey Shawley
- Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA
| | - Jeremy Potriquet
- Australian Institute of Tropical Health & Medicine, James Cook University, Douglas, QLD 4814, Australia
| | - Prasert Saichua
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
13
|
Pak JH, Lee JY, Jeon BY, Dai F, Yoo WG, Hong SJ. Cytokine Production in Cholangiocarcinoma Cells in Response to Clonorchis sinensis Excretory-Secretory Products and Their Putative Protein Components. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:379-387. [PMID: 31533404 PMCID: PMC6753296 DOI: 10.3347/kjp.2019.57.4.379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 01/23/2023]
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke that promotes hepatic inflammatory environments via direct contact or through their excretory-secretory products (ESPs), subsequently leading to cholangitis, periductal fibrosis, liver cirrhosis, and even cholangiocarcinoma (CCA). This study was conducted to examine the host inflammatory responses to C. sinensis ESPs and their putative protein components selected from C. sinensis expressed sequenced tag (EST) pool databases, including TGF-β receptor interacting protein 1(CsTRIP1), legumain (CsLeg), and growth factor binding protein 2 (CsGrb2). Treatment of CCA cells (HuCCT1) with the ESPs or bacterial recombinant C. sinensis proteins differentially promoted the secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) as well as anti-inflammatory cytokines (IL-10, TGF-β1, and TGF-β2) in a time-dependent manner. In particular, recombinant C. sinensis protein treatment resulted in increase (at maximum) of ~7-fold in TGF-β1, ~30-fold in TGF-β2, and ~3-fold in TNF-α compared with the increase produced by ESPs, indicating that CsTrip1, CsLeg, and CsGrb2 function as strong inducers for secretion of these cytokines in host cells. These results suggest that C. sinensis ESPs contribute to the immunopathological response in host cells, leading to clonorchiasis-associated hepatobiliary abnormalities of greater severity.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| | - Bo Young Jeon
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea.,Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P.R. China
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| |
Collapse
|
14
|
Differential responses of epithelial cells from urinary and biliary tract to eggs of Schistosoma haematobium and S. mansoni. Sci Rep 2019; 9:10731. [PMID: 31341177 PMCID: PMC6656753 DOI: 10.1038/s41598-019-46917-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Chronic urogenital schistosomiasis can lead to squamous cell carcinoma of the bladder. The International Agency for Research on Cancer classifies the infection with S. haematobium as a group 1 carcinogen, a definitive cause of cancer. By contrast, hepatointestinal schistosomiasis due to the chronic infection with S. mansoni or S. japonicum associated with liver periportal fibrosis, does not apparently lead to malignancy. The effects of culturing human epithelial cells, HCV29, established from normal urothelium, and H69, established from cholangiocytes, in the presence of S. haematobium or S. mansoni eggs were investigated. Cell growth of cells co-cultured with schistosome eggs was monitored in real time, and gene expression analysis of oncogenesis, epithelial to mesenchymal transition and apoptosis pathways was undertaken. Schistosome eggs promoted proliferation of the urothelial cells but inhibited growth of cholangiocytes. In addition, the tumor suppressor P53 pathway was significantly downregulated when exposed to schistosome eggs, and downregulation of estrogen receptor was predicted in urothelial cells exposed only to S. haematobium eggs. Overall, cell proliferative responses were influenced by both the tissue origin of the epithelial cells and the schistosome species.
Collapse
|
15
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
16
|
Prueksapanich P, Piyachaturawat P, Aumpansub P, Ridtitid W, Chaiteerakij R, Rerknimitr R. Liver Fluke-Associated Biliary Tract Cancer. Gut Liver 2018; 12:236-245. [PMID: 28783896 PMCID: PMC5945254 DOI: 10.5009/gnl17102] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/29/2017] [Accepted: 05/06/2017] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive cancer arising from epithelial cells of the bile duct. Most patients with CCA have an unresectable tumor at the time of diagnosis. In Western countries, the risk of CCA increases in patients with primary sclerosing cholangitis, whereas liver fluke infection appears to be the major risk factor for CCA in Asian countries. A diagnosis of liver fluke infection often relies on stool samples, including microscopic examination, polymerase chain reaction-based assays, and fluke antigen detection. Tests of serum, saliva and urine samples are also potentially diagnostic. The presence of liver fluke along with exogenous carcinogens magnifies the risk of CCA in people living in endemic areas. The “liver fluke-cholangiocarcinoma” carcinogenesis pathways consist of mechanical damage to the bile duct epithelium, immunopathologic and cellular reactions to the liver fluke’s antigens and excretory/secretory products, liver fluke-induced changes in the biliary tract microbiome and the effects of repeated treatment for liver fluke. A vaccine and novel biomarkers are needed for the primary and secondary prevention of CCA in endemic areas. Importantly, climate change exerts an effect on vector-borne parasitic diseases, and awareness of liver fluke should be enhanced in potentially migrated habitat areas.
Collapse
Affiliation(s)
- Piyapan Prueksapanich
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Panida Piyachaturawat
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Prapimphan Aumpansub
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Wiriyaporn Ridtitid
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
17
|
Kitdumrongthum S, Metheetrairut C, Charoensawan V, Ounjai P, Janpipatkul K, Panvongsa W, Weerachayaphorn J, Piyachaturawat P, Chairoungdua A. Dysregulated microRNA expression profiles in cholangiocarcinoma cell-derived exosomes. Life Sci 2018; 210:65-75. [PMID: 30165035 DOI: 10.1016/j.lfs.2018.08.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
AIM Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelial cells. The prognosis of CCA is poor due to lack of effective therapeutic targets and detection at an advanced stage. Exosomes are secreted nano-sized vesicles and contribute to the malignancy of several cancers via transferring their miRNAs between cells. Thus, exosomal miRNAs may serve as new therapeutic targets and potential biomarkers for CCA. MAIN METHODS Exosomes were isolated from three different CCA cell lines and normal human cholangiocyte cells, followed by miRNA profiling analysis. Potential role of dysregulated miRNA was investigated by knockdown experiment. KEY FINDINGS We found that 38 and 460 miRNAs in CCA exosomes were significantly up- and down-regulated, respectively. Of these differentially expressed miRNAs, the hsa-miR-205-5p and miR-200 family members were markedly up-regulated for 600-1500 folds, whereas the miR-199 family members and their clustered miRNA, hsa-miR-214-3p, were down-regulated for 1000-2000 folds. The expression patterns of these representative exosomal miRNAs were similar to those observed in all types of CCA cells. The target genes of the top ten most up- and down-regulated miRNAs are significantly associated with well-characterized cancer-related pathways. Consistently, knockdown of the most up-regulated miRNA, miR-205-5p, reduced KKU-M213 cell invasion and migration. SIGNIFICANCE We have demonstrated the distinct miRNA signatures in exosomes released from CCA cells, compared to normal human cholangiocyte cells. These exosomal miRNAs may have the potential to be novel therapeutic targets and biomarkers for CCA.
Collapse
Affiliation(s)
- Sarunya Kitdumrongthum
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Chanatip Metheetrairut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Keatdamrong Janpipatkul
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Jittima Weerachayaphorn
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pawinee Piyachaturawat
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
18
|
Chaidee A, Onsurathum S, Intuyod K, Pannangpetch P, Pongchaiyakul C, Pinlaor P, Pairojkul C, Ittiprasert W, Cochran CJ, Mann VH, Brindley PJ, Pinlaor S. Co-occurrence of opisthorchiasis and diabetes exacerbates morbidity of the hepatobiliary tract disease. PLoS Negl Trop Dis 2018; 12:e0006611. [PMID: 29953446 PMCID: PMC6040770 DOI: 10.1371/journal.pntd.0006611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/11/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Complications arising from infection with the carcinogenic liver fluke Opisthorchis viverrini cause substantial morbidity and mortality in Thailand and adjacent lower Mekong countries. In parallel, the incidence rate of diabetes mellitus (DM) is increasing in this same region, and indeed worldwide. Many residents in opisthorchiasis-endemic regions also exhibit DM, but the hepatobiliary disease arising during the co-occurrence of these two conditions remains to be characterized. Here, the histopathological profile during co-occurrence of opisthorchiasis and DM was investigated in a rodent model of human opisthorchiasis in which diabetes was induced with streptozotocin. The effects of excretory/secretory products from the liver fluke, O. viverrini (OVES) on hepatocyte and cholangiocyte responses during hyperglycemic conditions also were monitored. Both the liver fluke-infected hamsters (OV group) and hamsters with DM lost weight compared to control hamsters. Weight loss was even more marked in the hamsters with both opisthorchiasis and DM (OD group). Hypertrophy of hepatocytes, altered biliary canaliculi, and biliary hyperplasia were more prominent in the OD group, compared with OV and DM groups. Profound oxidative DNA damage, evidenced by 8-oxo-2'-deoxyguanosine, proliferating cell nuclear antigen, and periductal fibrosis characterized the OD compared to OV and DM hamsters. Upregulation of expression of cytokines in response to infection and impairment of the pathway for insulin receptor substrate (IRS)/phosphatidylinositol-3-kinases (PI3K)/protein kinase B (AKT) signaling attended these changes. In vitro, OVES and glucose provoked time- and dose-dependent effects on the proliferation of both hepatocytes and cholangiocytes. In overview, the co-occurrence of opisthorchiasis and diabetes exacerbated pathophysiological damage to the hepatobiliary tract. We speculate that opisthorchiasis and diabetes together aggravate hepatobiliary pathogenesis through an IRS/PI3K/AKT-independent pathway.
Collapse
Affiliation(s)
- Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sudarat Onsurathum
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Kitti Intuyod
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Porntip Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, D.C., United States of America
| | - Christina J. Cochran
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, D.C., United States of America
| | - Victoria H. Mann
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, D.C., United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, D.C., United States of America
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
19
|
Edwards SW, Spofford EM, Price C, Wright HL, Salao K, Suttiprapa S, Sripa B. Opisthorchiasis-Induced Cholangiocarcinoma: How Innate Immunity May Cause Cancer. ADVANCES IN PARASITOLOGY 2018; 101:149-176. [PMID: 29907253 DOI: 10.1016/bs.apar.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Innate, inflammatory responses towards persistent Opisthorchis viverrini (OV) infection are likely to contribute to the development of cholangiocarcinoma (CCA), a liver cancer that is rare in the West but prevalent in Greater Mekong Subregion countries in Southeast Asia. Infection results in the infiltration of innate immune cells into the bile ducts and subsequent activation of inflammatory immune responses that fail to clear OV but instead may damage local tissues within the bile ducts. Not all patients infected with OV develop CCA, and so tumourigenesis may be dependent on multiple factors including the magnitude of the inflammatory response that is activated in infected individuals. The purpose of this review is to summarize how innate immune responses may promote tumourigenesis following OV infection and if such responses can be used to predict CCA onset in OV-infected individuals. It also hypothesizes on the role that Helicobacterspp., which are associated with liver fluke infections, may play in activation of the innate the immune system to promote tissue damage and persistent inflammation leading to CCA.
Collapse
Affiliation(s)
- Steven W Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Edward M Spofford
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Helen L Wright
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
20
|
Suttiprapa S, Sotillo J, Smout M, Suyapoh W, Chaiyadet S, Tripathi T, Laha T, Loukas A. Opisthorchis viverrini Proteome and Host-Parasite Interactions. ADVANCES IN PARASITOLOGY 2018; 102:45-72. [PMID: 30442310 DOI: 10.1016/bs.apar.2018.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The omics technologies have improved our understanding of the molecular events that underpin host-parasite interactions and the pathogenesis of parasitic diseases. In the last decade, proteomics and genomics in particular have been used to characterize the surface and secreted products of the carcinogenic liver fluke Opisthorchis viverrini and revealed important roles for proteins at the host-parasite interface to ensure that the flukes can migrate, feed and reproduce in a hostile environment. This review summarizes the advances made in this area, primarily focusing on discoveries enabled by the publication of the fluke secreted proteomes over the last decade. Protein families that will be covered include proteases, antioxidants, oncogenic proteins and the secretion of exosome-like extracellular vesicles. Roles of these proteins in host-parasite interactions and pathogenesis of fluke-induced hepatobiliary diseases, including cholangiocarcinogenesis, are discussed. Future directions for the application of this knowledge to control infection and disease will also be discussed.
Collapse
|
21
|
Sripa B, Tangkawattana S, Brindley PJ. Update on Pathogenesis of Opisthorchiasis and Cholangiocarcinoma. ADVANCES IN PARASITOLOGY 2018; 102:97-113. [PMID: 30442312 DOI: 10.1016/bs.apar.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infection with the food-borne liver fluke Opisthorchis viverrini causes cholangiocarcinoma (CCA). Whereas the cause of CCA in the West remains obscure, the principal risk factor in Thailand is opisthorchiasis. Here, we review recent findings on the pathogenesis of opisthorchiasis and CCA focusing on helminth molecules/toxic metabolites, host-parasite interaction, endocytosis, immunopathology/inflammatory responses, free radical production, molecular genetic alterations, and multifactorial including coinfections driving to CCA development.
Collapse
|
22
|
Tripathi T, Suttiprapa S, Sripa B. Unusual thiol-based redox metabolism of parasitic flukes. Parasitol Int 2017; 66:390-395. [DOI: 10.1016/j.parint.2016.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
|
23
|
Maksimova GA, Pakharukova MY, Kashina EV, Zhukova NA, Kovner AV, Lvova MN, Katokhin AV, Tolstikova TG, Sripa B, Mordvinov VA. Effect of Opisthorchis felineus infection and dimethylnitrosamine administration on the induction of cholangiocarcinoma in Syrian hamsters. Parasitol Int 2017; 66:458-463. [PMID: 26453019 PMCID: PMC4956575 DOI: 10.1016/j.parint.2015.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
The food-borne liver trematode Opisthorchis felineus is an emerging source of biliary tract diseases on the territory of the former Soviet Union and Eastern Europe. This parasite along with trematodes Opisthorchis viverrini and Clonorchis sinensis belong to the triad of epidemiologically important liver flukes of the Opisthorchiidae family. It is known that O. viverrini and C. sinensis are the main risk factors of cholangiocarcinoma (CCA) in the endemic regions. The carcinogenic potential of O. felineus has not been well researched because of the absence of systematic pathomorphological, clinical, and epidemiological studies on O. felineus opisthorchiasis. In the present study, we show the results of detailed histopathological analysis and comprehensive evaluation of inflammation, bile duct dysplasia, periductal fibrosis, bile duct hyperplasia, bile duct proliferation, egg granuloma, cysts, cholangiofibrosis, and CCA from 10 to 30 weeks following infection of Syrian hamsters with O. felineus accompanied by oral administration of dimethylnitrosamine (DMN). The results revealed that O. felineus contributes to bile duct cancer development in the hamster model. During the combined action of O. felineus and DMN, morphological features of the liver underwent dramatic changes at the cellular and organ levels. Already in the early stages of the experiment, we observed extensive periductal fibrosis, active inflammation, proliferation of the bile duct, bile duct dysplasia and egg granulomas. Later, against the background of all these changes, cholangiofibrosis and CCA were found. Our work is the first step in the study of carcinogenic potential of O. felineus . Obtained data indicate the risk of CCA of patients having chronic O. felineus opisthorchiasis, and underscore the need for the development of programs for control of this helminthiasis.
Collapse
Affiliation(s)
- Galina A Maksimova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Maria Y Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia.
| | - Elena V Kashina
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Natalya A Zhukova
- Laboratory of Physiologically Active Substances, Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Anna V Kovner
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Maria N Lvova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Alexey V Katokhin
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Tatyana G Tolstikova
- Laboratory of Physiologically Active Substances, Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Department of Pathology, and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Viatcheslav A Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev ave., 630090 Novosibirsk, Russia; Laboratory of Pharmacokinetic and Drugs Metabolism, Institute of Molecular Biology and Biophysics Siberian Branch of the Russian Academy of Medical Sciences, Tymakov str., 630055 Novosibirsk, Russia
| |
Collapse
|
24
|
Affiliation(s)
- Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington DC, United States of America
- Research Center for Neglected Tropical Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington DC, United States of America
- * E-mail: (PJB); (AL)
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, Queensland, Australia
- * E-mail: (PJB); (AL)
| |
Collapse
|
25
|
Shukla R, Shukla H, Kalita P, Sonkar A, Pandey T, Singh DB, Kumar A, Tripathi T. Identification of potential inhibitors of Fasciola gigantica thioredoxin1: computational screening, molecular dynamics simulation, and binding free energy studies. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1344141] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amit Sonkar
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Tripti Pandey
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
26
|
Wang C, Lei H, Tian Y, Shang M, Wu Y, Li Y, Zhao L, Shi M, Tang X, Chen T, Lv Z, Huang Y, Tang X, Yu X, Li X. Clonorchis sinensis granulin: identification, immunolocalization, and function in promoting the metastasis of cholangiocarcinoma and hepatocellular carcinoma. Parasit Vectors 2017; 10:262. [PMID: 28545547 PMCID: PMC5445496 DOI: 10.1186/s13071-017-2179-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Background Long-term infections by Clonorchis sinensis are associated with cholangitis, cholecystitis, liver fibrosis, cirrhosis, and even liver cancer. Molecules from the worm play vital roles in disease progress. In the present study, we identified and explored molecular characterization of C. sinensis granulin (CsGRN), a growth factor-like protein from C. sinensis excretory/secretory products (CsESPs). Methods The encoding sequence and conserved domains of CsGRN were identified and analysed by bioinformatics tools. Recombinant CsGRN (rCsGRN) protein was expressed in Escherichia coli BL21 (DE3). The localisation of CsGRN in adult worms and Balb/c mice infected with C. sinensis was investigated by immunofluorescence and immunohistochemistry, respectively. Stable CsGRN-overexpressed cell lines of hepatoma cells (PLC-GRN cells) and cholangiocarcinoma cells (RBE-GRN cells) were constructed by transfection of eukaryotic expression plasmid of pEGFP-C1-CsGRN. The effects on cell migration and invasion of CsGRN were assessed through the wound-healing assay and transwell assay. The levels of matrix metalloproteinase 2 and 9 (MMP2 and MMP9) in PLC-GRN or RBE-GRN cells were detected by real-time PCR (qRT-PCR). The levels of E-cadherin, vimentin, N-cadherin, zona occludens proteins (ZO-1), β-catenin, phosphorylated ERK (p-ERK) and phosphorylated AKT (p-AKT) were analysed by Western blotting. Results CsGRN, including the conserved GRN domains, was confirmed to be a member of the granulin family. CsGRN was identified as an ingredient of CsESPs. CsGRN was localised in the tegument and testes of the adult worm. Furthermore, it appeared in the cytoplasm of hepatocytes and biliary epithelium cells from infected Balb/c mouse. The enhancement of cell migration and invasion of PLC-GRN and RBE-GRN cells were observed. In addition, CsGRN upregulated the levels of vimentin, N-cadherin, β-catenin, MMP2 and MMP9, while it downregulated the level of ZO-1 in PLC-GRN/RBE-GRN cells. In total proteins of liver tissue from rCsGRN immunised Balb/c mice, vimentin level decreased, while E-cadherin level increased when compared with the control groups. Meanwhile, the levels of p-ERK reached a peak at 4 weeks post immunisation and the level of p-AKT did at 2 weeks after immunisation. Conclusions The encoding sequence and molecular characteristics of CsGRN were identified. As a member of granulin superfamily, CsGRN induced mesenchymal characteristics of PLC and RBE cells and was found to regulate the activities of the downstream molecules of the ERK and PI3K/AKT signalling pathways, which could contribute to the enhancement of cell migration and invasion. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2179-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caiqin Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Huali Lei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China.,Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, People's Republic of China
| | - Yanli Tian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Ye Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Xin Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China
| | - Xiaoping Tang
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China.
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
27
|
Pak JH, Bashir Q, Kim IK, Hong SJ, Maeng S, Bahk YY, Kim TS. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway. Mol Biochem Parasitol 2017; 214:1-9. [PMID: 28286026 DOI: 10.1016/j.molbiopara.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea.
| | - Qudsia Bashir
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - In Ki Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology and Research Center for Biomolecules and Biosystems, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Sejung Maeng
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Young Yil Bahk
- Department of Biotechnology, Konkuk University, Chungju 380-701, Republic of Korea
| | - Tong-Soo Kim
- Department of Parasitology, Inha University School of Medicine, Incheon 400-103, Republic of Korea
| |
Collapse
|
28
|
Feng M, Cheng X. Parasite-Associated Cancers (Blood Flukes/Liver Flukes). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:193-205. [DOI: 10.1007/978-981-10-5765-6_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Sripa B, Deenonpoe R, Brindley PJ. Co-infections with liver fluke and Helicobacter species: A paradigm change in pathogenesis of opisthorchiasis and cholangiocarcinoma? Parasitol Int 2016; 66:383-389. [PMID: 27919744 DOI: 10.1016/j.parint.2016.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/27/2016] [Accepted: 11/27/2016] [Indexed: 02/07/2023]
Abstract
Infection with the fish-borne liver fluke Opisthorchis viverrini is classified by the International Agency for Research on Cancer as a Group 1 carcinogen: definitely carcinogenic in humans. Cofactors likely contribute to bile duct cancer (cholangiocarcinoma) caused by this infection. Here we review recent findings that address the role of liver fluke associated H. pylori in hepatobiliary disease and malignancy. We hypothesize that co-infection by O. viverrini and the bacillus Helicobacter pylori is central of liver fluke infection associated cholangiocarcinoma.
Collapse
Affiliation(s)
- Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Raksawan Deenonpoe
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Tropical Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
30
|
van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine 2016; 15:12-23. [PMID: 27956028 PMCID: PMC5233816 DOI: 10.1016/j.ebiom.2016.11.034] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic. Trypanosoma cruzi has a dual role in cancer development including both carcinogenic and anticancer properties. Initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by EBV. Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas.
We searched MEDLINE database and PubMed for articles from 1970 through June 30, 2016. Search terms used in various combinations were “parasite infection”, “carcinogenesis”, “cancer”, “human malignancy”, “parasite and cancer”, “infection-associated cancer”, “parasite-associated cancer” “schistosomiasis”, “opisthorchiasis”, “malaria”, “Chagas disease”, and “strongyloidiasis”. Articles resulting from these searches and relevant references cited in those articles were selected based on their related topics and were reviewed. Abstracts and reports from meetings were also included. Articles published in English were included.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam.
| | - Paul J Brindley
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., USA
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Health Focus GmbH, Potsdam, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam.
| |
Collapse
|
31
|
Liver fluke infection and cholangiocarcinoma: a review. Parasitol Res 2016; 116:11-19. [PMID: 27718017 DOI: 10.1007/s00436-016-5276-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022]
Abstract
Parasites are significant groups for carcinogenesis among which liver flukes, including Opisthorchis viverrini and Clonorchis sinensis, are typical representatives causing cholangiocarcinoma (CCA), the second most common primary hepatic malignancy with dismal prognosis. O. viverrini is prevalent in Southeast Asia, infecting 10 million people while C. sinensis has a wider distribution in East Asia and several Southeast Asian countries, affecting more than 35 million people's health. These two worms have some common characteristics and/or discrepancies in life cycle, genome, and transcriptome. As hot spots in recent years, genome and transcriptome research has extracted numerous novel fluke worm-derived proteins, which are excellent for carcinogenic exploration. However, just a handful of these studies have focused on the metabolic pathway. In this study, the main mechanisms of carcinogenesis of both worms, in terms of mechanical damage, metabolic products and immunopathology, and other possible pathways, will be discussed in detail. This review retrospectively describes the main traits of C. sinensis and O. viverrini, their molecular biology and core carcinogenic mechanisms in a contrast pattern.
Collapse
|
32
|
Pakharukova MY, Mordvinov VA. The liver fluke Opisthorchis felineus: biology, epidemiology and carcinogenic potential. Trans R Soc Trop Med Hyg 2016; 110:28-36. [PMID: 26740360 DOI: 10.1093/trstmh/trv085] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The liver fluke Opisthorchis felineus is a member of the triad of epidemiologically important liver fluke species belonging to the family Opisthorchiidae and the major agent causing opisthorchiasis over a vast territory, covering Russia, Kazakhstan and several European countries. The similarity between the diseases caused by O. felineus and other liver flukes, O. viverrini and Clonorchis sinensis, in clinical manifestations and course suggests that the scenarios of their development and, possibly, complications have much in common. The International Agency for Research on Cancer classified O. viverrini and C. sinensis as group 1 agents and the major factors inducing cholangiocarcinoma in endemic regions. However, a carcinogenic potential of O. felineus is poorly studied. This review characterizes O. felineus, briefs the epidemiological situation in Western Siberia, the world's largest opisthorchiasis focus, and assesses the carcinogenic potential of this liver fluke. The review is based on a comprehensive analysis of the published medical data on opisthorchiasis and its complications in Western Siberia. Results of performed analysis reflect the actual epidemiological situation in opisthorchiasis focus and suggest an association of this disease with bile duct cancer.
Collapse
Affiliation(s)
- Mariya Y Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Viatcheslav A Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia Laboratory of Pharmacokinetic and Drugs Metabolism, Institute of Molecular Biology and Biophysics Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630060, Russia
| |
Collapse
|
33
|
Chaiyadet S, Smout M, Laha T, Sripa B, Loukas A, Sotillo J. Proteomic characterization of the internalization of Opisthorchis viverrini excretory/secretory products in human cells. Parasitol Int 2016; 66:494-502. [PMID: 26873540 DOI: 10.1016/j.parint.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 01/03/2023]
Abstract
The association between liver fluke infection caused by Opisthorchis viverrini and cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium) has been well established. Multiple mechanisms play a role in the development of CCA, but the excretory/secretory products released by O. viverrini (OvES) represent the major interface between the parasite and its host, and their uptake by biliary epithelial cells has been suggested to be responsible for proliferation of cholangiocytes, the cells that line the biliary epithelium. Despite recent progress in the study of the molecular basis of O. viverrini-host interactions, little is known about the effects that OvES induces upon internalization by host cells. In the present study we incubated non-cancerous human cholangiocytes (H69) and human colon cancer (CaCo-2) cells with OvES and performed a time-course quantitative proteomic analysis on the cells to determine the early changes induced by the parasite. Different KEGG pathways were altered in H69 cells compared to Caco-2 cells: glycolysis/gluconeogenesis and protein processing in the endoplasmic reticulum. In addition, the Reactome pathway analysis showed a predominance of proteins involved in cellular pathways related to apoptosis and apoptotic execution phase in H69 cells after incubation with OvES. The present study provides the first proteomic analysis to address the molecular mechanisms by which OvES products interact with host cells, and Sheds light on the cellular processes involved in O. viverrini-induced CCA.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen, Thailand; Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Michael Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
34
|
Brindley PJ, da Costa JMC, Sripa B. Why does infection with some helminths cause cancer? Trends Cancer 2015; 1:174-182. [PMID: 26618199 PMCID: PMC4657143 DOI: 10.1016/j.trecan.2015.08.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Infections with Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium are classified as Group 1 biological carcinogens: definitive causes of cancer. These worms are metazoan eukaryotes, unlike the other Group 1 carcinogens including human papilloma virus, hepatitis C virus, and Helicobacter pylori. By contrast, infections with phylogenetic relatives of these helminths, also trematodes of the phylum Platyhelminthes and major human pathogens, are not carcinogenic. These inconsistencies prompt several questions, including how might these infections cause cancer? And why is infection with only a few helminth species carcinogenic? Here we present an interpretation of mechanisms contributing to the carcinogenicity of these helminth infections, including roles for catechol estrogen- and oxysterol-metabolites of parasite origin as initiators of carcinogenesis.
Collapse
Affiliation(s)
- Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - José M Correia da Costa
- Center for Parasite Biology and Immunology, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; and Center for the Study of Animal Science, CECA/ICETA, University of Porto, Portugal
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Department of Pathology, and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|